Characterization of Na⁺ influx mediated by ATP^{4-} -activated P₂ purinoceptors in PC ¹² cells

Se-Young Choi & 'Kyong-Tai Kim

Department of Life Science and Basic Science Research Institute, Pohang University of Science and Technology, Pohang, 790-784, Republic of Korea

1 Micromolar levels of extracellular ATP increased cytosolic $Na⁺$ concentration ($[Na⁺]$) as well as cytosolic Ca²⁺ concentration ($[Ca^{2+}]_i$) in PC12 cells.

2 Pretreatment of cells with tetrodotoxin, benzamil or thapsigargin did not alter the ATP-induced Na' influx.

3 Increased extracellular Mg^{2+} concentration decreased the ATP effect. Furthermore, when the extracellular ATP pool was treated to contain corresponding calculated concentrations of $ATP⁴⁻$, the increase in $[Na^+]$ stayed linked to the $ATP⁴⁻$ concentration rather than to the total ATP concentrations in the stimulants.

4 Extracellular ATP does not create nonselective pores as shown by the fact that ethidium bromide does not enter the cells upon ATP stimulation.

⁵ Among the tested nucleotides, only adenosine ⁵'-O-(3-thiotriphosphate), 2-methylthio ATP and 2 chloro ATP also caused Na' influx.

6 Reactive Blue ² specifically decreased the ATP effect in ^a concentration-dependent manner.

7 The results suggest that extracellular ATP triggers $Na⁺$ influx through a P₂ purinoceptor which is activated by $ATP⁴⁻$ in PC12 cells.

Keywords: P_2 purinoceptor; ATP⁴⁻; SBFI; intracellular sodium; Reactive Blue 2; PC12 cell

Introduction Methods

Extracellular ATP has potent pharmacological actions in many neuronal cells such as sympathetic and parasympathetic neurones, sensory ganglia, hippocampal neurones, dorsal horn neurones, and PC12 cells (von Kuigelgen & Starke, 1991; Dubyak & El-Moatassim, 1993; Illes & Norenberg, 1993). The actions of ATP are mediated by P_2 purinoceptors (Burnstock, 1978), six subtypes of which have been classified: P_{2X} , P_{2Y} , P_{2U} , P_{2T} , P_{2Z} , and P_{2D} (Fredholm et al., 1994).

In PC12 cells, extracellular ATP elevates the intracellular free Ca^{2+} concentration ([Ca²⁺]_i) through the activation of phospholipase C (PLC) and receptor operated Ca^{2+} channels (Fasolato et al., 1990; Sela et al., 1991; Majid et al., 1992; Reber et al., 1992; Kim & Rabin, 1994; Suh et al., 1995). The ATP gated channel in PC12 cells is classified as a P_{2X} purinoceptor and has recently been cloned and sequenced in PC12 cells (Brake et al., 1994). Inward currents are detected in oocyte and human embryonic kidney 293 cells transfected with P_{2X} purinoceptor cDNA cloned from PC12 cells (Evans et al., 1995). Extracellular ATP also triggers inward currents in PC12 cells which are in part due to $Na⁺$ influx (Nakazawa et al., 1990a,b: Neuhaus et al., 1991). However, the characteristics of the Na+ influx have not yet been worked out. There may be several pathways for Na^+ influx: through a P_{2X} purinoceptor operated non-selective cation channel, a Na^+/Ca^{2+} exchanger. a voltage-sensitive Na⁺ channel or an ATP-induced membrane pore. We investigated, whether the extracellular ATP-induced elevation of intracellular free $Na⁺$ concentration ($[Na⁺]_i$) occurs through a second pathway, concomitantly with the P_{2x} purinoceptor, in PC12 cells.

Cell culture

PC12 cells were maintained at 37°C in RPMI ¹⁶⁴⁰ supplemented with 10% (v/v) heat-inactivated bovine calf serum, 5% (v/v) heat-inactivated equine serum and 1% (v/v) penicillin-streptomycin in a humidified atmosphere of 95% air and 5% CO2. The culture medium was changed every ² days and cells were subcultured about once a week.

Measurements of $[Na^+]$

The level of intracellular $Na⁺$ was determined by use of sodium-binding benzofuran isophthalate tetra-acetoxymethyl ester (SBFI/AM), the fluorescent sodium indicator (Minta & Tsien, 1989). Cells were harvested and incubated in serum-free RPMI 1640 medium with $15 \mu M$ SBFI/AM. 0.2% pluronic acid and 250 μ M sulfinpyrazone at 37°C for 90 min under continuous stirring. Then the cells were washed with serum-free RPMI 1640 medium containing 250 μ M sulphinpyrazone. The cells were kept at room temperature for 30 min to allow completion of the hydrolysis of SBFI/AM in serum-free RPMI ¹⁶⁴⁰ solution with $250 \mu M$ sulphinpyrazone. Before measurement, a small portion of cells $(0.5 \times 10^6$ cells) were divided into aliquots for assay, centrifuged and, after the supernatant was removed, resuspended in Locke buffer solution (composition mm: NaCl 154, KCl 5.6, MgCl₂ 1.2, CaCl₂ 2.2, HEPES 5, and glucose 10, at pH 7.3), Ca^{2+} -free Locke solution (composition mM: NaCl 158.4 , KCl 5.6, MgCl₂ 1.2, HEPES, 5, glucose 10, and 200 μ M EGTA at pH 7.3), Na⁺-free Locke solution (choline chloride 154, KCl 5.6, $MgCl₂$ 1.2, $CaCl₂$ 2.2, HEPES 5, and glucose 10 at pH 7.3) or Mg^{2+} -free Locke solution (composition mM NaCl 156.4, KCl 5.6, CaCl₂ 2.2, HEPES 5 and glucose 10 at pH 7.3). For these experiments, the increase of cytosolic $Na⁺$ was measured as an increase in the fluorescence ratio

¹ Author for correspondence at: Department of Life Science, POSTECH, San 31, Hyoja Dong, Pohang, 790-784, Republic of Korea.

determined at the dual excitation wavelengths of 340 nm and ³⁸⁰ nm and the emission wavelength of ⁵⁵⁰ nm at 37°C. Since the calibrations of the obtained fluorescence ratios for $Na⁺$ concentrations are not absolute (Chueh et al., 1994), we usually expressed our results as fluorescence ratios. In these experiments, the baseline Na' concentrations were calculated to be near ⁵ mm and to increase up to approximately 7 mM upon 300 μ M ATP treatment in the absence of extracellular Mg^{2+} .

Measurement of $\int Ca^{2+}l_i$

The level of intracellular Ca^{2+} was determined with fura-2 penta-acetoxymethyl ester (fura-2/AM) as previously described (Suh & Kim, 1994). Briefly, ^a cell suspension was harvested and incubated in fresh serum-free RPMI ¹⁶⁴⁰ medium with 3 μ M fura-2/AM at 37°C for 50 min under continuous stirring. Then the cells were washed with serumfree RPMI 1640 medium. Sulphinpyrazone (250 μ M) was added to all solutions to prevent dye leakage. For measurement, a small portion of the cells $(0.5 \times 10^6 \text{ cells})$ was removed, pelleted, and resuspended in Locke's buffer solution. Changes in the fluorescence ratio were measured at dual excitation wavelengths of ³⁴⁰ nm and 380 nm and the emission wavelength of 500 nm. The calibration of the fluorescence ratio in terms of $[Ca^{2+}]_i$ was performed according to Grynkiewicz et al. (1985).

Measurement of membrane permeabilization

The membrane permeabilization was determined using ethidium bromide (EtBr) as previously reported by Chueh et al. (1994). Briefly, cells were harvested in serum-free RPMI ¹⁶⁴⁰ medium. Before the measurement, 0.5×10^6 cells were aliquoted, centrifuged, and the pellets resuspended in Locke buffer solution containing 25 μ M EtBr. In order to measure the membrane permeability after the addition of the indicated reagents, changes in fluorescence intensity were recorded at an excitation wavelength of 310 nm and an emission wavelength of 580 nm.

Materials

RPMI 1640 and penicillin-streptomycin were purchased from GIBCO (Grand Island, NY, U.S.A.). Bovine calf serum and equine serum were obtained from HyClone Laboratories (Logan, UT, U.S.A.). Fura-2/AM SBFI/AM, 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetoxymethyl ester (BAP-TA/AM) and pluronic acid were obtained from Molecular Probes (Eugene, OR, U.S.A.). ATP, ADP, AMP, adenosine, GTP, CTP, UTP, ITP, XTP, adenosine ⁵'-O-(3-thiotriphosphate) (ATP- γ -S), adenosine 5'-O-(2-thiodiphosphate)
(ADP- β -S), adenosine 5'- $(\beta, \gamma$ -methylene) triphosphate adenosine $5'$ - $(\beta, \gamma$ -methylene) triphosphate (AMPPCP), 5'-adenylylimidodiphosphate (AMPPNP), ³'-O- (4-benzoyl)benzoyl ATP (BzATP), tetrodotoxin, thapsigargin, bradykinin, sulfinpyrazone, monensin, EGTA, and EtBr were purchased from Sigma Chemical Co. (St. Louis, MO, U.S.A.). Adenosine $5'-(\alpha,\beta$ -methylene) triphosphate (AMPCPP), 2-chloro ATP (2-Cl ATP) and 2-methylthio ATP (2-MeS ATP) were obtained from Research Biochemicals Inc. (Natick, MA, U.S.A.).

Analysis of data

All quantitative data are expressed as mean \pm s.e. mean. The results were analyzed for differences using Student's unpaired ^t test. We calculated EC_{50} and IC_{50} by the graphical method of described by Turner (1965). Differences were considered to be significant only for $P < 0.05$.

Results

Extracellular ATP-induced $[Na^+]$ and $[Ca^{2+}]$ elevation in PC12 cells

Extracellular ATP is known to activate phospholipase C (PLC) and elicit ion fluxes across the plasma membrane in PC12 cells. Figure ¹ shows that extracellular ATP triggered the elevation of both $[Ca^{2+}]$ and $[Na^+]$. ATP elevated $[Ca^{2+}]$ only slightly in the absence of extracellular Ca^{2+} (dotted trace of Figure 1a), and did not increase $[Na^+]$; when extracellular Na^+ was substituted with choline (dotted trace in Figure lb). This suggests that the ATP-induced $[Na⁺]$ _i elevation is caused only by influx from the extracellular space. Activation of bradykinin receptors, which are also linked to PLC, did not change $[Na^+]$ although it triggered a $[Ca^{2+}]$ rise by intracellular mobilization and influx across the membrane. However, monensin, the Na+ specific ionophore, did elevate $[Na⁺]$ _i in these cells. ATP raised $[Na⁺]$ in a concentration-dependent manner (Figure 2) with an EC₅₀ of 40.75 \pm 4.11 μ M (95% confidence limit was 13.08).

Lack of involvement of voltage-sensitive Na^+ channel, Na^{+}/Ca^{2+} exchanger, and Ca^{2+} release-activated channel in the \overline{ATP} -induced Na⁺ influx

We tested the possibility that extracellular ATP-induced Na⁺ influx may occur through a voltage-sensitive $Na⁺$ channel by using the voltage-sensitive $Na⁺$ channel blocker, tetrodotoxin. Tetrodotoxin had no effect on the ATP-induced $Na⁺$ influx (Figure 3a).

There still remained the other possibility that extracellular ATP could modulate the activity of the $Na⁺/Ca²⁺$ exchanger. We tested this possibility with benzamil, the blocker of the Na⁺/Ca²⁺ exchanger. Pretreatment with 5 μ M benzamil did not influence the ATP effect (Figure 3b). To study the in-

Figure 1 Increases in $[Na^+]$ and $[Ca^{2+}]$ by extracellular ATP in PC12 cells. (a) PC12 cells were loaded with the fluorescent Ca^{2+} indicator, fura-2/AM, and then treated with 300μ M ATP (left) or 5 μ M bradykinin (BK; right). Dotted traces show [Ca²⁺]_i elevations under Ca²⁺-free conditions using Ca²⁺-free Locke solution. (b) PC12 cells loaded with the fluorescent $Na⁺$ indicator, SBFI/AM, were challenged with $300 \mu \text{M ATP}$ (left) or $5 \mu \text{M}$ bradykinin (BK; right). Monensin (Mon), 40μ M, the Na⁺ specific ionophore, was used in order to reveal the elevation of $[Na^+]$ as a positive control. Dotted traces show responses under Na^+ -free conditions using Na^+ -free Locke solution. Data shown in (a) and (b) are representative of four to eight separate experiments. The results from every experiment were reproducible.

Figure 2 Concentration-dependent elevation of $[Na^+]$ by extracellular ATP. Various concentrations of ATP were applied to SBFIloaded cells and changes in the fluorescence ratio at the peak height were monitored. Data are expressed as mean \pm s.e. mean for four separate experiments.

volvement of the Na⁺/Ca²⁺ exchanger more clearly, we preincubated cells with 10 μ M BAPTA/AM for 30 min to chelate intracellular Ca^{2+} . However, the ATP-induced [Na⁺]_i increase was not changed by the BAPTA/AM treatment, whereas the ATP-induced $[Ca^{2+}]_i$ elevation was completely blocked under these conditions (data not shown).

We also tested whether Na⁺ influx might occur with Ca^{2+} influx evoked by the messenger generated from depleted Ca^{2+} stores. Thapsigargin, which is a potent inhibitor of microsomal Ca^{2+} -ATPase and depletes Ca^{2+} stores, did not change the ATP-induced Na⁺ influx (Figure 3C).

ATP^{4-} -induced Na⁺ influx

Several reports suggested that ATP^{4-} creates nonselective membrane pores that allow passage of ions and small molecules below 831 Dalton (Steinberg et al., 1987). We examined the effect of ATP^{4-} on Na⁺ flux. The calculation of $[ATP^{4-}]$ was carried out according to the following equation of Cockcroft & Gomperts (1979):

$$
[ATP^{4-}]_{free} = [ATP]_{total}/(10^{3.94} \times [Ca^{2+}] + 10^{4.28} \times [Mg^{2+}])
$$

Figure 4 clearly shows that increase in $[Na^+]$; was affected by the changes in extracellular Mg^{2+} concentration. The increments of $[Na^+]$ caused by treatments with the corresponding calculated concentrations of ATP4- were almost the same even when the total concentrations of extracellular ATP were different. In the first two columns of Figure 4 containing the responses to 5.22 μ M ATP⁴⁻, both [Na⁺]_i increases are similar, although the total concentrations of ATP were 219 μ M in one case and 100 μ M in the other. The experiments with 0.52 μ M ATP⁴⁻ showed similar increases in $[Na⁺]$ _i in an ATP⁴⁻dependent manner, as demonstrated in the last two columns.

Effect of $ATP⁴⁻$ on membrane pore formation in PC12 cells

In order to test whether ATP⁴⁻ makes membrane pores, we examined the effect of ATP on EtBr uptake indicating membrane permeabilization. We employed various concentrations of ATP in the presence or absence of extracellular Mg^{2+} . Figure ⁵ shows that extracellular ATP did not lead to any increase in fluorescence intensity at either 300 μ M, which is the maximal concentration for $Na⁺$ mobilization as shown in Figure 2, nor at 10 mM ATP (equivalent to 240 μ M of ATP⁴⁻, data not shown). In addition, treatment with the above concentrations of ATP in the absence of extracellular Mg^{2+} also did not trigger entry of EtBr (data not shown). On the other hand, treatment with 10 μ M and 50 μ M digitonin, which generally permeabilizes the cell membrane, markedly increased the fluorescence intensity.

Figure 3 Effects of tetrodotoxin, benzamil, and thapsigargin on the ATP-induced changes in $[Na⁺]$. SBFI-loaded PC12 cells were preincubated for 3min with each agent before stimulation with 300 μ M ATP; (a) 3 μ M tetrodotoxin (TTX); (b) 5 μ M benzamil (BZ); (c) 1μ M thapsigargin (TG). Dotted traces in (a), (b) and (c) show the stimulations obtained by 300μ M ATP without the pretreatment with TTX, BZ, and TG, respectively. Data are representative of more than five separate experiments. The results were reproducible.

Figure 4 Extracellular Mg^{2+} -dependence of the ATP-induced [Na⁺]_i increase. SBFI-loaded PC12 cells were resuspended in Mg² -free Locke solution to which various concentrations of $Mg²⁺$ were added subsequently. The amount of calculated tetrabasic form of ATP and the total ATP concentration used are indicated. The responses were converted to percentage of the control, the treatment with 100μ M ATP in the presence of 1.2mM Mg^{2+} . Data are expressed as $mean \pm s.e.$ mean for six separate experiments. Statistical significance was found at the indicated level between the control and each response. ** $P < 0.005$; *** $P < 0.001$.

Inhibition of ATP-induced Na^+ influx by Reactive Blue 2

Reactive Blue 2 specifically inhibited the ATP-induced elevation of $[Na^+]$; with an IC₅₀ of 39 + 4.35 μ M (95% confidence limit was 18.72) and Hill slope of 1.29 (Figure 6). Reactive Blue 2 also inhibited the ATP-induced elevation of $[Ca²⁺]$ _i, whereas it did not inhibit the bradykinin-induced $[Ca^{2+}]$ _i increase (data not shown).

Effects of nucleotides and ATP analogues on Na^+ influx

We tested the effects of other nucleotides and ATP analogues on $[Na^+]$; elevation. When we applied 100 μ M of each analogue

Figure ⁵ Effect of ATP on the uptake of EtBr. PC12 cells were resuspended in Locke buffer solution containing $25 \mu M$ EtBr and then treated with 300 μ M ATP: 10 μ M (lower trace) and 50 μ M (upper trace) digitonin (Dig) were used in order to reveal the entrance of EtBr as positive controls. The entry of EtBr was measured as the fluorescence of the DNA-EtBr complex. Data shown are representative of four separate experiments.

to the cells, ADP, ADP- β -S, AMP, adenosine, CTP, GTP, ITP, XTP, UTP, AMPPCP, AMPCPP, AMPPNP, and BzATP had no effect on Na' mobilization. However, 2-MeS ATP, 2-Cl ATP, and ATP- γ -S caused an increase in [Na⁺]_i by
75.8 ± 5.6% (*P*<0.05), 66.4 ± 7.1% (*P*<0.01), and 66.4 \pm 7.1% (*P* < 0.01), and $53.5 + 11.9\%$ (\vec{P} < 0.01) of the ATP effect, respectively.

Discussion

Extracellular ATP causes the elevation of $[Ca^{2+}]_i$ by several pathways in PC12 cells. The ATP-induced $[Ca²⁺]$ rise occurs via the voltage-sensitive Ca²⁺ channel (Fasolato et al., 1990), the ATP"--gated receptor operated channel (Kim & Rabin, 1994), and the Ca^{2+} release-activated Ca^{2+} channel triggered by the depletion of IP₃-sensitive internal Ca²⁺ stores (Suh et al., 1995; Fasolato et al., 1994; Kim & Rabin, 1994). Ca²⁺ influx through Ca^{2+} release-activated channels is evoked by an unidentified messenger which is generated by Ca^{2+} store depletion (Randriamampita & Tsien, 1993; Parekh et al., 1993).

It has been reported that there are voltage-sensitive Na+ channels and Na⁺/Ca²⁺ exchangers in PC12 cells (Stallcup, 1979) and that extracellular ATP causes membrane depolarization (Magoski & Walz, 1992; Kim & Rabin, 1994). We excluded the possibility that ATP-induced $Na⁺$ influx may occur through a voltage-sensitive $Na⁺$ channel opened by membrane depolarization, because tetrodotoxin did not effect the ATP-induced Na⁺ influx. Furthermore, bradykinin, which also depolarizes PC12 cells (Fasolato et al., 1990), did not increase intracellular sodium. We also excluded the possibility of a direct activation of the Na^{+}/Ca^{2+} exchanger by ATP as the Na⁺/Ca²⁺ exchanger inhibitor, benzamil, did not influence the ATP effect. Also it was possible that the $[Na^+]$ increase could occur indirectly via activation of the Na^+/Ca^{2+} exchanger following the increase in $[Ca^{2+}]_i$. Chelation of cytosolic free Ca^{2+} by BAPTA/AM did not affect the elevation of [Na⁺], by ATP (data not shown), suggesting that a Na⁺/Ca²⁺ exchanger is not involved in the ATP response.

Hoth & Penner (1993) reported that the Ca²⁺ release-activated calcium current mediated by an unidentified messenger is highly selective for calcium. However, Tepel et al., (1994) reported that the filling state of intracellular thapsigargin-sensitive Ca^{2+} pools regulates trans plasma membrane Na⁺ and $Ca²⁺$ influx. We additionally tested whether Na⁺ influx occurs through the above channel. The treatment of cells with thapsigargin did not evoke Na^+ influx and did not affect the ATPinduced $[Na^+]$ _i increase, thus excluding the involvement of this channel.

Figure 6 Effect of Reactive Blue 2 on the ATP-evoked $[Na^+]$ increase. SBFI-loaded PC12 cells were preincubated for 3min with various concentrations of Reactive Blue 2 (RB) before stimulation with 300 μ M ATP. (a) The response when pretreated with 50 μ M Reactive Blue 2 (lower trace) and of the untreated control (upper trace) are shown. Data represent six independent experiments. (b) Concentration-dependent inhibition of $[Na⁺]$ rise by Reactive Blue 2 is shown. The responses were converted to percentage of the control, the 300μ M ATP-evoked response without Reactive Blue 2 pretreatment. Data are expressed as mean \pm s.e. mean for four separate experiments.

We demonstrated that $Na⁺$ influx occurs through the activation of a P_2 purinoceptor triggered by ATP⁴⁻. In physiological buffers and in biological fluids, ATP exists as ^a mixture of several species including ATP⁴⁻, MgATP²⁻ and CaATP² (Dahlquist & Diamant, 1974). Although the predominant form of ATP in physiological buffers is $\tilde{M}gAT\tilde{P}^{2-}$, some studies reported that $\widehat{ATP^{4-}}$ is the receptor ligand that mediates the effect of the P_2 purinoceptor in many kinds of cells including rat mast cells (Dahlquist & Diamant, 1974; Cockcroft & Gomperts, 1979), mouse macrophages (Steinberg et al., 1987), human fibroblasts (Fine et al., 1989), smooth muscle of the guinea-pig vas deferens (Fedan et al., 1990), sheep and rat pituitary cells (Davidson et al., 1990), vascular endothelial cells (Lustig et al., 1992), bovine aortic endothelial cells (Motte et al., 1993), and PC12 cells (Kim & Rabin, 1994). If $ATP⁴⁻$ acts as the specific ligand for the P_2 purinoceptor, the effects induced by extracellular ATP should be modulated in an extracellular Ca^{2+} or Mg^{2+} concentration-dependent manner. Our results strongly suggest that Na^+ influx is mediated by an $ATP⁴⁻ receptor in PC12 cells.$

Nakazawa et al. (1990a) and Neuhaus et al. (1991) have shown that a high concentration of extracellular Ca^{2+} reduces the Na+ current caused by ATP in PC12 cells. The above effect correlates with our observation that a high concentration of external Mg^{2+} reduces the ATP-induced Na⁺ influx.

 $ATP⁴⁻$ permeabilizes cells not only to cations but also to low molecular weight solutes such as EtBr in mast cells, macrophages, and thymocytes (Steinberg et al., 1987; El-Moatassim et al., 1990; Wiley et al., 1993). ATP, however, did not create any increase in cellular fluorescence intensity, even at ¹⁰ mm which is ³⁰ times higher than the maximal effective concentration in PC12 cells. In addition, removal of extra-

We conclude that the elevation of $[Na⁺]_i$ is mediated by the opening of receptor operated non-selective cation channels activated by ATP⁴⁻. This conclusion is supported by the antagonism between the ATP and Reactive Blue ² (for review see Fedan & Lamport, 1990). Reactive Blue ² has been studied as an antagonist of ATP-induced inward current and dopamine secretion in PC12 cells (Inoue et al., 1991). It has also been reported that Reactive Blue 2 inhibits $[3^2P]$ -BzATP photoaffinity labelling in PC12 cells (Majid et al., 1992). The data suggest that Na^+ influx and Ca^{2+} influx occur through the same cation channels. This suggestion is strongly supported by the reported observation that Reactive Blue 2 inhibits the

References

- BRAKE, A.J., WAGENBACH, M.J. & JULIUS, D. (1994). New structural motif for ligand-gated ion channels defined by an ionotropic ATP receptor. Nature, 317, 519-523.
- BURNSTOCK, G. (1978). A basis for distinguishing two types of purinergic receptor. In Cell Membrane Receptors for Drugs and Hormones: a Multidisciplinary Approach. ed. Bolis, L. and Straub, R.W., pp. 107-118. New York: Raven Press.
- CHUEH, S.-H., HSU, L.-S. & SONG, S.-L. (1994). Two distinct ATP signaling mechanisms in differentiated neuroblastoma \times glioma hybrid NG108-15 cells. Mol. Pharmacol., 45, 532-539.
- COCKCROFT, S. & GOMPERTS, B.D. (1979). Activation and inhibition of calcium-dependent histamine secretion by ATP ions applied to rat mast cells. J. Physiol. 296 , $229-243$.
- DAHLQUIST, R. & DIAMANT, B. (1974). Interaction of ATP and calcium on the rat mast cell: effect on histamine release. Acta Pharmacol. Toxicol., 34, 368-384.
- DAVIDSON, J.S., WAKEFIELD, I.K., SOHNIUS, U., MERWE, P.A. & MILLAR, R.P. (1990). A novel extracellular nucleotide receptor coupled to phosphoinositidase-C in pituitary cells. to phosphoinositidase-C in Endocrinology, 126, 80-87.
- DUBYAK, G.R. & EL-MOATASSIM, C. (1993). Signal transduction via P₂-purinergic receptors for extracellular ATP and other nucleotides. Am. J. Physiol., 265, C577-C606.
- EL-MOATASSIM, C., MANI, J.C. & DORNAND, J. (1990). Extracellular ATP^{4-} permeabilizes thymocytes not only to cations but also to low-molecular-weight solutes. Eur. J. Pharmacol., 181, 111-118.
- EVANS, R.J., LEWIS, C., BUELL, S., VALERA, S., NORTH, R.A. & SURPRENANT, A. (1995). Pharmacological characterization of heterologously expressed ATP-gated cation channels (P_{2X} purinoceptors). Mol. Pharmacol., 48, 178-183.
- FASOLATO, C., INNOCENTI, B. & POZZAN, T. (1994). Receptoractivated Ca^{2+} influx: how many mechanisms for how many channels? Trends Pharmacol. Sci., 15, 77-83.
- FASOLATO, C., PIZZO, P. & POZZAN, T. (1990). Receptor-mediated calcium influx in PC12 cells. J. Biol. Chem., 265 , $20351 - 20355$.
- FEDAN, J.S., DAGIRMANJIAN, J.P., ATTFIELD, M.D. & CHIDECK-EL, E.W. (1990). Evidence that the P_{2X} purinoceptor of the smooth muscle of the guinea pig vas deferens is an ATP⁴ receptor. J. Pharmacol. Exp. Ther., 255 , $46-51$.
- FEDAN, J.S. & LAMPORT, S.J. (1990). P₂-purinoceptor antagonists. Ann. NY Acad. Sci., 603, 182-197.
- FINE, J., COLE, P. & DAVIDSON, S. (1989). Extracellular nucleotides stimulate receptor-mediated calcium mobilization and inositol phosphate production in human fibroblasts. Biochem. J., 263, $371 - 376$.
- FREDHOLM, B.B., ABBRACCHIO, M.P., BURNSTOCK, G., DALY, J.W., HARDEN, T.K., JACOBSON, K.A., LEFF, P. & WILLIAMS, M. (1994). Nomenclature and classification of purinoceptors. Pharmacol. Rev., 46, 143 - 156.
- GRYNKIEWICZ, G., POENIE, M. & TSIEN, R.Y. (1985). A new generation of Ca^{2+} indicators with greatly improved fluorescence properties. J. Biol. Chem., 260, 3440- 3450.
- HOTH, M. & PENNER, R. (1993). Calcium release-activated calcium current in rat mast cells. J. Physiol., 465, 359-386.
- ILLES, P. & NORENBERG, W. (1993). Neuronal ATP receptors and their mechanism of action. Trends Pharmacol. Sci., 14, 50 - 54

ATP-induced membrane current through an ionotropic P_{2X} purinoceptor cloned from PC12 cells, which has an AMPPCPinsensitive and nondesensitizing manner (Brake et al., 1994; Evans et al., 1995; Kennedy & Leff, 1995). It seems likely that the P_{2x} purinoceptor mainly contributes to the Na⁺ influx.

We wish to thank Ms S.H. Woo for excellent technical assistance and Ms G. Hoschek for editing the manuscript. This work was supported by grants from the POSTECH, Korea Science and Engineering Foundation (KOSEF 95-0401-02), and the Basic Science Research Institute Program (Project BSRI-96-4435) from the Ministry of Education.

- INOUE, K., NAKAZAWA, K., OHARA-IMAIZUMI, M., OBAMA, T., FUJIMOTO, K. & TAKANAKA, A. (1991). Antagonism by Reactive Blue 2 but not by brilliant blue G of extracellular ATP-evoked responses in PC12 phaeochromocytoma cells. Br. J. Pharmacol., 102, 851-854.
- KENNEDY, C. & LEFF, P. (1995). How should P_{2X} purinoceptors be classified pharmacologically? Trends Pharmacol. Sci., 16, 168-174.
- KIM, W.-K. & RABIN, R.A. (1994). Characterization of the purinergic P_2 receptors in PC12 cells. J. Biol. Chem., 269, 6471-6477.
- LUSTIG, K.D., SPORTIELLO, M.G., ERB, L. & WEISMAN, G.A. (1992). A nucleotide receptor in vascular endothelial cells is specifically activated by the fully ionized forms of ATP and UTP. Biochem. J., 284, 733-739.
- MAGOSKI, N.S. & WALZ, W. (1992). Ionic dependence of a P_2 purinoceptor mediated depolarization of cultured astrocytes. J. Neurosci. Res., 32, 530- 538.
- MAJID, M.A., OKAJIMA, F. & KONDO, K. (1992). Characterization of ATP receptor which mediates norepinephrine release in PC12 cells. Biochim. Biophys. Acta, 1136, 283-289.
- MINTA, A. & TSIEN, R.Y. (1989). Fluorescent indicators for cytosolic sodium. J. Biol. Chem., 264, 19449-19457.
- MOTTE, S., PIROTTON, S. & BOEYNAEMS, J.M. (1993). Evidence that ^a form of ATP uncomplexed with divalent cations is the ligand of P_{2Y} and nucleotide/ P_{2U} receptors on aortic endothelial cells. Br. J. Pharmacol., 109, 967-971.
- NAKAZAWA, K., FUJIMORI, K., TAKANAKA, A. & INOUE, K. (1990a). An ATP-activated conductance in pheochromocytoma cells and its suppression by extracellular calcium. J. Physiol., 428, $257 - 272$.
- NAKAZAWA, K., INOUE, K., FUJIMORI, K. & TAKANAKA, A. (1990b). ATP-activated single-channel currents recorded from cell-free patches of pheochromocytoma PC12 cells. Neurosci. Lett., $119, 5-8$.
- NEUHAUS, R., REBER, B.F.X. & REUTER, H. (1991). Regulation of bradykinin- and ATP-activated $Ca²⁺$ -permeable channels in rat pheochromocytoma (PC12) cells. J. Neurosci., 11, 3984- 3990.
- PAREKH, A.B., TERLAU, H. & STÜHMER, W. (1993). Depletion of InsP₃ stores activates a Ca²⁺ and K⁺ current by means of a phosphatase and a diffusible messenger Nature, 364, 814-818.
- RANDRIAMAMPITA, C. & TSIEN, R.Y. (1993) Emptying of intracellular Ca^{2+} stores releases a novel small messenger that stimulates Ca^{2+} influx. Nature, 364, 809–814.
- REBER, B.F.X., NEUHAUS, R. & REUTER, H. (1992). Activation of different pathways for calcium elevation by bradykinin and ATP in rat pheochromocytoma (PC12) cells. Pflug. Arch., 420, 213-218.
- SELA, D., RAM, E. & ATLAS, D. (1991). ATP receptor. J. Biol. Chem., 266, 17990-17994.
- ALLCUP, W.B. (1979). Sodium and calcium fluxes in a clonal nerve cell line. J. Physiol., 268, 525 - 540.
- STEINBERG, T.H., NEWMAN, A.S., SWANSON, J.A. & SILVERSTEIN, $S.C. (1987). ATP⁴⁻ permeabilizes the plasma membrane of mouse$ macrophages to fluorescent dyes. J. Biol. Chem., 262, 8884-8888.
- SUH, B.-C. & KIM, K.-T. (1994). Inhibition by ethaverine of catecholamine secretion through blocking L-type Ca^{2+} channels in PC12 cells. Biochem. Pharmacol., 47, 1262-1266.
- SUH, B.-C., LEE, C.-O. & KIM, K.-T. (1995). Signal flows from two phospholipase C-linked receptors are independent in PC12 cells. J. Neurochem., 64, 1071-1079.
- TEPEL, M., KUHNAPFEL, S., THEILMEIER, G., TEUPE, C., SCHLOT-MANN, R. & ZIDEK, W. (1994). Filling state of intracellular Ca^{2+} pools triggers trans plasma membrane Na⁺ and Ca²⁺ influx by a tyrosine kinase-dependent pathway. J. *Biol. Chem.*, 269, 26239– 26242.
- TURNER, R.A. (1965). Quantal responses. Calculations of the $ED₅₀$. In Screening Methods in Pharmacology. pp. 60-68. London: Academic Press.
- VON KJGELGEN, I. & STARKE, K. (1991). Noradrenaline-ATP cotransmission in the sympathetic nervous system. Trends Pharmacol. Sci., 12, 319-324.
- WILEY, J.S., CHEN, R. & JAMIESON, G.P. (1993). The ATP⁴⁻ receptor-operated channel $(P_{2Z}$ -class) of human lymphocytes allows Ba^{2+} and ethidium⁻ uptake: inhibition of fluxes by suramin. Arch. Biochem. Biophys., 305, 54-60.

(Received September 22, 1995 Revised February 16, 1996 Accepted March 6, 1996)