Skip to main content
British Journal of Pharmacology logoLink to British Journal of Pharmacology
. 1996 Apr;117(8):1785–1791. doi: 10.1111/j.1476-5381.1996.tb15355.x

Different mechanisms of Ca2(+)-handling following nicotinic acetylcholine receptor stimulation, P2U-purinoceptor stimulation and K(+)-induced depolarization in C2C12 myotubes.

R H Henning 1, M Duin 1, J P van Popta 1, A Nelemans 1, A den Hertog 1
PMCID: PMC1909574  PMID: 8732292

Abstract

1. The increase in intracellular CA2+ on nicotinic acetylcholine receptor (nAChR) stimulation, P2U-purinoceptor stimulation and K(+)-induced depolarization was investigated in mouse C2C12 myotubes by use of fura-2 fluorescence to characterize the intracellular organisation of Ca2+ releasing stores and Ca(2+)-entry process. 2. Stimulation of nAChRs with carbachol induced a rapid rise in internal Ca2+ (EC50 = 0.85 +/- 0.09 microM), followed by a sustained phase. The Ca2+ response evoked by carbachol (10 microM) was completely blocked by the nAChR antagonist, pancuronium (3 microM), but was not affected by the muscarinic antagonist, atropine (3 microM), or under conditions when Ca2+ entry was blocked by La3+ (50 microM) or diltiazem (10 microM). Addition of pancuronium (3 microM) during the sustained phase of the carbachol-evoked response did not affect this phase. 3. Stimulation of P2U purinoceptors with ATP (1 mM) induced a somewhat higher biphasic Ca2+ response (EC50 of the rapid phase: 8.72 +/- 0.08 microM) than with carbachol. Pretreatment with La3+ abolished the sustained phase of the ATP-induced Ca2+ response, while the response was unaffected by diltiazem or pancuronium. 4. Stimulation of the cells with high K+ (60 mM), producing the same depolarization as with carbachol (10 microM), induced a rapid monophasic Ca2+ response, insensitive to diltiazem, pancuronium or La3+. 5. Under Ca(2+)-free conditions, the sustained phase of the carbachol- and ATP-evoked responses were abolished. Pre-emptying of depolarization-sensitive stores by high K+ under Ca(2+)-free conditions did not affect the carbachol- or ATP-evoked Ca2+ mobilization and vice versa. Preincubation of the cells with ATP in the absence of extracellular Ca2+ decreased the amplitude of the subsequent carbachol-induced Ca2+ response to 11%, while in the reverse procedure the ATP-induced response was decreased to 65%. Ca2+ mobilization evoked by simultaneous addition of optimal concentrations of carbachol and ATP was increased compared to levels obtained with either agonist. 6. Preincubation with high K+ under normal conditions abolished the sustained phase of the ATP-evoked Ca2+ response. The carbachol response consisted only of the sustained phase in the presence of high K+. 7. The carbachol-induced Ca2+ response was completely abolished under low Na+/Ca(2+)-free conditions, while under low Na+ conditions only a sustained Ca2+ response was observed. The ATP- and K(+)-induced responses were changed compared to Ca(2+)-free conditions. 8. ATP (300 microM) induced the formation of Ins(1,4,5)P3 under Ca(2+)-free conditions with a comparable time course to that found for the rise in internal Ca2+. In contrast to ATP, carbachol (10 microM) did not affect Ins(1,4,5)P3 levels under Ca(2+)-free conditions. 9. It is concluded that the Ca2+ release from discrete stores of C2C12 myotubes is induced by stimulation of nAChRs, P2U-purinoceptors and by high K+. Only the P2U-purinoceptor and nAChR activated stores show considerable overlap in releasable Ca2+. Sustained Ca(2+)-entry is activated by stimulation of nAChRs and P2U-purinoceptors via separate ion-channels, which are different from the skeletal muscle nAChR-coupled cation-channel.

Full text

PDF
1785

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arai M., Otsu K., MacLennan D. H., Periasamy M. Regulation of sarcoplasmic reticulum gene expression during cardiac and skeletal muscle development. Am J Physiol. 1992 Mar;262(3 Pt 1):C614–C620. doi: 10.1152/ajpcell.1992.262.3.C614. [DOI] [PubMed] [Google Scholar]
  2. Bezprozvanny I., Watras J., Ehrlich B. E. Bell-shaped calcium-response curves of Ins(1,4,5)P3- and calcium-gated channels from endoplasmic reticulum of cerebellum. Nature. 1991 Jun 27;351(6329):751–754. doi: 10.1038/351751a0. [DOI] [PubMed] [Google Scholar]
  3. Borin M. L., Tribe R. M., Blaustein M. P. Increased intracellular Na+ augments mobilization of Ca2+ from SR in vascular smooth muscle cells. Am J Physiol. 1994 Jan;266(1 Pt 1):C311–C317. doi: 10.1152/ajpcell.1994.266.1.C311. [DOI] [PubMed] [Google Scholar]
  4. Bursztajn S., Schneider L. W., Jong Y. J., Berman S. A. Calcium and ionophore A23187 stimulates deposition of extracellular matrix and acetylcholinesterase release in cultured myotubes. Cell Tissue Res. 1991 Jul;265(1):95–103. doi: 10.1007/BF00318143. [DOI] [PubMed] [Google Scholar]
  5. Corriveau R. A., Romano S. J., Conroy W. G., Oliva L., Berg D. K. Expression of neuronal acetylcholine receptor genes in vertebrate skeletal muscle during development. J Neurosci. 1995 Feb;15(2):1372–1383. doi: 10.1523/JNEUROSCI.15-02-01372.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Cusack N. J., Hourani S. M. Subtypes of P2-purinoceptors. Studies using analogues of ATP. Ann N Y Acad Sci. 1990;603:172–181. doi: 10.1111/j.1749-6632.1990.tb37671.x. [DOI] [PubMed] [Google Scholar]
  7. De Smedt H., Missiaen L., Parys J. B., Bootman M. D., Mertens L., Van Den Bosch L., Casteels R. Determination of relative amounts of inositol trisphosphate receptor mRNA isoforms by ratio polymerase chain reaction. J Biol Chem. 1994 Aug 26;269(34):21691–21698. [PubMed] [Google Scholar]
  8. Den Hertog A., Hoiting B., Molleman A., Van den Akker J., Duin M., Nelemans A. Calcium release from separate receptor-specific intracellular stores induced by histamine and ATP in a hamster cell line. J Physiol. 1992 Aug;454:591–607. doi: 10.1113/jphysiol.1992.sp019281. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Fernandez H. L., Hodges-Savola C. A. Trophic regulation of acetylcholinesterase isoenzymes in adult mammalian skeletal muscles. Neurochem Res. 1992 Jan;17(1):115–124. doi: 10.1007/BF00966872. [DOI] [PubMed] [Google Scholar]
  10. Giovannelli A., Grassi F., Mattei E., Mileo A. M., Eusebi F., Giovanelli A. Acetylcholine induces voltage-independent increase of cytosolic calcium in mouse myotubes. Proc Natl Acad Sci U S A. 1991 Nov 15;88(22):10069–10073. doi: 10.1073/pnas.88.22.10069. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Grassi F., Giovannelli A., Fucile S., Eusebi F. Activation of the nicotinic acetylcholine receptor mobilizes calcium from caffeine-insensitive stores in C2C12 mouse myotubes. Pflugers Arch. 1993 Mar;422(6):591–598. doi: 10.1007/BF00374007. [DOI] [PubMed] [Google Scholar]
  12. Henning R. H., Duin M., den Hertog A., Nelemans A. Activation of the phospholipase C pathway by ATP is mediated exclusively through nucleotide type P2-purinoceptors in C2C12 myotubes. Br J Pharmacol. 1993 Oct;110(2):747–752. doi: 10.1111/j.1476-5381.1993.tb13875.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Henning R. H., Duin M., den Hertog A., Nelemans A. Characterization of P2-purinoceptor mediated cyclic AMP formation in mouse C2C12 myotubes. Br J Pharmacol. 1993 Sep;110(1):133–138. doi: 10.1111/j.1476-5381.1993.tb13782.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Henning R. H., Nelemans A., van den Akker J., den Hertog A. The nucleotide receptors on mouse C2C12 myotubes. Br J Pharmacol. 1992 Aug;106(4):853–858. doi: 10.1111/j.1476-5381.1992.tb14424.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Henning R. H., Nelemans S. A., van den Akker J., den Hertog A. Induction of Na+/K(+)-ATPase activity by long-term stimulation of nicotinic acetylcholine receptors in C2C12 myotubes. Br J Pharmacol. 1994 Feb;111(2):459–464. doi: 10.1111/j.1476-5381.1994.tb14758.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Huganir R. L., Delcour A. H., Greengard P., Hess G. P. Phosphorylation of the nicotinic acetylcholine receptor regulates its rate of desensitization. Nature. 1986 Jun 19;321(6072):774–776. doi: 10.1038/321774a0. [DOI] [PubMed] [Google Scholar]
  17. Inestrosa N. C., Miller J. B., Silberstein L., Ziskind-Conhaim L., Hall Z. W. Developmental regulation of 16S acetylcholinesterase and acetylcholine receptors in a mouse muscle cell line. Exp Cell Res. 1983 Sep;147(2):393–405. doi: 10.1016/0014-4827(83)90221-5. [DOI] [PubMed] [Google Scholar]
  18. Klarsfeld A., Laufer R., Fontaine B., Devillers-Thiéry A., Dubreuil C., Changeux J. P. Regulation of muscle AChR alpha subunit gene expression by electrical activity: involvement of protein kinase C and Ca2+. Neuron. 1989 Mar;2(3):1229–1236. doi: 10.1016/0896-6273(89)90307-3. [DOI] [PubMed] [Google Scholar]
  19. Lustig K. D., Shiau A. K., Brake A. J., Julius D. Expression cloning of an ATP receptor from mouse neuroblastoma cells. Proc Natl Acad Sci U S A. 1993 Jun 1;90(11):5113–5117. doi: 10.1073/pnas.90.11.5113. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Meissner G. Ryanodine receptor/Ca2+ release channels and their regulation by endogenous effectors. Annu Rev Physiol. 1994;56:485–508. doi: 10.1146/annurev.ph.56.030194.002413. [DOI] [PubMed] [Google Scholar]
  21. Miledi R. Intracellular calcium and desensitization of acetylcholine receptors. Proc R Soc Lond B Biol Sci. 1980 Sep 26;209(1176):447–452. doi: 10.1098/rspb.1980.0106. [DOI] [PubMed] [Google Scholar]
  22. Noda M., Takahashi H., Tanabe T., Toyosato M., Kikyotani S., Furutani Y., Hirose T., Takashima H., Inayama S., Miyata T. Structural homology of Torpedo californica acetylcholine receptor subunits. Nature. 1983 Apr 7;302(5908):528–532. doi: 10.1038/302528a0. [DOI] [PubMed] [Google Scholar]
  23. Putney J. W., Jr, Bird G. S. The signal for capacitative calcium entry. Cell. 1993 Oct 22;75(2):199–201. doi: 10.1016/0092-8674(93)80061-i. [DOI] [PubMed] [Google Scholar]
  24. Randriamampita C., Tsien R. Y. Emptying of intracellular Ca2+ stores releases a novel small messenger that stimulates Ca2+ influx. Nature. 1993 Aug 26;364(6440):809–814. doi: 10.1038/364809a0. [DOI] [PubMed] [Google Scholar]
  25. Sargent P. B. The diversity of neuronal nicotinic acetylcholine receptors. Annu Rev Neurosci. 1993;16:403–443. doi: 10.1146/annurev.ne.16.030193.002155. [DOI] [PubMed] [Google Scholar]
  26. Schneider M. F., Chandler W. K. Voltage dependent charge movement of skeletal muscle: a possible step in excitation-contraction coupling. Nature. 1973 Mar 23;242(5395):244–246. doi: 10.1038/242244a0. [DOI] [PubMed] [Google Scholar]
  27. Silinsky E. M. On the association between transmitter secretion and the release of adenine nucleotides from mammalian motor nerve terminals. J Physiol. 1975 May;247(1):145–162. doi: 10.1113/jphysiol.1975.sp010925. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Smilowitz H., Smart E., Bowik C., Chang R. J. Regulation of the number of alpha-bungarotoxin binding sites in cultured chick myotubes by a 1,4 dihydropyridine calcium channel antagonist. J Neurosci Res. 1988 Mar;19(3):321–325. doi: 10.1002/jnr.490190307. [DOI] [PubMed] [Google Scholar]
  29. Uhing R. J., Prpic V., Jiang H., Exton J. H. Hormone-stimulated polyphosphoinositide breakdown in rat liver plasma membranes. Roles of guanine nucleotides and calcium. J Biol Chem. 1986 Feb 15;261(5):2140–2146. [PubMed] [Google Scholar]
  30. Webb T. E., Simon J., Krishek B. J., Bateson A. N., Smart T. G., King B. F., Burnstock G., Barnard E. A. Cloning and functional expression of a brain G-protein-coupled ATP receptor. FEBS Lett. 1993 Jun 14;324(2):219–225. doi: 10.1016/0014-5793(93)81397-i. [DOI] [PubMed] [Google Scholar]
  31. Yaffe D., Saxel O. Serial passaging and differentiation of myogenic cells isolated from dystrophic mouse muscle. Nature. 1977 Dec 22;270(5639):725–727. doi: 10.1038/270725a0. [DOI] [PubMed] [Google Scholar]
  32. van der Zee L., Nelemans A., den Hertog A. Arachidonic acid is functioning as a second messenger in activating the Ca2+ entry process on H1-histaminoceptor stimulation in DDT1 MF-2 cells. Biochem J. 1995 Feb 1;305(Pt 3):859–864. doi: 10.1042/bj3050859. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from British Journal of Pharmacology are provided here courtesy of The British Pharmacological Society

RESOURCES