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GABA, glutamate and substance P-like immunoreactivity release:
effects of novel GABAB antagonists
1Hwee Teoh, 2Marzia Malcangio & 3Norman G. Bowery

Department of Pharmacology, The School of Pharmacy, 29/39 Brunswick Square, London WC1N lAX, United Kingdom

1 The effects of various GABA receptor ligands on the electrically-evoked release of endogenous
GABA, glutamate and substance P-like immunoreactivity from the dorsal horn of rat isolated spinal
cord were examined.
2 Exogenous GABA (10-300 pM) significantly decreased the evoked, but not basal, release of
endogenous glutamate in a concentration-dependent manner. The GABAA agonist, isoguvacine (1-
100 gM), failed to decrease the release of glutamate although it did reduce the release of GABA.
Baclofen (0.1 -1I000 M), the GABAB agonist, reduced the release of GABA and glutamate in a
stereospecific and concentration-dependent manner.

3 The actions of five GABAB antagonists on these release systems were compared. CGP36742,
CGP52432, CGP55845A and CGP57250A significantly increased the evoked release of GABA and
glutamate. They also reversed the effects of (-)-baclofen in a concentration-dependent manner. On the
other hand, while CGP56999A had no effect on glutamate release, it was an effective antagonist of the
baclofen-induced inhibition of GABA and substance P release.
4 These results suggest that GABAB receptors on nerve terminals within the dorsal horn spinal cord
may be heterogeneous. However, this is based solely on the data obtained with CGP56999A which
affected only GABA and substance P, but not glutamate, release.

Keywords: GABAB antagonists; GABA; glutamate; substance P-like immunoreactivity; spinal cord; CGP36742; CGP52432;
CGP55845A; CGP57250A; CGP56999A

Introduction

,y-Aminobutyric acid (GABA) is the major inhibitory trans-
mitter in the central nervous system (CNS) and has been im-
plicated in both pre- and postsynaptic transmission in the
spinal cord (see Bowery, 1993). GABA exerts its actions via
GABAA and GABAB receptors (Hill & Bowery, 1981; Bowery
et al., 1983) which have very different profiles. Within the
spinal cord, activation of GABAA receptors on presynaptic
terminals results in the opening of chloride channels providing
the basis for primary afferent depolarization (PAD) and pre-
synaptic inhibition (Curtis et al., 1971). On the other hand,
GABAB receptors mediate an increase in potassium or a de-
crease in calcium conductance, either of which could produce a
decrease in neurotransmitter release (Bowery et al., 1980;
Conzelmann et al., 1986; Pittaluga et al., 1987; Waldmeier et
al., 1988a,b; Bonanno et al., 1989a; 1991; Malcangio & Bow-
ery, 1993; Santiago et al., 1993). Both types of GABA re-
ceptors are located on the Ab and C afferent fibres (Singer &
Placheta, 1980; Desarmenien et al., 1984; Price et al., 1984)
which terminate predominantly in the substantia gelatinosa
(Cervero & Iggo, 1980; Brown, 1982) suggesting that this in-
hibitory amino acid and its receptors may be involved in the
modulation of nociception. In support of this theory, exo-
genous GABA and GABA receptor agonists have been re-
ported to inhibit the release of putative nociceptive
neurotransmitters and neuropeptides from central nerve end-
ings (Kangrga et al., 1991; Benoliel et al., 1992; Malcangio &
Bowery, 1993; Pende et al., 1993). Moreover, agents acting on
GABA receptors have been demonstrated in several beha-
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vioural models to alter nociceptive sensitivity (Cutting & Jor-
dan, 1975; Wilson & Yaksh, 1978; Levy & Proudfit, 1979;
Hwang & Wilcox, 1989; Malcangio et al., 1991).

Glutamate (Glu) is believed to be the major excitatory sy-
naptic transmitter in the CNS (Watkins & Evans, 1981; Fagg
& Foster, 1983) and there is much evidence pointing to it being
an important neuromediator in the spinal cord (Mayer &
Westbrook, 1987; Kangrga et al., 1990; 1991; Kangrga &
Randic, 1991). This amino acid is co-localized in the small
diameter primary afferents with substance P (SP), another
proposed mediator of nociception (De Biasi & Rustioni, 1988)
and it has been postulated that these two agents may act as co-
transmitters in the dorsal horn. Stimulation of dorsal root
ganglia and dorsal roots increases Glu release from organo-
typic dorsal root ganglia cultures and hemisected dorsal spinal
cord slices (Kangrga et al., 1990; 1991; Kangrga & Randic,
1991; Jeftinija et al., 1991; Teoh et al., 1995b). Elevated levels
of Glu are also observed in the cerebrospinal fluid of the spinal
cord during noxious stimulation (Smullin et al., 1990; Sorkin &
McAdoo, 1993). Behavioural studies have demonstrated that
Glu agonists and antagonists can respectively cause/potentiate
and reduce/alleviate nociception (Aanonsen & Wilcox, 1987;
Follenfant & Nakamura-Craig, 1992; Ren et al., 1992;
McGowan & Hammond, 1993; Mao et al., 1994). It is plau-
sible, therefore, that analgesics, which modify the transmission
of nociceptive impulses, may do so by reducing the activity of
this excitatory system.

In the present work, we have utilized a superfusion system
and various novel GABAB receptor ligands with affinities
ranging from the low nanomolar to micromolar range to
characterize further the GABAB receptors in the spinal cord.
Concomitantly, we sought to provide a better understanding of
the role that the GABAB receptor(s) plays in the modulation of
Glu and substance P-like immunoreactivity (SP-LI) release.
Preliminary results have been communicated to the British
Pharmacological Society (Teoh et al., 1995a) and the Inter-
national Society of Neurochemistry (Teoh et al., 1996a).
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Methods

Release experiments

Hemisected lumbosacral dorsal horn slices were obtained as

described previously (Malcangio & Bowery, 1993; Teoh et al.,
1995b). Briefly, adult male Wistar rats (,z250 g) were decapi-
tated and the lumbosacral segments of the spinal cords re-

moved. Slices ( 200- 300 pm thick, 2 cm long) were cut in
cold oxygenated Krebs-bicarbonate solution. Each slice, with a

pair of intact dorsal roots attached to either side of the cord,
was placed in the central division of a three-compartment bath.
The roots were positioned on bipolar platinum electrodes in
the lateral compartments and immersed in mineral oil (Aldrich
Chemical Co. Ltd., UK).

The slices were continuously superfused at 1 ml min-' with
oxygenated (95% 02+5% CO2) Krebs-bicarbonate solution
for 1 h at room temperature. This solution contained (in mM):
NaCl 118, KC1 4, KH2PO4 1.2; NaHCO3 25; MgSO4 1.2, CaCl2
2.5 and glucose 11. In some experiments, following the pre-

liminary incubation, the bathing solution was replaced with a

modified Krebs-bicarbonate solution containing 0.1% bovine
serum albumin, 100 pM captopril, 1 pM phosphoramidon,
20 pg ml-' bacitracin and 6 pM dithiothreitol to prevent the
metabolic breakdown of SP. Consecutive 3 min (amino acids)
and 8 min (SP-LI) samples of superfusate were then obtained
prior to, during and after drug application and/or electrical
stimulation of dorsal roots. In the amino acid studies, three
fractions were obtained before a 20 V, 0.5 ms stimulus at 1 Hz
was applied for 3 min. This was repeated after an interval of
9 min. Samples were maintained at - 80°C until they were

derivatized and analysed chemically. Only one 8 min electrical
pulse (all other parameters as above) was applied during col-
lection of the fourth of seven fractions in the SP-LI experi-
ments.

Chemical analysis

GABA and Glu contents in the superfusate samples were de-
termined by high performance liquid chromatography (h.p.l.c.)
coupled with fluorescence detection (Lindroth & Mopper,
1979). Pre-column derivatization of amino acids was achieved
with an o-phthaldialdehyde (OPA)-,B-mercaptoethanol re-

agent. All separations were performed at a flow rate of 1 ml
min-' on a reversed-phased C18 Microsorb column
(150 x 4.6 mm) in conjunction with the appropriate guard
column (both from Ranin Instruments Co. Inc., U.S.A.). A
40 min pH 5.5 phosphate-methanol/methanol gradient cycle
was used for satisfactory separation. On occasions, the GABA
peak was difficult to detect or distinguish as the limit of de-
tection for GABA in this set-up was about 100 fmol/20 pl. To
ensure that the correct peak was used for analysis, the samples
were 'spiked' with a known concentration of GABA and re-

analysed twice on the h.p.l.c. system. Two samples containing
only this known concentration of GABA in the superfusion
medium were also analysed. The differences in the concentra-
tions obtained from the 'spiked' samples and the 'pure' ones

were used as the final values for analysis. SP-LI in each su-

perfusate sample was measured by radioimmunoassay using
the scintillation proximity assay bead technique (Amersham
International, U.K.) as described previously (Malcangio &
Bowery, 1993)

Expression of results and statistics

For analyses, the mean concentrations of GABA and Glu
measured in the first three samples were taken to be the basal
level. The levels of these two amino acids in the following
fractions were then expressed as a percentage of this basal
level. The first stimulated response in each case was identified
as SI and the second as S2. The relationship between them was

then expressed as an S2/S1 ratio. SP-LI results were calculated
as fmol released by electrical stimulation after subtracting the

basal outflow. The data shown in the graphs are expressed as
mean + s.e.mean and statistical significance was obtained by
comparing the results in each experiment with the appropriate
controls using the Mann-Whitney 'U' test.

Chemicals

(-)-Bicuculline methobromide and y-aminobutyric acid
(GABA) were obtained from Sigma Chemicals Co. Ltd.,
Poole, Dorset, U.K. Isoguvacine.HCl was from Cambridge
Research Biochemicals, Cheshire, U.K. Antiserum raised
against substance P was from Amersham, U.K. The following
were from CIBA-Geigy, Basel, Switzerland: (+)- and (-) -
baclofen, CGP36742 (3-aminopropyl-n-butyl phosphonic
acid), CGP55845A (3- [1- (S) - (3,4 - dichlorophenyl) ethyl]
amino - 2(S)hydroxypropyl - P- benzyl - phosphonic acid),
CGP52432 ([3 - [[(3,4 - dichlorophenyl)methyl]amino]propyl]-
diethoxymethyl phosphonic acid), CGP56999A ([3-{[1-(R)-
(3 - carboxyphenyl)ethyl]amino}- 2 - (S) - hydroxy - propyl] - cy-
clohexyl-methyl-phosphonic acid) and CGP57250A ([3-(1-
(R)- [[3 - (diethoxymethyl)hydroxyphosphinyl]-2 - (S) - hydr-
oxypropyl]-amino]ethyl]-benzoic acid). All other chemicals
were of AnalaR grade and obtained from BDH Chemicals,
Poole, U.K.

Results

Electrically-evoked release of GABA and Glu

Basal concentrations of GABA and Glu in the superfusate
samples were respectively 151.44 + 10.6 nM (n = 3) and
234.48 + 34.8 nM (n = 6). The two periods of electrical stimu-
lation significantly increased the release of both amino acids
which rapidly returned to basal levels. During S, the con-
centration of GABA increased to 243.26 + 5.9 nM whilst the
Glu concentration rose to 510.71 + 38.9 nM. The levels in S2
were lower for both GABA and Glu resulting in mean S2/S1
values of 0.64+ 0.02 and 0.72+ 0.03 respectively. The mean
pulse current passing during the stimulation period was
11.47+1.57 mA (n= 15).

Effects of established GABAA and GABAB receptor
ligands

GABA (10-300 pM) produced no effect on the basal outflow
of Glu. However, the electrically-evoked release of Glu was
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Figure 1 Effect of exogenous GABA on the electrically-evoked
release of glutamate (Glu) (0) from the hemisected dorsal rat spinal
cord. GABA was added to the superfusion medium 1 min prior to
and during the second stimulation (n= 3 for each data point). Mean
basal level of Glu in these slices was 210.74+22.9nM. *P<0.05,
**P<O.01 compared with the control value (n=6; Mann-Whitney
'U' test). Data are mean+ s.e.mean.
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reduced in a concentration-dependent manner (n= 12; Figure
1). At 300 gM GABA, the S2/S1 ratio for Glu release was
0.25+0.08% with an IC50 value of 78.38 uM.

The GABAA agonist, isoguvacine (1- 100 gM), appeared to
decrease the S2/S1 ratio for both GABA and Glu. However,
this effect reached statistical significance for GABA only at
100 gM and not at all for Glu (Figure 2). Concomitant ad-
ministration of the GABAA antagonist, bicuculline, reversed
the effect of isoguvacine on stimulated GABA release. Bicu-
culline alone did not significantly affect the S2/S1 ratio for ei-
ther GABA or Glu.

(-)-Baclofen (0.1-1000 gM), the GABAB agonist, con-
centration-dependently inhibited the evoked, but not basal,
release ofGABA and Glu (Figure 3). These effects of baclofen
were stereospecific. In the presence of the (+ )-enantiomer the
S2/S1 ratios produced for GABA and Glu were not sig-
nificantly different from control. (-)-Baclofen at 30 gM pro-
duced 40% (GABA) and 50% (Glu) inhibition of release.
These responses were just submaximal and thus this con-
centration was used subsequently for examining the effects of
antagonists.

Effects of novel GABAB receptor antagonists

The effects of the following GABAB receptor antagonists:
CGP36742, CGP52432, CGP55845A, CGP56999A and
CGP57250A, on the stimulated release ofGABA and Glu were
examined. None of them (0.01-30 pM) affected the basal re-
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lease of GABA or Glu (data not shown). CGP36742,
CGP52432, CGP55845A and CGP57250A (1-30 gM) sig-
nificantly increased the evoked release of GABA and Glu as
well as reversing the inhibitory effect of (-)-baclofen on their
outflow (P < 0.05; see Figures 4 and 5) CGP56999A had no
significant effect on the stimulated release of Glu in the pre-
sence or absence of (-)-baclofen (Figure 4). However,
CGP56999A (0.01 - 10 gM) reversed the inhibitory action of
(-)-baclofen on the evoked release of GABA (P<0.05; see
Figure 5b).
A submaximal concentration of (-)-baclofen (10 gM) sig-

nificantly reduced the evoked release of SP-LI as reported
previously (Malcangio & Bowery, 1993). On its own,
CGP56999A (100 gM) failed to alter the stimulated response
but it did reverse the inhibitory actions of 10 gM (-)-baclofen
(Figure 6). This concentration of the antagonist was ineffective
against the stimulated release of glutamate (data not shown).

Discussion

It seems likely that the electrically-evoked release of GABA
and Glu in this preparation is primarily of neuronal origin
since in both cases the release was tetrodotoxin-sensitive and
calcium-dependent (Teoh et al., 1995b). However, a con-
tribution from glial cells cannot be ignored (Parpura et al.,
1994). Results obtained from bath-superfusion of the va-
nyllilnoneamide neurotoxin, capsaicin, have indicated that a
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Figure 2 Effect of isoguvacine and bicuculline on the electrically-
evoked release of (a) GABA and (b) glutamate (Glu). Drugs were
added to the superfusing medium 1 min before and during the second
3min stimulation. Basal outflow was 163.33+16.2nM and
218.33+16.2nM for GABA and Glu respectively (n=3 per drug
concentration). Data are means+s.e.mean. *P<0.05 (compared with
control data using the Mann-Whitney 'U' test)
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Figure 3 Stereospecific effects of baclofen on the electrically-evoked
release of (a) GABA and (b) glutamate (Glu). Slices were superfused
with either (+)-baclofen (0, 0; n=3-6) or (-)-baclofen (El, *;
n = 3) 1 min prior to and during the second stimulation. Basal outflow
was 198.33 +20.1 nM for GABA and 227.51 +39.4nM for Glu in
these slices. Values are mean+s.e.mean. *P<0.05; ** P<0.0I (tested
against the control responses with the Mann-Whitney 'U' test).

1155



H. Teoh et a! GABAB inhibition of neurotransmitter release

significant proportion of the detected Glu and SP-LI originates
from capsaicin-sensitive fibres while the source of GABA is
likely to be the intrinsic dorsal horn neurones (Malcangio &
Bowery, 1993; Teoh et al., 1996b). Hence it is tempting to
suggest that a significant proportion of the Glu and SP-LI
released upon electrical stimulation arises from the nocicep-
tive-sensitive primary afferents which terminate in the super-
ficial dorsal horn (Cervero & Iggo, 1980; Brown, 1982) where
they receive axoaxonal synaptic inputs from intrinsic GA-
BAergic terminals (Barber et al., 1978).

The inhibitory effect of GABA on the evoked release of Glu
was mimicked by the prototypical GABAB agonist, (-)-
baclofen, which also concentration-dependently inhibited the

stimulated release of GABA. Neither the GABAA agonist,
isoguvacine, nor the GABAA antagonist, bicuculline, had any
significant effect on the basal or evoked release of Glu. Al-
though the apparent increase in the Glu S2/S1 ratio observed
with bicuculline alone was not significant, the possibility of this
drug exerting a disinhibitory effect cannot be dismissed since
such a phenomenon has been documented for neurones of the
substantia gelatinosa (Magnuson & Dickenson, 1991). The
stereoselective effect of baclofen on evoked Glu release coupled
with the antagonism of the (-)-baclofen action observed with
CGP36742, CGP52432, CGP55845A and CGP57250A further
support the concept that Glu release is under the influence of
GABAB heteroreceptors. Taken together, these observations
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Figure 4 (a) Effects of CGP36742, CGP52432, CGP55845A, CGP56999A and CGP57250A on the S2/Sj ratio for glutamate (Glu)
release. Antagonists were added to the superfusing medium 6min prior to and during the second stimulation. Drug effects were

compared with the control responses. (b) Antagonism by these antagonists on the inhibitory (-)-baclofen effect on Glu release. All
data are mean + s.e.mean (n = 6- 7 in each case). Basal levels of Glu in these slices were 247.43 + 25.3 nM (n = 192). The effects of
each concentration of antagonist was compared with the (-)-baclofen responses (n = 7). * P<0.05; ** P<0.01 (Mann-Whitney 'U'
test).
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indicate that only GABAB receptors are involved in the reg-
ulation of Glu release in the dorsal horn and are in agreement
with those previously reported (Kangrga et al., 1991). The
same was true for SP (Malcangio & Bowery, 1993).

The potentiation of the S2/Sj ratios for Glu by these four
antagonists in the absence of (-)-baclofen would suggest that
under physiological conditions, the GABAB heteroreceptors in
the spinal cord may be activated by some form of endogenous
inhibitory tone. This is in agreement with the observations of
Blake et al.(1994) who showed that the GABAB antagonists,
CGP35348 (p-3-aminopropyl-p-diethoxymethyl-phosphonic
acid; Bittiger et al., 1993) and CGP55845, in the absence of
exogenous GABAB agonists, enhanced the potassium stimu-
lated inward synaptic currents in dorsal root neurones.

2.5

2.0

a

Control CGP
36742

CGP
52432

During electrical stimulation of dorsal roots in our cord
preparation, we would estimate that the concentration of
GABA in the superfusion solution is in the region of 10 gM
which is below the apparent threshold (50 gM) for inhibition of
Glu release (see Figure 1). However, the concentration of
GABA in the immediate vicinity of the GABAB receptor,
during nerve stimulation may be much higher, particularly
since no attempts to reduce the inactivation of the released
GABA were made in our experiments. Nevertheless, the pos-
sibility remains that the GABAB antagonists are acting in a
non-specific manner to enhance the levels of glutamate and
GABA but this seems unlikely in view of the inert nature of the
compounds when tested in a variety of biological assay systems
(W. Froestl & H. Bittiger, personal communication). It seems
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Figure 5 (a) Effects of CGP36742, CGP52432, CGP55845A, CGP56999A and CGP57250A on the S2/S1 ratio for GABA release.

Antagonists were added to the superfusing medium 6min prior to and during the second stimulation. Drug effects were compared
with the control responses. (b) Antagonism by these antagonists on the inhibitory (-)-baclofen effect on GABA release. All data

are mean+ s.e.mean (n =3-4 in each case). Basal levels of GABA in these slices were 153.20 + 13.9 nM (n = 96). The effects of each

concentration of antagonist was compared with the (-)-baclofen responses (n = 3). *P = 0.05; *P <0.05 (Mann-Whitney 'U' test).
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Figure 6 Effect of (-)-baclofen and CGP56999A on the electrically-
evoked release of substance P-like immunoreactivity (SP-LI). Drugs
were superfused 5min prior to and during stimulation. All data are
means+ s.e.mean (n =3-4 in each case). Basal levels of SP-LI in
these slices were 15.9+2.2fmol 8min-' sample (n=16). *P<0.05
when compared with the control response; tP<0.05 when compared
with the (-)-baclofen response (Mann-Whitney 'U' test).

more probable that the local concentration of endogenous
GABA in the immediate vicinity of the GABAB receptor is
much greater than 10 gIM after primary afferent stimulation.

Since Glu is postulated to be involved in nociceptive
transmission (see Introduction), it is possible that the anti-
nociceptive actions exhibited by GABA and its analogues (see
Sawynok, 1987) could be attributed in part to its inhibitory
effects on the glutamatergic system as observed here. This
could occur in conjunction with or in addition to the GA-
BAergic modulation of SP release that has already been de-
monstrated in this preparation (Malcangio & Bowery, 1993;
present paper). Indeed, several animal models have indicated
that baclofen-induced antinociception is not limited to su-
praspinal control (Proudfit & Levy, 1978; Levy & Proudfit,
1979; Liebman & Pastor, 1980) and probably involves a spinal
component (Wilson & Yaksh, 1978; Liebman & Pastor, 1980).
Interestingly, the antinociceptive responses elicited by baclofen
are also stereoselective (Wilson & Yaksh, 1978; Aley &
Kulkarni, 1991) and reversible by the GABAB antagonist,
CGP35348 which has a lower binding affinity than the GABAB
antagonists studied in the present paper (Aley & Kulkarni,
1991; Malcangio et al., 1991; McGowan & Hammond, 1993).

There is evidence that GABAB receptors are heterogeneous
(Kerr et al., 1987; Dutar & Nicoll, 1988). Recent studies sug-
gest that the autoreceptor for GABA is of the GABAB class
(Pittaluga et al., 1987; Bonanno et al., 1989a,b; Waldmeier et
al., 1988b; Baumann et al., 1990) although there have been

some indications that there may also be GABAA autoreceptors
(Mitchell & Martin, 1978; Brennan et al., 1981; Anderson &
Mitchell, 1985). Using different GABAB receptor antagonists
(phaclofen, CGP35348 and CGP52432), Raiteri and colleagues
have further postulated that not only is there heterogeneity
amongst the GABAB autoreceptors in different parts of the rat
CNS (Raiteri et al., 1989; Bonanno & Raiteri, 1993) but that
the presynaptic GABAB heteroreceptors on Glu, somatostatin
and cholecystokinin terminals are also different from each
other (Bonanno & Raiteri, 1992; Lanza et al., 1993; Gemignani
et al., 1994). In contrast, Waldmeier et al.(1994) failed to dis-
tinguish between the various groups of receptors when they
used a wider range of structurally related drugs in a different
release preparation.

In the present study, we were unable to demonstrate any
selectivity of CGP36742, CGP52432, CGP55845A and
CGP57250A for GABAB sites controlling the release ofGABA
and Glu in the rat dorsal horn. We have previously reported
that CGP35348 and CGP36742 antagonized the inhibitory
effect that (-)-baclofen had on the electrically-evoked release
of SP-LI (Malcangio & Bowery, 1993). The data obtained in
this study with CGP52432 is therefore in contrast to those
described by Raiteri and colleagues (Bonanno & Raiteri, 1992;
Lanza et al., 1993). CGP56999A, on the other hand, antag-
onized the (-)-baclofen-induced inhibition of GABA and SP-
LI release whilst not affecting that of Glu. This finding there-
fore supports the possible distinction between the GABAB
autoreceptor and the GABAB heteroreceptor(s) which mod-
ulate(s) Glu and SP release in the spinal cord dorsal horn. It is
important to note, however, that the classification of GABAB
receptors into subtypes (Bonanno & Raiteri, 1993) did not
involve CGP56999A and that Waldmeier and colleagues
(1994) were unable to differentiate between the effects that
CGP56999A had on the GABAergic and glutamatergic sys-
tems. The reasons for the discrepancies between our results
and those described previously are not known. It is possible
that the different tissues (spinal cord slice as opposed to cor-
tical slices and synaptosomes) and stimulatory conditions
could be of fundamental importance. Our results further in-
dicate that CGP56999A is a potent antagonist at the auto-
receptor but appears to lack any influence on the control of
Glu release (heteroreceptors).

In conclusion, we have demonstrated that activation of
sensory nerves results in the enhanced release of GABA, Glu
and SP-LI. The release of Glu and SP-LI from the primary
afferents is baclofen-sensitive suggesting that the anti-
nociceptive properties of baclofen could be exerted at the
spinal level via inhibition of Glu and/or SP release. Our results
also provide marginal support for the suggestion that GABAB
receptors regulating the release of GABA and Glu in the re-
gion of the superficial dorsal horn may be different from each
other. If indeed, such heterogeneity exists, it augurs well for the
potential development of receptor-selective drugs.

We are most grateful to CIBA-Geigy, Basel for the samples of
baclofen and GABAB antagonists.
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