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The production of new chemicals for industrial or therapeutic applications exceeds our ability to
generate experimental data on their biological fate once they are released into the environment.
Typically, mixtures of organic pollutants are freed into a variety of sites inhabited by diverse
microorganisms, which structure complex multispecies metabolic networks. A machine learning
approach has been instrumental to expose a correlation between the frequency of 149 atomic triads
(chemotopes) common in organo-chemical compounds and the global capacity of microorganisms to
metabolise them. Depending on the type of environmental fate defined, the system can correctly predict
the biodegradative outcome for 73–87% of compounds. This system is available to the community as a
web server (http://www.pdg.cnb.uam.es/BDPSERVER). The application of this predictive tool to
chemical species released into the environment provides an early instrument for tentatively classifying
the compounds as biodegradable or recalcitrant. Automated surveys of lists of industrial chemicals
currently employed in large quantities revealed that herbicides are the group of functional molecules
more difficult to recycle into the biosphere through the inclusive microbial metabolism.
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Introduction

The number of new molecules generated by the chemical and
pharmaceutical industry has boomed in the last few years owing
to the emergence of combinatorial chemistry along with the
demand for novel industrial, agricultural and therapeutic
products (Dolle, 2004). The number of natural or man-made
organic compounds present in the biosphere is somewhere
between 8 and 16 million molecular species, of which as many as
40 000 are predominant in our daily lives (Hou et al, 2003).
Microorganisms are key players in determining the environ-
mental fate of novel compounds because they can be used as
carbon and energy sources (Mishra et al, 2001). Microbial
metabolism may not only cause the complete elimination of a
given chemical compound but it can also generate chemical
species that are as toxic or as persistent as the original ones. In the
case of complete metabolism, microbial biodegradation can be
exploited for waste treatment and used in directed bioremedia-
tion processes in situ or ex situ (Diaz, 2004). Therefore, knowing
whether a novel chemical compound is likely to be metabolised
by microorganisms is crucial for assessing the environmental

risks associated to its production, transportation, utilisation and
disposal (Wackett and Ellis, 1999; Wackett, 2004b). However,
after 50 years of research on microbial biodegradation, detailed
knowledge about biodegradative pathways is available for only
about 900 chemical species (Urbance et al, 2003; Ellis et al, 2006).
New pesticides and pharmaceuticals are being produced at rates
that cannot be matched by experimental attempts to determine
the outcome when spilled or released into the environment. This
makes essential to develop systems that can predict the fate of
chemical compounds (Wackett and Hershberger, 2001; Wackett,
2004b) before experimentally assessing the capacity of the
microbiota to degrade them.

Although hydrophobicity, water solubility and the presence
of xenophores (Klopman et al, 1992; Wackett and Ellis, 1999;
Hou et al, 2003) have been invoked for assessing the
biodegradability of given compounds, there are many exam-
ples in which the presence/absence of certain functional
groups do not match the experimental results. As an
alternative, we have approached the problem of predicting
the environmental fate of chemical species from an experi-
ence-based perspective, using a (micro)biological logic rather
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than a purely (bio)chemical appraisal, for example, making the
most out of available information about known microbial
catabolic reactions on organic pollutants. To this end, we have
exploited the wealth of knowledge on the genetic and biochemical
basis of microbial metabolism available at the University of
Minnesota Biodegradation and Biocatalysis Database (UMBBD;
Ellis et al, 2003, 2006) and the Biodegrative Strain Database of the
Michigan State University (BSD; Urbance et al, 2003) to train a
rule-based classification system (Quinlan, 1993) for detecting the
association between certain chemical compound descriptors and
environmental fates. Such descriptors are based on the decon-
struction of chemical structures in atomic triads (also referred to
as chemotopes). A machine learning system (Quinlan, 1993) was
then used to identify explicit rules that associate compound
vectors to environmental fates as inferred from the analysis of the
metabolic network that represents the global biodegradative
potential of microorganisms. Finally, a scheme to predict the fate
of newchemical compounds, using the previously identified rules,
was implemented as a web server. The results obtained include the
evaluation of the prediction capacity of the system and its appli-
cation to several sets of compounds provided by the European
Chemicals Bureau or obtained from the database PubChem
Compound—for most of which there are no data on their
biological fate. Herbicides seem to be the group of functional
molecules that have less favourable prospects of recycling
through the global microbial biodegradation network.

Results

Deconstructing organic chemicals into atomic
triad-based compound vectors

At the time of starting this work, the UMBBD contained
information on 850 compounds and 903 reactions (Ellis et al,
2003, 2006). The first issue at stake was whether structural
features of the target molecules could be significantly correlated
to their known environmental fate. To this end, we resorted to
describing each chemical structure as a whole of 152 descriptors
that represented atomic triad frequencies, molecular weight
(MW) and water solubility, the latter expressed both quantita-
tively and qualitatively. Such atomic triads (or chemotopes)
included 149 groups of three consecutive, connected atoms that
can be identified on the structure of a compound, taking into
account the type of connecting chemical bonds. For example,
the atomic triad C–C–H is different from C¼C–H, whereas C¼
C–H is equal to H–C¼C (Figure 1). The choice of atomics triads
instead of focusing on reactive groups or functional motives
reflected the tradeoff between having significant structural
information and the handling of a minimal number of attributes
(see the Discussion section). Deconstruction of each compound
in this way is achieved by first translating the SMILES
(Weininger, 1988) representation of each molecule, which is
available from UMBBD, into other forms of chemical depiction
that include explicit information regarding atom connectivity
and chemical bond types. Then, the frequency in which the
different atomic triads appear for each compound is recorded.
MW is also available from UMBDD and compound solubility is,
in some cases, accessible through links to the corresponding
entry in ChemFinder (Figure 2A). The collection of atomic triad
frequencies, the MW and the solubility were then assembled to

generate molecular descriptors, henceforth referred to as
compound vectors (Figures 1 and 2A).

Through these criteria, nine compounds out of the 850 listed
were not associated to any vector because they had less than
three atoms or because their entries in UMBBD did not include
SMILES strings. About 718 distinct vectors represented the
remaining set of 841 compounds, indicating that the corre-
spondence between compounds and vectors is not equipotent.
A one-to-one relation between compounds and vectors
existed for 625 compounds, whereas 93 vectors described
the remaining 216 compounds. Many-to-one relations between
compounds and vectors is explained by the fact that positional

Figure 1 Deconstruction of acetaldehyde into its constituent atomic triads
(chemotopes). The figure shows a simple example of generation of the
compound vectors mentioned in the text. To this end, the chemical structure of
acetaldehyde is shown along with its corresponding SMILES string and its
composition in terms of atomic triads. One instance of the atomic triad H–C–H is
boxed on the chemical structure of the molecule. The vector representing the
properties of acetaldehyde regarding its degradability is assembled from its
solubility, MW and the corresponding set of atomic triad frequencies as indicated.

Figure 2 Rationale for developing an experience-based biodegradation
prediction system. (A) represents the strategy to generate environmental fate
classifiers with the learning machine c4.5, in the form of sets of propositional
rules, starting from information gathered from the Biodegradation database
UMBBD. (B) Sketches the functioning and queries of BDPServer.
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isomers in which functional groups have changed between
equivalent positions may share the same pattern of atomic
triad frequencies even if they do have different connectivity
and different SMILES strings. That is the case for pyrogallol
versus phloroglucinol, and also the case of 2-formil-1-
indanone versus 1-formil-2-indanone. In addition, as stereo-
isomers have the same atomic connectivity and identical
composition in terms of atomic triads, they are encoded by the
same vectors. This kind of information was expected to enter
some noise in the predictive system, although (as explained
below) not as important as one could anticipate. Description of
chemicals as compound vectors of this sort (Figures 1 and 2A)
was used to feed the training algorithm for classification of the
molecule according to its fate in the global network shaped by
the global microbial metabolism (see below).

Classification of compounds according to their
environmental fate

Once each compound had been expressed in a vector form, the
reactions in which the chemical is known to take part, as a
substrate or as product, were retrieved from the database (Ellis
et al, 2003, 2006; Pazos et al, 2005). To categorise the
environmental outcome of the complete list of 850 chemical
species under study, we exploited all known metabolic
reactions for organic chemicals (independent of their specific
bacterial host) to delineate a global network of microbial
catalysis (Pazos et al, 2003). Such an inclusive biodegradation
network has been described before as an entity with topological
properties that resemble single-cell metabolic transactions.
Although a network of this kind includes interconnected
pathways that may not stand alone in a single organism
(MacNaughton et al, 1999; Pelz et al, 1999; Whiteley and
Bailey, 2000; Koizumi et al, 2002; Dennis et al, 2003; Zhou,
2003), it does represent the known biodegradative potential of
microbial communities at a global scale (Pazos et al, 2003).
Such a pooled biodegradation network (Pazos et al, 2003, 2005)
was employed to pinpoint the channelling of every compound
into one of three final destinations (Figure 3) as follows.

The first sink was composed of 38 compound entries in
UMBBD that were annotated as belonging to the central
metabolism. We extended this category of chemicals by
including all molecules that participated in pathways through
the network leading them to the central metabolism. In this
way, a group of 533 chemical species were defined as central
metabolism path compounds (CMs). On the other hand, we
labelled as recalcitrant, nonbiodegradable compounds those
that do not participate as substrates in any reaction documented
in UMBBD, and thus can never reach the central metabolism
or being biodegraded otherwise. After scrutiny of the
global biodegradation network, 108 compounds of the data-
base unequivocally fulfilled that criterion. In addition, two
pairs of somewhat special compounds (arsenate/arsenite,
benzyldisulphide/benzylmercaptane) that were linked by
bidirectional reactions but had no other outgoing connections
were also classified as nonbiodegradable. The operative list of
recalcitrant compounds included, therefore, 112 compounds.
Yet, as before, we extended the nonbiodegradable whole
to those molecular species that were directly or indirectly

connected to recalcitrant compounds as precursors of
ultimately intractable chemicals (Figure 3). The extended set
of such molecules included 353 specimens, which were
operatively tagged as nonbiodegradable path compounds
(NB). This set of compounds did overlap by 112 compounds
with the previously defined set of CM compounds. This
indicated that many chemicals can either be degraded upon
being channelled into the central metabolism or accumulated
in the environment if diverted into nonproductive reactions.

The nonredundant set that contained all CM and NB
compounds included 774 chemical species. The 76 remaining
molecules were not connected to either central metabolism or
nonbiodegradable compounds. Instead, they belong to various
pathways that go straight into carbon dioxide and water,
without converting into any of the typical intermediates of the
central metabolism. Although they are of course biodegrada-
ble, the lack of connections to the central metabolism rules
out their classification as CMs. On the other hand, they cannot
be classified as NB compounds either, as CO2 is not a bona fide
recalcitrant, terminal molecule: it can be captured back to
metabolism by a formylmethanofuran dehydrogenase reaction
or (in practice) by many other CO2-fixing microbial processes.
We thus established a separate, extended type of compounds,
which were directly or indirectly positioned in pathways
leading to CO2. This group, which includes 329 molecular
specimens, was termed as carbon dioxide path compounds
(CDs). One further extension of this criterion was to take CO2

and central metabolism as the same final fate, and group all
compounds connected to them. The resulting set thus
comprises central metabolism and carbon dioxide path
compounds (CMCDs) and includes 634 chemicals. CMCDs
correspond to what can be considered intuitively as the set of
biodegradable compounds. In summary, as shown in Figure 3,
each compound can be ascribed to each of three environ-
mental fates (CM, NB and CDs), in which the sum of CMs and
CDs forms the operative biodegradable (CMCD) category.

Figure 3 Categorisation of the three partially overlapping sets of metabolic
pathways that form the global biodegradation network. The sets of chemicals and
their metabolic products were defined according to their final environmental
sinks: (i) NBs, chemicals that cannot be degraded (nonbiodegradable) and
metabolic precursors of molecules that cannot be degraded; (ii) CMs, chemicals
that belong to the central metabolism and precursors that are biologically
processed to central metabolites; (iii) CDs, molecules that are directly
channelled to production of CO2; (iv) CMCDs, the sum of CMs and CDs.
The general trend of these types of compounds towards recalcitrance or
biodegradation is sketched on top.

Predicting biodegradation of organic pollutants
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The four types of biodegradative fates (CM, NB, CD and
CMCD, Figure 3) did overlap to a significant extent. To refine
further the sorting of the chemicals and to generate better
classifiers for the compounds, we established four separate,
binary categorisation schemes that would label out each
chemical as belonging to each of the groups or to the cognate
negated classes. Accordingly, we defined the following four
classification classes: (i) CM or No CM, (ii) NB or No NB, (iii)
CD or No CD and (iv) CMCD or No CMCD. Obviously, the most
important categorisation for our purposes is the last (CMCD
or no CMCD), as it reflects either eventual recalcitrance
or amenability to biological recycling. Yet, the other classifiers
do hold a considerable practical value as well (see the
Discussion section).

Matching compound vectors to environmental
fates

Once a vectorial description of each chemical of the UMBB had
been established and a clear classification of outcomes
through the global metabolism delineated, we set out to
discover relationships between them. As mentioned above,
one early difficulty to this end is that one-to-one relations
between compounds and vectors existed for only 625
compounds, whereas 93 vectors redundantly described the
remaining 216 compounds. A similar scenario occurs with
stereoisomers, which are encoded by the same vector
compound but may differ in their accessibility to biodegrada-
tion. To assess the importance of these cases in the global
process, we determined the number of instances in which
compounds that share the same frequencies of atomic triads
happen to have the same environmental fate. Starting with the
216 compounds that were associated to 93 vectors, we
identified all possible pairs of compounds that had the same
pattern of atomic triad distribution. Out of the resulting 163
cases, the number of pairs consisting of two compounds with
identical fate in the different classification schemes, was as
follows: 141 (87%) for CM or No CM; 126 (77%) for NB or No
NB; 111 (68%) for CD or No CD; and 142 (87%) for CMCD or
No CMCD. These results indicated that in most cases (average,
80%), the environmental fate of structural isomers and
stereoisomers after passing them through the global biode-
gradation network is the same—although in some cases, the
specific reactions involved might be different.

A second consideration was related to the structural
similarity between the different types of compounds. One
could suspect that chemicals belonging to the same group
(CM, NB, CD, CMCD, or the corresponding negated classes)
might share some structural features, especially if they are part
of the same metabolic pathway. To examine rigorously this
issue, chemical compound similarity was estimated for each
pair of compounds using their atomic triad frequencies for
calculating a modified version of the Tanimoto association
coefficient t (Holliday et al, 2002). This coefficient reflects the
ratio between the number of atomic triads that two
compounds have in common and the number of atomic triads
that they do not have in common, and can be used as a
measure of the distance between compounds, in respect to
their chemical similarity. The distribution of such distances for

the whole of compound pairs (Supplementary Figure S1A),
indicated that the collection of chemicals was quite diverse.
Although 90% of the pairs had t values o50, only 1% of the
pairs had t figures X80. When the distribution of distances
was calculated for pairs of compounds that belong to the same
classes of environmental fates, we found that all groups were
equally diverse (data not shown). The degree of clusterisation,
however, varied among the different groups, as measured
by their average clustering coefficient (Cv; Supplementary
Figure S1B).

Production of classifiers

Having categorised the compounds according to the four
binary classification schemes mentioned above, and having
defined compound vectors that describe their composition,
topology, MW and solubility, the machine learning algorithm
c4.5 (Quinlan, 1993) was used to generate classifiers in the
form of sets of rules. This program uses an inductive decision
tree process that generates classification schemes matching
the attributes of the training examples to given classes. These
schemes can later be used for assigning new (unseen)
examples to such classes (Figure 2B). Each classification
involves a tree structure, which can be also be expressed as a
set of rules, in which internal nodes represent a test condition
(formulated in terms of the attributes), whereas the terminal
(leaf) nodes represent classes. Such an approach was preferred
over other available learning methods, for example, neural
networks, because (i) the machine learning of choice can
handle missing values (such as water solubility, unknown for
some compounds), and (ii) the explicit rules created by c4.5
can be easily interpreted by the user. In addition, such rules
produce generalised models that become instrumental to make
predictions on molecules not previously visited by the learning
machine. Rules take the form of propositions with two sides:
the left-hand side contains a conjunction of attribute-based
tests, and the right-hand side is a class. For example, the rule in
Table I states that a compound with more than 19 triads of the
type C–C–C, more than one triad of the type O–C–C and three
or less triads of the type O–C–C, should belong to the NB class,
with a support confidence of 94%.

Each of the four final classifiers was composed of a set of 16–
23 rules, and each rule was composed, in average, of 3.3
attribute-based tests (standard deviation 2.07, range 1–12). To
gain some insight on the relationship between chemical
structure (i.e., the frequency of triplets) and environmental
fate, the rules were reanalysed to assess the weight of each of
the attributes. Out of such 152 traits (149 frequencies of atomic
triads, MW, quantitative solubility and qualitative solubility),
only 52 were included as part of the propositional rules of all
classifiers. These attributes are listed in Supplementary Figure S2,
together with a graphical depiction of the frequencies in
which each of them appears in the rules. For example,
attribute-based tests referring to the frequency of atomic triad
O–C¼O come out in about 45% of the rules that conform the
classifier for the scheme CD or No CD. Also, although MWand
solubility are taken into account by the classifier NB or No NB,
they are useless for the classifier CM or No CM, (Supplemen-
tary Figure S2). This reflects that not all attributes have the
same importance for each of the environmental fates.
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To assess the predictive capacity of the system, we followed
a fivefold cross-validation strategy. For this, the data set was
divided into five blocks; four of them were used as a training
set, to generate the classifiers (rules), and the remaining block
was used as a test set. This allowed measuring the ability of the
classifiers for predicting the environmental fate of chemicals
not included in the training set. The process was repeated five
times, changing the block that was used as a test set. The
accuracy of the system (i.e., the percentage of compounds
correctly classified as belonging to any of the NB, CM, CD,
CMCD classes, or their negation) was averaged for each
classification scheme. The resulting averaged accuracies
ranged from 73 to 87%, for the different classification schemes
(Table II). A more detailed picture of the predictive capacity of
the system was obtained by calculating its sensitivity and
specificity for the prediction of specific classes. The values

for sensitivity (fraction of compounds correctly classified
as belonging to a specific class, relative to the total number
of cases of that particular class) and specificity (fraction
of compounds correctly classified as belonging to a specific
class, relative to the total number of predictions for that class)
ranged from 50 to 93%, and from 66 to 85%, respectively, in
the different classification schemes (Table II). In general,
the classification scheme CM or No CM is the one for which
the best predictive performance was achieved. This could
be explained in part by the fact that CM is the group with
the highest average clustering coefficient, Cv, making it easier
for the c4.5 algorithm to generate rules that represent the more
similar compounds of the group (Supplementary Figure S1B).
Consistently with this explanation, we have observed that the
relationship between the average clustering coefficient and
the sensitivity of the predictions for any given class can
be adjusted to a regression line with a correlation coefficient
r¼0.53 (Supplementary Figure S1B).

Evaluation of classifiers and confirmation of their
predictive value

To authenticate the significance of the figures generated above
and uncover possible biases of the dataset on the predictive
value of the classifiers, we compared the performance of our
c4.5-based system with one employing random predictors.
Possible biases due to overrepresentation of classes were
corrected by having such predictors assigning compounds
randomly to one of the two fates for each classification
scheme, with a probability that was proportional to the
population of each of the classes. Figure 4 shows the average
accuracy obtained for the different classes (versus their
negated classes) for the real and the randomised dataset. It
can be seen that the real dataset produces a considerably
higher accuracy for all the classes, which is more pronounced
in the CM and NB groups. Details of the analyses of the
randomised dataset (sensitivity or specificity) are shown in the
Supplementary Figure S3. To assess the statistical significance
of the differences between the c4.5-based system and the
random predictors, the dataset was subject to a sign test. This

Table I Example of propositional rule generated for the classification of
compounds in the scheme NB or No NB

Rule 55: IF –C–C–C 419
–O–C–C 41
–O–C–C p3

THEN, the compound belongs to the NB class (Confidence 90.6%)
Examples (14 cases)

No. Class Compound

451 NB 1-Methoxyphenanthrene
454 NB 9-Phenanthrol
389 NB 9-Fluorenol
535 NB 1-Phenanthrylsulfate
493 NB 4-Phenanthrol
525 NB 2-Phenanthrol
513 NB 2,20-Biphenyldimethanol
539 NB 4-Phenanthrylsulfate
538 NB 3-Phenanthrylsulfate
537 NB 2-Phenanthrylsulfate
529 NB 9-Phenanthrylsulfate
494 NB 3-Phenanthrol
450 NB 1-Phenanthrol
390 NB 9-Fluorenone

NB, nonbiodegradable path compound.

Table II Predictive performance in fivefold cross-validation experiments

Classification schemea CM or No CM NB or No NB CD or No CD CMCD or No CMCD

Accuracy (%) 8774 7774 7375 8273
Significance respect to random—P(N) 1.1�10�39 1.2�10�24 2.4�10�16 6.4�10�26

Default class CM No NB No CD CMCD
Majority class CM No NB No CD CMCD
No. of cases 533 496 513 634
Sensitivity (%) 9374 8674 7877 9273
Specificity (%) 8373 7872 7873 8572
Minority class
No. of cases 308 345 328 207
Sensitivity (%) 6775 6475 6679 50711
Specificity (%) 8578 7774 6675 7175

aCM, central metabolism path compound; NB, nonbiodegradable path compound; CD, carbon dioxide path compound; CMCD, central metabolism and carbon dioxide
path compounds. Accuracy is the percentage of compounds correctly classified. Sensitivity is the percentage of compounds correctly classified as belonging to a specific
class, relative to the total number of cases of that particular class. Specificity is the percentage of compounds correctly classified as belonging to a specific class, relative
to the total number of predictions for that particular class. Accuracy, sensitivity and specificity are indicated in the Table as the average7s.d. for the five iterations in the
cross-validation experiment. The statistical significance of the observed difference in the performance of the c4.5-based system compared with a random prediction is
indicated by the P(N) of a sign test.
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analysis compares the performance of two methods based on
the number of cases that one of them provides a correct
response, whereas the other fails and vice versa. A P(N) is
thereby obtained which can be interpreted as the probability
for the null–hypothesis, that is that the observed differences
are happening by chance. These probabilities are shown in
Table II. The result clearly demonstrates the superiority of the
c4.5-based predictors as compared to their equivalent random
counterparts with values of P(N) in the order 10�16–10�39.

Once the predictive capacity of the system had been
established in the cross-validation experiments above, we set
out to obtain the final components of the prediction system. To
this end, new rule-based classification models were generated
from training sets that included all compounds. Because they
had been trained with a larger data set than the preliminary
classifiers obtained in cross-validation experiments, it could be
expected that the final classifiers had a higher capacity to
predict the environmental fate of new compounds, as long as
the new compounds do not diverge too much from the models.

To compare the efficacy of our predictive system with
experimental data, we made use of an additional set of

compounds that had not been included as part of the training
set as they were not available at the time of its setup. To this
end, we took the 147 compounds entered in the UMBBD along
with fresh information on its biodegradability from 17
November 2003 (when the predictive system was first set) to
27 November 2006. As before, the structures of these new
compounds were translated into SMILES formats, used to
generate compound vectors and fed as inputs for each of the
four classifiers established previously. The complete set of
biochemical reactions involved in their biodegradation (as of
27 November 2006) was collected as well, thereby allowing a
refinement of the global biodegradation network (Pazos et al,
2003) and the assignment of the corresponding metabolic sink.
Table III compares the actual classification of each of the
compounds to the predictions emitted by the system. The
accuracy values for the four classification schemes ranged
from 40 to 69%, lower than those of the fivefold cross-
validation tests reported above with the original dataset (73–
87%). However, the sensitivity values for the major classes
ranged from 72 to 91%, which are comparable to those of the
cross-validation experiment (78–93%). The best accuracy
value was that for the classification scheme CMCD or no
CMCD (69%). Consistently with this, the prediction of
compounds that belong to the CMCD class achieved the
highest sensitivity value, 91% of the compounds actually
belonging to this category being classified as such. The least
sensitivity was associated to the prediction of compounds
belonging to No CM. Only 16% of these compounds were
predicted as such. This is not unexpected, as this set of
compounds is very heterogeneous, holding the lowest cluster-
ing coefficient (Supplementary Figure S1B).

Implementation of the prediction system:
the BDPServer

To put the prediction system into operation as a user-friendly
resource, it was implemented as a public web server called
Biodegradation Prediction Server (BDPServer, http://
www.pdg.cnb.uam.es/BDPSERVER). The input for the
BDPServer (Figure 2B) requires the expression of the formula
of the chemical under study in SMILES format, although an
integrated Java applet allows the user to draw the chemical
structures directly, instead of typing SMILES strings. Quanti-
tative and qualitative solubility information can also be

Figure 4 Comparison of the prediction accuracies in cross-validation tests with
trained classifiers and random classifiers. Fivefold cross-validation tests were
conducted, for each of the considered classification schemes, using both the
original classifiers and the equivalent random classifiers, which assign
compounds arbitrarily to classes with a probability that is proportional to the
size of the classes (Table II for the statistical significance of these differences
between the predictors and their random counterparts). The averaged accuracy
of the five iterations of the cross-validation experiment and the corresponding
standard deviation are represented. Note that the dataset was extracted from
UMBBD, which is overrepresented with biodegradable compounds. This makes
the accuracy of the predictive scheme reflected in the figure (as well as the
related specificities and sensitivities; Supplementary Figure S3) to be an
underestimation of the actual prognostic power of the system for new chemicals.

Table III Predictive performance in validation tests with recent experimental dataa

Classification schemeb CM or No CM NB or No NB CD or No CD CMCD or No CMCD

Accuracy (%) 58 40 51 69
Default class CM No NB No CD CMCD
Majority class CM No NB No CD CMCD
Sensitivity (%) 78 72 75 91
Specificity (%) 66 16 49 71
Minority class No CM NB CD No CMCD
Sensitivity (%) 16 35 30 22
Specificity (%) 27 88 58 57

aData on 147 compounds entered in the UMBBD between 17 November 2003 and 27 November 2006 along with the set of biochemical reactions involved in their
biodegradation.
bCM, NB, CD, CMCD, accuracy, sensitivity, specificity: as in footnote to Table II.
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entered (Supplementary Table S1), but it is optional because
the learning machine c4.5 can deal with missing values. The
prediction engine within the BDPServer (a Perl script called
zPredict, Figure 2B) uses OpenBabel for adding hydrogen
bonds and translating SMILES strings into BS and Alchemy
formatted reports. The connectivity between atoms is ex-
tracted from such reports, which includes the type of chemical
bonds between atom pairs. zPredict then calculates the
composition of each compound in terms of atomic triads.
OpenBabel is also used to calculate the MW of compounds. A
vector that conveys the compound descriptors is then
generated. These include atomic triad frequencies, solubility
(if provided by the user), and MW. Predictions are generated
by the consultr module of the c4.5 package, using the
classification models mentioned above. The output of the
system consists of four independent predictions, associated to
confidence factors that are calculated by consultr. If a user-
provided SMILES string happens to match another string in the
database, the server returns the actual classification of the
compound, and predictions are not shown unless the user
chooses to force the forecast.

An example of how the BDPServer works and its predictive
ability operates is shown in the exercise summarised in the
Supplementary Figure S4. In this case, we set out to classify a
collection of compounds that belong to well-characterised
microbial pathways for biodegradation of toluene—which
were part of the training data. Such pathways, which include a
total of 42 different compounds, were taken from the
MetaRouter web server (Pazos et al, 2005) by querying the
database for all reactions connecting toluene to the central
bacterial metabolism. SMILES strings of each of the 42
chemicals were submitted to the BDPServer and the predic-
tions compared to the actual classification of the compounds,
according to the four binary schemes defined previously. The
number of compounds that belong to each of the classes, and
the absolute number of successful BDPServer predictions,
within each of the classification schemes, are shown in
Supplementary Figure S4. All compounds were correctly
categorised for the classification schemes CM or No CM and
CMCD or No CMCD. Suboptimal—but still significant—results
were obtained for the classes CD or No CD, and NB or No NB in
which 37 out of 42 and 40 out of 42 compounds, respectively,
were classified correctly. Given the fact that the pathways for
degradation of toluene were included in the training of the
system, it is likely that these figures overestimate the capacity
of the system. Yet, they represent the type of result and error
margin that one would expect from the analysis of compounds
that participate in full metabolic routes.

An additional exercise was designed to test the ability of the
system for recognising compounds that are clearly linked to
the central metabolism. To this end, the KEGG database was
used to generate a collection of 733 molecules that fulfilled the
following conditions: (i) they were components of Escherichia
coli metabolic pathways; (ii) they were not part of metabolic
pathways involving xenobiotic or recalcitrant compounds; (iii)
they were composed of more than three atoms; and (iv) they
had an associated description in MOL format that could be
converted into SMILES format. The BDPServer was then used
to generate biodegradability predictions for such compound
set. As the result of this, the BDPServer predicted that 662

KEGG compounds (90.31%) could be assigned to the CMCD
class (central metabolism plus carbon dioxide sinks), that is,
the class that defines the group of bona fide biodegradable
chemicals. This figure is consistent with the prediction that
597 (81.44%) out of the 733 KEGG compounds belong to the
class of chemicals not connected to recalcitrant compounds
(No NB class) and that 501 molecules (68.34%) could be
directed to central metabolism (CM). As a control, random
predictions were generated as above, that is, assigning
compounds arbitrarily to one of the two fates for each
classification scheme, proportionally to the population of
each of the classes in the original training set. The accuracies
for these random predictors are 76.8% for CMCD, 58.66 for
No NB and 60.84 for CM. These differences in performance
are statistically supported by the associated values of
P(N): 1.52�10�11 (CMCD), 9.45�10�20 (No NB) and
3.3�10�3 (CD).

Early diagnosis of degradability of new chemicals

With the tools described above in hand, and after having
evaluated the reliability of the system in different sets of
chemicals with a known biodegradative fate, we set out to
produce global predictions for compounds found in lists that
are subject to regulations through the European Chemical
Bureau. Such lists include (i) 3365 dangerous substances
incorporated to directive 67/548 of the European Commission,
which regulates the classification, packaging and labelling of
hazardous chemicals, last updated in April 2004 (the so-called
Annex-I); (ii) 2747 High Production Volume Chemicals
(HPVCs, defined by directive 793/93 as molecules that are
produced or imported in quantities exceeding 1000 tons per
year); and (iii) 7829 Low Production Volume Chemicals
(LPVCs, between 10 and 1000 tons per year). As each of the
three catalogs contain many substances of poorly defined
composition (such as petroleum derivatives) that cannot be
analysed by our system, we filtered the lists with the
SMILECAS database, to obtain refined inventories of defined
compounds with associated SMILES strings. The curated lists
contained 1766, 1653 and 5645 compounds, respectively. The
overlap between those from Annex-I with HPVCs and LPVCs
included 595 compounds in one case and 366 chemicals in the
other. Upon blind testing of such molecules with the
BDPServer (Supplementary Table S2), about 5% of these
compounds were automatically rejected because they had less
than three atoms or because their SMILES entry was not
correctly interpreted by OpenBabel. Yet, the system predicted
that, for any of the three lists, B60% of the compounds would
be connected to central metabolism (CM), B20% would be
linked to carbon dioxide (CD) and B70% would be connected
to either central metabolism or carbon dioxide (CMCD).
Therefore, more than two thirds of the compounds could be in
principle biodegraded. However, about 47% of the compounds
of any list were either recalcitrant or could evolve into
nonbiodegradable compounds (NB). The highest percentage
of NBs (55%) was found in the subset of compounds that
are part of the curated Annex-1 but not of HPVCs (data
not shown).

In a subsequent step, we analysed sets of chemical species of
the PubChem database that were explicitly labelled as
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pesticides (1707 compounds), herbicides (199), fungicides
(169), insecticides (279), antibiotics (1365) and flame retar-
dants (6). As indicated in Figure 5, our system exposed that the
percentage of CM (B54%) or CMCD (B70%) compounds
within these lists were roughly similar to those of the species
listed by the European Chemical Bureau. However, the
percentage of compounds connected to CO2 (CD, B34%)
and to nonbiodegradable end products (NBs, B59%) was
significantly higher. The highest percentage of predicted
difficult-to-degrade compounds was observed in the collection
of herbicides included in PubChem (NB B74%). The much
feared flame retardants (Darnerud, 2003) incorporated in the
study turned out to be in principle amenable to microbial
degradation leading to central metabolism or carbon dioxide
(CMCD, 100%), although four of them were also classified as
precursors of eventually nonbiodegradable compounds (NB,
B66%). The detailed predictions for all the sets of compounds
mentioned in this section are available on-line at http://
www.pdg.cnb.uam.es/BDPSERVER.

Discussion

The growing production of new chemicals make the early
diagnoses of their environmental fate and their microbial
metabolism necessary (McShan et al, 2003; Wackett, 2004b).
Previous attempts to predict biodegradability (for instance,
UMBBDpredict) have focused on the identification of specific
metabolic pathways that a compound might follow on the
basis of the presence of predefined functional groups (Ellis
et al, 2003; Hou et al, 2004). The user must choose one of the
possible transformations to generate, iteratively, a virtual
degradation route. Such a manual, iterative approach length-
ens the procedure if a large number of chemicals are being
analysed. In addition, strategies that focus on functional
groups have the limitation of being restricted to predefined
structures that have been manually collected. Other schemes

such as Meteor and Catabol evaluate only the pathways that are
most likely to occur, instead of predicting all possible pathways.
In these cases, transformation rule libraries have to be
constructed manually from the literature and generalised through
chemical criteria (Dimitrov et al, 2002; Button et al, 2003).

As an alternative, we have tackled the problem from an
experience-based perspective, using a computational machine
learning approach trained with all known microbial catabolic
reactions on organic pollutants (Urbance et al, 2003; Ellis et al,
2006). This approach allows the combination of continuous
and discrete attributes (descriptors), permits dealing with
missing values, and generates classification rules in human-
readable forms endowed with biological meaning. This is an
important difference with other machine learning techniques
(such as neural networks), which generate classifications with
opaque black box rules. The application of such predictive
system to lists of chemicals released into the environment thus
represents an early tool for tentatively classifying the
compounds as biodegradable or recalcitrant. The pivotal
feature of our predictive system is the vectorial representation
of chemical compounds as sets of 152 descriptors that express
atomic composition and topology in terms of atomic triad
frequencies (chemotopes), plus MW and water solubility. This
approach is related to some QSAR-type systems that use, as
chemical descriptors, all possible subfragments of connected
atoms that can be obtained from a compound (Damborsky,
1996; Damborsky and Schultz, 1997; Tong et al, 1998;
Dimitrov et al, 2002; Blinova et al, 2003; Sutherland et al,
2004). In our hands, deconstruction of any given chemical as
an assembly of atomic triads was a far superior descriptor of
the molecules, biodegradation-wise, than any other represen-
tation tried. This codification seems to represent an optimal
tradeoff between significant structural/chemical properties
and the processing of a minimal number of attributes by the
machine learning sytem employed. Indeed, because the
reactivity properties of any given atom generally depends on
its neighbours up to a distance of 2, triplets do hold a
considerable information on the Chemistry of the molecule
while keeping low the number of descriptors (possible atomic
triads) per molecule. But is such a correlation casual or does it
embody a biological meaning? We argue that the frequency of
atomic triad presets the susceptibility of the compounds to the
global biodegradation network. In fact, the outcome of the
approaches presented in this paper suggest that enzymatic
activities of catabolic pathways coevolve to target discrete
molecular motifs which can be shared by many chemicals,
rather than adapting to deal with one specific molecule, with
obvious consequences for the evolution of the substrate
recognition sites of the enzyme pool (Wackett, 2004a). It is
thus reasonable that confrontation of a diverse microbial
community with a mix of chemical compounds (i.e., the most
frequent environmental pollution scenario) results in the
encounter of a multispecies biodegradation network with a
landscape of chemotopes—rather than dealings of single type
of bacteria with an unique chemical species. The conse-
quences of such a situation for surveying the degradation gene
scenery through experimental and computational means
deserve further research.

The strategy sketched in Figure 6 has two major incentives.
First, it is fully automated and, therefore, it can be quickly

Figure 5 Prediction of environmental fates of selected groups of functional
chemical compounds extracted from the PubChem Compound database. The
y axis indicate the percentage of compounds within each category (versus
the corresponding negated class) of the lists that are predicted to belong to any of
the classes: CM, central metabolism path compound; NB, nonbiodegradable
path compounds; CD, carbon dioxide path compound; CMCDs, central
metabolism and carbon dioxide path compounds. The red coloured is a signal
of recalcitrance, whereas the green is an indication of degradability. The category
of flame retardants was excluded from this analysis, because only a few
(six chemical specimens) were listed in the accessed dabases. Note that, by any
criterion, the herbicides form the most-difficult-to-degrade group of chemicals.
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applied to massive lists of compounds, as we have shown
above. Second, it is not restricted to known functional groups
and, therefore, it may provide hints about the environmental
fate of compounds that contain undocumented structures,
allowing an early prediction of their environmental fate before
releasing them into the environment. Its simplicity makes it
suitable as a screening predictive tool and provides and early
rationale for putting interventions into practice and setting
priority procedures. These applications will probably be
intensified by the growingly restrictive European Union
Regulatory Framework for Chemicals (REACH; ec.europa.eu/
enterprise/reach) and other international rules, for example,
the Pollution Prevention Framework (www.epa.gov/oppt/
p2home). In the meantime, our analysis (Figure 5) indicates
that hundreds (if not thousands) of the compounds which are
produced in large quantities by the chemical industry may not
have a chance of ever being biologically degraded—at least as
understood with our current level of knowledge of the
microbial metabolism. In this respect, although our prognostic
system says nothing on the possible kinetics of degradation of
specific compounds, we expect predictive approaches of the
sort presented in this paper to inform decisions about
acceptability of the release of current and future chemicals
into the environment.

Materials and methods

Databases

UMBBD (www.umbbd.msi.umn.edu) regularly compiles information
on experimentally characterised biodegradative reactions. MetaRouter
(Pazos et al, 2005) is a system mainly based on UMBBD (Ellis et al,
2003, 2006) designed to maintain heterogeneous sets of data related to
biodegradation and bioremediation. ChemFinder (http://chemfinder.

cambridgesoft.com/) is a database that contains a variety of
information about all types of chemical compounds. The lists of
compounds known as Annex-I, HPVC and LPVC were kindly provided
by Rémi Allanou, of the European Chemicals Bureau (www.ecb.jrc.it).
The three lists included compound names and Chemical Abstract
Service (CAS) Registration Numbers. The SMILECAS database
contains SMILES strings for more than 100 000 compounds that are
referred to by their names and CAS Registration Number, and was
kindly provided by Bill Meylan, from Syracuse Research Corporation
(www.syrres.com). SMILES strings (Weininger, 1988) are linear text
representations of the atomic structure of molecules. Atoms are
represented with the standard nomenclature and specific signs are
used to express different types of chemical bonds and to denote
branching, cycles, and other molecular features (http://daylight.com/
smiles/index.html). Although SMILES strings unambiguously repre-
sent the structure and connectivity of any given compound, each
chemical may have several alternative SMILES strings. PubChem
Compound (http://pubchem.ncbi.nlm.nih.gov) is a database main-
tained by the NCBI that contains information about more than five
million unique chemical structures, including their SMILES strings.

Software

OpenBabel is a program and library designed to interconvert file
formats used in molecular modelling and computational chemistry
(http://openbabel.sourceforge.net/). c4.5 is a machine-learning algo-
rithm for the construction of decision trees and rule-based classifiers
(Quinlan, 1993). JME (www.molinspiration.com/jme) is a Java applet
that generates SMILES strings from drawings of chemical compounds
produced with a graphical interface, and was kindly provided by Peter
Ertl from Novartis AG. BioLayout JAVA is a program designed for the
visualisation of biological networks (Enright and Ouzounis, 2001). All
data preparation and manipulation was carried out by means of ad hoc
scripts written in Perl language.

Definition of the global biodegradation network

Each of the 903 reactions described in UMBBD as in November 17
2003, was deconstructed into all possible pairs of compounds that
sustain a substrate–product relation. For example, for the reaction
A-BþC, the following pairs of connected compounds would be
generated: A-B, A-C. By assembling a single, nonredundant list of
compound pairs, a directed graph representing the global biodegrada-
tion network was defined in which nodes correspond to compounds,
and edges to reactions, as described previously (Pazos et al, 2003).

Calculation of atomic triad frequencies

Compositional and topological information about each chemical was
expressed as series of atomic triad frequencies. Triads were preferred
over other possibilities (pairs, tetrads, etc.) because the two nearest
neighbours of any given atom in a molecule determine intrinsic
reactivity the most. To deconstruct given compounds into such atomic
triad series, the SMILES strings associated with each chemical was
processed with the OpenBabel sofware (see above), which adds
hydrogen atoms not explicitly represented in SMILES strings, and
translates the results into BS and Alchem formatted reports. Atom
names and connectivity information were extracted from such BS
reports in the form of adjacency lists, whereas bond types were
extracted from Alchemy reports. The frequencies of atomic triads were
then calculated from the information on their connectivity. With such
criteria, 149 different atomic triads were identified and categorised for
each of the 850 chemical compounds included in the 17 November
2003 update of UMBBD (http://umbbd.msi.umn.edu), and their
absolute frequencies were determined for every target molecule.

Compound solubility

Water solubility figures were obtained from the ChemFinder database.
Because solubility can be expressed either qualitatively or quantita-

Figure 6 Schematic flowchart of the BDP System. The figure summarises the
steps of the prediction process, including the automated deconstruction of any
given chemical formula into frequencies of each of the 149 possible chemical
triads and its combination with MW and water solubility data for assembling the
vector compound. This is fed into the BDPServer which, to an extent, simulates
the full potential of the global microbial biodegradation network.
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tively, both types of records were mined from the database and
converted into the reciprocal form according to a scale of solubility.
Apart of the numerical data on solubility, an operative qualitative scale
was set by examining the distribution of solubility values and classes
found in the collection of compounds as indicated in Supplementary
Table S1. Alas, information on solubility was available for only 214 of
the studied compounds. For the rest, the solubility values were left as
missing information, which is a circumstance that can be handled by
c4.5 (Quinlan, 1993).

Measure of chemical similarity

A modified version of the Tanimoto association coefficient (t) was
used for expressing the degree of chemical similarity between
compounds in a fashion that was coherent with their description as
series of atomic triads. This coefficient is particularly well suited for
dealing with molecular representations consisting of strings of binary
descriptors that may indicate, for example, whether predefined
substructures are present or absent in a compound (Holliday et al,
2002). In our case, the Tanimoto association coefficient was calculated
with nonbinary data (i.e., atomic triad frequencies) by means of the
following formula:

t ¼ 100 � C=ðA þ B � CÞ
where A and B are the number of atomic triads in two compounds, and
C is the number of those that they have in common. The Tanimoto
coefficient ranges between 0 and 100, and its value can be interpreted
as the degree of identity between compounds relative to their
atomic triad composition. Once chemical similarity for each pair of
compounds had been defined, we studied the distribution of chemical
distances for the whole set of compound pairs (Supplementary Figure S1A)
and for pairs of compounds that belong to specific classes of
environmental fate. We also examined to what extent the whole set
of compounds and the environmental fate classes of chemicals
involved clusters of similar molecules. To this end, we calculated the
clustering coefficient (Cv) for each compound (v) with the rule:

Cv ¼ 2 � Nv=ðKvðKv � 1ÞÞ
where Kv is the number of compounds that are connected to v, and Nv is
the number of connections between the compounds that are linked to v
(Watts and Strogatz, 1998). To define whether two compounds were
connected or not, we considered two different thresholds for the
Tanimoto coefficient: tX50% and X80%. The lower and upper limits
of Cv are 0 and 1, respectively: compounds that are not connected to
any other molecule are considered to have a clustering coefficient of 0,
whereas those that belong to clusters in which many of the members
are linked have clustering coefficients closer to 1. Finally, we
calculated the average clustering coefficient for the whole set of
compounds and for the specific environmental classes of compounds
(Supplementary Figure S1B). The average clustering coefficient of a
given class represents the cliquishness of that set of compounds (Watts
and Strogatz, 1998).

Production of classifiers and evaluation

The machine learning algorithm c4.5 (Quinlan, 1993) was employed to
generate rule-based classifiers that associate the properties of chemical
compounds with one of the two predictable fates for each of the four
independent binary classification schemes defined upon the analyses
of the biodegradation network (see the Results section). To assess the
predictive capacity of the system, we followed a fivefold cross-
validation strategy, in which the data set was divided into five blocks;
four of them were used as a training set, to generate the classifiers
(rules). The remaining block was used as a test set, for measuring the
ability of the classifiers in predicting the environmental fate of
chemicals not included in the training set. The process was repeated
five times, changing the block that was used as a test set, in such a way
that all compounds were part of both sets, at least once. Only those
compounds with an associated vector were taken into account (841 out
of the original set of 850 compounds). As a basic measure of the
predictive capacity of the classifiers, we averaged the robustness of the
predictions for the five iterations of the cross-validation experiment. In

this context, accuracy was defined as the percentage of correctly
classified cases, relative to the total number of them taking together the
majority and the minority classes. On the contrary, sensitivity is the
fraction of compounds correctly classified as belonging to a specific
class, relative to the total number of cases of that particular class.
Specificity is the fraction of compounds correctly classified as
belonging to a specific class, relative to the total number of predictions
for that particular class. Therefore, the last two features (sensitivity
and specificity) were independently calculated for the majority and the
minority classes. This was made because the generalisation process
carried out by c4.5 produces classification models in which one of the
classes is defined as the default one. This class is usually the most
frequent in the training set, as it happens with the four classifiers
generated by this work. When the models are used to classify new
cases, those that are not covered by any rule are assigned to the default
class. Therefore, by calculating the sensitivity and specificity of the
predictions for each distinct class, it is possible to generate a more
detailed estimation of the predictive performance of the system, than
that represented by accuracy only.

Supplementary information

Supplementary information is available at the Molecular Systems
Biology website (www.nature.com/msb).
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