Skip to main content
British Journal of Pharmacology logoLink to British Journal of Pharmacology
. 1996 Apr;117(8):1625–1632. doi: 10.1111/j.1476-5381.1996.tb15332.x

In vitro pharmacological profile of YM-43611, a novel D2-like receptor antagonist with high affinity and selectivity for dopamine D3 and D4 receptors.

K Hidaka 1, S Tada 1, M Matsumoto 1, J Ohmori 1, Y Tasaki 1, T Nomura 1, S Usuda 1, T Yamaguchi 1
PMCID: PMC1909569  PMID: 8732269

Abstract

1. We investigated some neurochemical properties of a novel benzamide, YM-43611, [(S)-N-(1-benzyl-3-pyrrolidinyl)-5-chloro-4-cyclopropylcarbonylamino+ ++-2- methoxybenzamide] in comparison with putative D2-like receptor antagonists using both rat and human cloned dopamine D2-like receptors in vitro. 2. Receptor binding studies revealed that YM-43611 had appropriately potent affinities for both rat and human D2-like receptors, with moderate selectivity for D3 receptors and high selectivity for D4 receptors over D2 receptors (Ki values (nM) for rat receptors: D2, 165; D3, 35.5; D4, 1.85, and for human receptors: D2, 42.9; D3, 11.2; D4, 2.10). 3. YM-43611 displayed weak or negligible affinity for other neurotransmitter receptors, namely D1, D5, alpha(1), alpha(2), beta, 5-HT1A, 5-HT2A, 5-HT3, H1, M1 and M2 receptors. 4. Dopamine stimulated low-Km GTPase activity on membranes from Chinese hamster ovary (CHO) cells expressing the human D2-like receptor subtype. This response to dopamine of low-Km GTPase activity was inhibited by use of putative D2-like receptor antagonists. YM-43611 showed a moderate selectivity for D3 receptors (Ki = 45.5 nM) and a high selectivity for D4 receptors (Ki = 3.28 nM) over D2 receptors (Ki = 70.6 nM). 5. Dopamine inhibited forskolin-stimulated adenylate cyclase in intact CHO cells expressing the human D2-like receptor subtype. YM-43611 shifted the inhibition curve of dopamine on respective D2-like receptor subtype-mediated cyclic AMP formation to the right in a parallel fashion, showing a pA2 value of 7.42 (38.1 nM) for D2 receptors, a pKB value of 8.06 (8.68 nM) for D3 receptors, and a pA2 value of 8.42 (3.77 nM) for D4 receptors. 6. YM-43611 but not the other D2-like receptor antagonists exhibited good selectivity with respect to dual antagonism for D3 and D4 receptors in both receptor binding and functional assays. 7. These results indicate that YM-43611 is a novel D2-like receptor antagonist with high potency and selectivity for both D3 and D4 receptors. YM-43611 is therefore expected to be valuable in exploration of the physiological role of D3 and D4 receptors.

Full text

PDF
1625

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Cheng Y., Prusoff W. H. Relationship between the inhibition constant (K1) and the concentration of inhibitor which causes 50 per cent inhibition (I50) of an enzymatic reaction. Biochem Pharmacol. 1973 Dec 1;22(23):3099–3108. doi: 10.1016/0006-2952(73)90196-2. [DOI] [PubMed] [Google Scholar]
  2. Chio C. L., Drong R. F., Riley D. T., Gill G. S., Slightom J. L., Huff R. M. D4 dopamine receptor-mediated signaling events determined in transfected Chinese hamster ovary cells. J Biol Chem. 1994 Apr 22;269(16):11813–11819. [PubMed] [Google Scholar]
  3. Chio C. L., Hess G. F., Graham R. S., Huff R. M. A second molecular form of D2 dopamine receptor in rat and bovine caudate nucleus. Nature. 1990 Jan 18;343(6255):266–269. doi: 10.1038/343266a0. [DOI] [PubMed] [Google Scholar]
  4. Chio C. L., Lajiness M. E., Huff R. M. Activation of heterologously expressed D3 dopamine receptors: comparison with D2 dopamine receptors. Mol Pharmacol. 1994 Jan;45(1):51–60. [PubMed] [Google Scholar]
  5. Clark M. J., Medzihradsky F. Coupling of multiple opioid receptors to GTPase following selective receptor alkylation in brain membranes. Neuropharmacology. 1987 Dec;26(12):1763–1770. doi: 10.1016/0028-3908(87)90129-8. [DOI] [PubMed] [Google Scholar]
  6. Daum P. R., Downes C. P., Young J. M. Histamine-induced inositol phospholipid breakdown mirrors H1-receptor density in brain. Eur J Pharmacol. 1983 Mar 4;87(4):497–498. doi: 10.1016/0014-2999(83)90092-4. [DOI] [PubMed] [Google Scholar]
  7. Ehlert F. J. Gallamine allosterically antagonizes muscarinic receptor-mediated inhibition of adenylate cyclase activity in the rat myocardium. J Pharmacol Exp Ther. 1988 Nov;247(2):596–602. [PubMed] [Google Scholar]
  8. Giros B., Martres M. P., Sokoloff P., Schwartz J. C. Clonage du gène du récepteur dopaminergique D3 humain et identification de son chromosome. C R Acad Sci III. 1990;311(13):501–508. [PubMed] [Google Scholar]
  9. Hidaka K., Matsumoto M., Tada S., Tasaki Y., Yamaguchi T. Differential effects of [3H]nemonapride and [3H]spiperone binding on human dopamine D4 receptors. Neurosci Lett. 1995 Feb 17;186(2-3):145–148. doi: 10.1016/0304-3940(95)11306-h. [DOI] [PubMed] [Google Scholar]
  10. Ito H., Hidaka K., Miyata K., Kamato T., Nishida A., Honda K. Characterization of YM060, a potent and selective 5-hydroxytryptamine3 receptor antagonist, in rabbit nodose ganglion and N1E-115 neuroblastoma cells. J Pharmacol Exp Ther. 1992 Dec;263(3):1127–1132. [PubMed] [Google Scholar]
  11. Iwanami S., Takashima M., Hirata Y., Hasegawa O., Usuda S. Synthesis and neuroleptic activity of benzamides. Cis-N-(1-benzyl-2-methylpyrrolidin-3-yl)-5-chloro-2-methoxy-4-(methylamino)benzamide and related compounds. J Med Chem. 1981 Oct;24(10):1224–1230. doi: 10.1021/jm00142a019. [DOI] [PubMed] [Google Scholar]
  12. Kaufman R. J., Davies M. V., Pathak V. K., Hershey J. W. The phosphorylation state of eucaryotic initiation factor 2 alters translational efficiency of specific mRNAs. Mol Cell Biol. 1989 Mar;9(3):946–958. doi: 10.1128/mcb.9.3.946. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Kebabian J. W., Calne D. B. Multiple receptors for dopamine. Nature. 1979 Jan 11;277(5692):93–96. doi: 10.1038/277093a0. [DOI] [PubMed] [Google Scholar]
  14. Kreiss D. S., Bergstrom D. A., Gonzalez A. M., Huang K. X., Sibley D. R., Walters J. R. Dopamine receptor agonist potencies for inhibition of cell firing correlate with dopamine D3 receptor binding affinities. Eur J Pharmacol. 1995 Apr 24;277(2-3):209–214. doi: 10.1016/0014-2999(95)00069-w. [DOI] [PubMed] [Google Scholar]
  15. Lahti R. A., Evans D. L., Stratman N. C., Figur L. M. Dopamine D4 versus D2 receptor selectivity of dopamine receptor antagonists: possible therapeutic implications. Eur J Pharmacol. 1993 Jun 4;236(3):483–486. doi: 10.1016/0014-2999(93)90488-4. [DOI] [PubMed] [Google Scholar]
  16. Leysen J. E., Niemegeers C. J., Van Nueten J. M., Laduron P. M. [3H]Ketanserin (R 41 468), a selective 3H-ligand for serotonin2 receptor binding sites. Binding properties, brain distribution, and functional role. Mol Pharmacol. 1982 Mar;21(2):301–314. [PubMed] [Google Scholar]
  17. Martin M. W., Smith M. M., Harden T. K. Modulation of muscarinic cholinergic receptor affinity for antagonists in rat heart. J Pharmacol Exp Ther. 1984 Aug;230(2):424–430. [PubMed] [Google Scholar]
  18. Matsumoto M., Hidaka K., Tada S., Tasaki Y., Yamaguchi T. Full-length cDNA cloning and distribution of human dopamine D4 receptor. Brain Res Mol Brain Res. 1995 Mar;29(1):157–162. doi: 10.1016/0169-328x(94)00245-a. [DOI] [PubMed] [Google Scholar]
  19. Michel M. C., Brodde O. E., Schnepel B., Behrendt J., Tschada R., Motulsky H. J., Insel P. A. [3H]idazoxan and some other alpha 2-adrenergic drugs also bind with high affinity to a nonadrenergic site. Mol Pharmacol. 1989 Mar;35(3):324–330. [PubMed] [Google Scholar]
  20. Milligan G. Techniques used in the identification and analysis of function of pertussis toxin-sensitive guanine nucleotide binding proteins. Biochem J. 1988 Oct 1;255(1):1–13. doi: 10.1042/bj2550001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Mizushima S., Nagata S. pEF-BOS, a powerful mammalian expression vector. Nucleic Acids Res. 1990 Sep 11;18(17):5322–5322. doi: 10.1093/nar/18.17.5322. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Peroutka S. J. Pharmacological differentiation and characterization of 5-HT1A, 5-HT1B, and 5-HT1C binding sites in rat frontal cortex. J Neurochem. 1986 Aug;47(2):529–540. doi: 10.1111/j.1471-4159.1986.tb04532.x. [DOI] [PubMed] [Google Scholar]
  23. Potter L. T., Ferrendelli C. A., Hanchett H. E. Two affinity states of M1 muscarine receptors. Cell Mol Neurobiol. 1988 Jun;8(2):181–191. doi: 10.1007/BF00711244. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Prather P. L., McGinn T. M., Erickson L. J., Evans C. J., Loh H. H., Law P. Y. Ability of delta-opioid receptors to interact with multiple G-proteins is independent of receptor density. J Biol Chem. 1994 Aug 19;269(33):21293–21302. [PubMed] [Google Scholar]
  25. Seabrook G. R., Knowles M., Brown N., Myers J., Sinclair H., Patel S., Freedman S. B., McAllister G. Pharmacology of high-threshold calcium currents in GH4C1 pituitary cells and their regulation by activation of human D2 and D4 dopamine receptors. Br J Pharmacol. 1994 Jul;112(3):728–734. doi: 10.1111/j.1476-5381.1994.tb13138.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Seeman P. Dopamine receptor sequences. Therapeutic levels of neuroleptics occupy D2 receptors, clozapine occupies D4. Neuropsychopharmacology. 1992 Dec;7(4):261–284. [PubMed] [Google Scholar]
  27. Senogles S. E., Spiegel A. M., Padrell E., Iyengar R., Caron M. G. Specificity of receptor-G protein interactions. Discrimination of Gi subtypes by the D2 dopamine receptor in a reconstituted system. J Biol Chem. 1990 Mar 15;265(8):4507–4514. [PubMed] [Google Scholar]
  28. Sibley D. R., Monsma F. J., Jr Molecular biology of dopamine receptors. Trends Pharmacol Sci. 1992 Feb;13(2):61–69. doi: 10.1016/0165-6147(92)90025-2. [DOI] [PubMed] [Google Scholar]
  29. Sokoloff P., Giros B., Martres M. P., Bouthenet M. L., Schwartz J. C. Molecular cloning and characterization of a novel dopamine receptor (D3) as a target for neuroleptics. Nature. 1990 Sep 13;347(6289):146–151. doi: 10.1038/347146a0. [DOI] [PubMed] [Google Scholar]
  30. Svensson K., Carlsson A., Waters N. Locomotor inhibition by the D3 ligand R-(+)-7-OH-DPAT is independent of changes in dopamine release. J Neural Transm Gen Sect. 1994;95(1):71–74. doi: 10.1007/BF01283032. [DOI] [PubMed] [Google Scholar]
  31. Svensson K., Johansson A. M., Magnusson T., Carlsson A. (+)-AJ 76 and (+)-UH 232: central stimulants acting as preferential dopamine autoreceptor antagonists. Naunyn Schmiedebergs Arch Pharmacol. 1986 Nov;334(3):234–245. doi: 10.1007/BF00508777. [DOI] [PubMed] [Google Scholar]
  32. Tang L., Todd R. D., Heller A., O'Malley K. L. Pharmacological and functional characterization of D2, D3 and D4 dopamine receptors in fibroblast and dopaminergic cell lines. J Pharmacol Exp Ther. 1994 Jan;268(1):495–502. [PubMed] [Google Scholar]
  33. Tang L., Todd R. D., O'Malley K. L. Dopamine D2 and D3 receptors inhibit dopamine release. J Pharmacol Exp Ther. 1994 Aug;270(2):475–479. [PubMed] [Google Scholar]
  34. Terai M., Hidaka K., Nakamura Y. Comparison of [3H]YM-09151-2 with [3H]spiperone and [3H]raclopride for dopamine d-2 receptor binding to rat striatum. Eur J Pharmacol. 1989 Dec 7;173(2-3):177–182. doi: 10.1016/0014-2999(89)90516-5. [DOI] [PubMed] [Google Scholar]
  35. Usuda S., Nishikori K., Noshiro O., Maeno H. Neuroleptic properties of cis-N-(1-benzyl-2-methylpyrrolidin-3-yl)-5-chloro-2-methoxy-4-methylaminobenzamide (YM-09151-2) with selective antidopaminergic activity. Psychopharmacology (Berl) 1981;73(2):103–109. doi: 10.1007/BF00429198. [DOI] [PubMed] [Google Scholar]
  36. Van Tol H. H., Bunzow J. R., Guan H. C., Sunahara R. K., Seeman P., Niznik H. B., Civelli O. Cloning of the gene for a human dopamine D4 receptor with high affinity for the antipsychotic clozapine. Nature. 1991 Apr 18;350(6319):610–614. doi: 10.1038/350610a0. [DOI] [PubMed] [Google Scholar]

Articles from British Journal of Pharmacology are provided here courtesy of The British Pharmacological Society

RESOURCES