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In transcriptional regulatory networks, the coincident binding of a combination of factors to
regulate a gene implies the existence of complex mechanisms to control both the gene expression
profile and specificity of the response. Unraveling this complexity is a major challenge to biologists.
Here, a novel network topology-based clustering approach was applied to condition-specific
genome-wide chromatin localization and expression data to characterize a dynamic transcriptional
regulatory network responsive to the fatty acid oleate. A network of four (predicted) regulators of
the response (Oaf1p, Pip2p, Adr1p and Oaf3p) was investigated. By analyzing trends in the network
structure, we found that two groups of multi-input motifs form in response to oleate, each
controlling distinct functional classes of genes. This functionality is contributed in part by Oaf1p,
which is a component of both types of multi-input motifs and has two different regulatory activities
depending on its binding context. The dynamic cooperation between Oaf1p and Pip2p appears to
temporally synchronize the two different responses. Together, these data suggest a network
mechanism involving dynamic combinatorial control for coordinating transcriptional responses.
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Introduction

Dynamic transcriptional regulatory networks underlie most
complex cellular responses. Understanding the structure and
coordinated behavior of these networks is fundamental to
systems biology. Yeast has proven to be an excellent model for
understanding eukaryotic transcriptional regulatory networks.
Genome-wide chromatin localization and expression data
reveal a general hierarchical four-tiered network structure (Yu
and Gerstein, 2006), and superimposed on this structure are
compact units of recurring patterns in network architecture
(Shen-Orr et al, 2002). Each of these network motifs confers
specific properties to the system including temporal control,
coordinate expression with other genes, speed or stability of
responses, sensitivity to continuous or transient stimulus and
noise suppression (Becskei and Serrano, 2000; Shen-Orr et al,
2002). Multi-input motifs involve regulation of a group of
targets by multiple factors and have been attributed to a

response being required for multiple growth conditions, or the
involvement of the target genes in multiple metabolic pathways.
Here, different stimuli activate different transcriptional regula-
tors leading to the activation of both common and distinct
classes of genes (Kashtan et al, 2004). The effect of concomitant
control of a multi-input motif, that is multiple factors regulating
the same targets at the same time, has not yet been investigated
on a global scale. However, it has been suggested that because
there is so much overlap between the targets of individual
regulators, this is likely an important mechanism to confer
specificity to transcriptional responses (Luscombe et al, 2004).

The transcriptional response to fatty acid exposure serves as
an excellent model for studying the concomitant control of
multi-input motifs. Yeast cells respond to oleic acid exposure by
inducing genes responsible for fatty acid metabolism, but, as
with other external stimuli, they additionally coordinate other
related processes (e.g. glucose metabolism, stress response,
etc.). The transcriptional response controlling fatty acid
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metabolism has been characterized and is outlined in Supple-
mentary Figure 1A. For many genes related to this process,
heterodimers of Oaf1p and Pip2p bind to upstream oleate
response elements (OREs) and activate transcription in the
presence of oleate (Gurvitz and Rottensteiner, 2006). The
specificity of the response is controlled at two levels: Oaf1p is
activated directly by oleate (Phelps et al, 2006), and the
expression of PIP2 is activated by Oaf1p/Pip2p heterodimers, as
it has an upstream ORE. A third transcriptional activator, Adr1p,
which is also involved in regulating genes involved in the
metabolism of other carbon sources (Schuller, 2003; Tachibana
et al, 2005), directly activates PIP2 (Rottensteiner et al, 2003b)
and some other ORE-containing targets involved in fatty acid
metabolism (feedforward regulation). Adr1p is necessary for
full ORE-mediated activation and may also be necessary for
derepression of these genes in the absence of glucose (Schuller,
2003; Young et al, 2003; Rottensteiner et al, 2003b). The extent
of the influence of these factors on the transcriptome, and how
the response is propagated to coordinate other cellular
processes have not been systematically explored.

Among the numerous coordinated cellular processes are
two different stress responses (Koerkamp et al, 2002; Smith
et al, 2002). One of these is an acute and immediate activation
of an oxidative stress response, which is proposed to involve
Yap1p and to be a response to fatty acid-induced uncoupling of
the respiratory chain (Koerkamp et al, 2002). The other is a
downregulation of general stress response genes, which
appears to be related to metabolic reprograming in response
to the environmental change and mediated, in part, by the exit
of Msn2p and Msn4p from the nucleus (Koerkamp et al, 2002).

Here, complementary high-throughput experimental techni-
ques and various data integration strategies, including a novel
network topology-based clustering method, were used to
characterize a dynamic transcriptional regulatory network
controlling fatty acid metabolism. Genome-wide condition-
specific chromatin localization data were generated and used
to construct physical interaction networks in the presence and
absence of oleate. For each network, targets were clustered based
on their network topology and the control of each cluster was
inferred from statistical analysis of its size, and expression and
functional properties of its members. This approach, combined
with targeted experimental validation of the network, demon-
strates that in this context, Oaf3p (heretofore uncharacterized)
acts as a negative transcriptional regulator implicated in multiple
cellular responses, and reveals a dynamic multi-input network
structure in which Oaf1p acts as both a negative regulator of the
general stress response and a positive regulator of the fatty acid
metabolism response. The behavior of Oaf1p in this network
suggests a mechanism by which the same regulator can control
and synchronize related biological processes through involve-
ment in different multi-input network motifs.

Results

Dynamic network increases in size and
connectivity in response to fatty acids

We characterized a dynamic regulatory network involving
four fatty acid-responsive transcriptional regulators and their
primary targets to gain insight into the effects of their

combinatorial control. The network was seeded with Oaf1p,
Pip2p and Adr1p, the three activators known to conditionally
cooperate to activate expression of genes involved in fatty acid
metabolism (Schuller, 2003), as well as Ykr064p, which is
renamed Oaf3p and which has been implicated as a transcription
factor (MacPherson et al, 2006; Titz et al, 2006), but has not been
characterized (see below). Oaf3p was included because pre-
liminary data suggested that it plays a role in regulating fatty acid-
responsive genes: OAF3 was first identified as one of 224 genes
that displayed expression profiles similar to genes implicated
previously in fatty acid metabolism or peroxisome biogenesis
(Smith et al, 2002) (see also Supplementary Figure 1B), and it is a
predicted Zn(2)-Cys(6) transcriptional regulator (MacPherson
et al, 2006; Titz et al, 2006). Oaf3p is also localized to the nucleus
(Huh et al, 2003), and a BLAST search of the yeast proteome
revealed that Oaf3p is most similar to Pip2p and Oaf1p, with
P-values of 3.6�10�7 and 5.1�10�7, respectively (using WU-
BLAST 2.0 with default parameters; released May 10, 2005; Gish,
W (1996–2004) http://blast.wustl.edu) (Altschul et al, 1990).

The targets of Oaf1p, Pip2p, Oaf3p and Adr1p were
determined after growth in the presence of 0.1% glucose and
5 h after a switch to medium containing the fatty acid oleate as
the sole carbon source. The 5 h time point was chosen to
maximize the detection of targets of each factor based on the
average expression profile of peroxisome-related genes during
oleate induction (Smith et al, 2002). At 5 h, upregulation of
these genes is robust, but not yet maximal, suggesting that
oleate-induced transcriptional regulation is active and not
declining. The targets of each factor were identified by
genome-wide chromatin localization analysis of myc-tagged
versions of each factor (Ren et al, 2000). Each strain was
analyzed by chromatin immunoprecipitation (ChIP) followed
by two-color DNA microarray analysis comparing DNA in the
ChIP fraction to that in a whole-cell extract (WCE) on yeast
intergenic microarrays (see Materials and methods). Data for
three biological replicates of each experiment were merged and
normalized and differential enrichment ratios were calculated.
Next, VERA and SAM analysis tools were used to identify
intergenic regions significantly enriched in the IP fractions
(Ideker et al, 2000, 2001). This was carried out by using an
estimated error model to improve the accuracy of the
differential enrichment ratio and to assign a l value represent-
ing the likelihood of differential enrichment for each intergenic
region. For each experiment, a l value threshold was chosen to
yield an estimated false discovery rate (FDR) of 0.001 (see
Materials and methods). For each condition, intergenic regions
enriched in the ChIP fraction that were above the threshold were
selected as targets for each factor (Supplementary Table 1).

Physical interaction networks representing chromatin loca-
lization data for all four factors were generated for each growth
condition using Cytoscape software (Shannon et al, 2003).
Networks of factor binding on oleate and low glucose are
shown in Figure 1 (left panels). Each network consists of the
four regulators (labeled nodes) connected by directed edges to
the intergenic regions to which they bind (unlabeled nodes).
After exposure to oleate, the number of targets in the network
increased from 221 to 571. Specifically, the number of targets
for Oaf1p, Pip2p, Adr1p and Oaf3p increased from 128, 52, 53
and 26 to 394, 212, 137 and 261, respectively. There was
also an increase in network connectivity, as reflected by the
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43-fold increase in connectivity score (targets with multiple
edges/total number of targets) (Figure 1). These data suggest
the existence of oleate-specific functions for the four factors
involving multi-input motifs.

Analysis of overrepresented multi-input motifs
suggests multiple condition-specific
combinatorial control mechanisms

The large-scale ChIP networks were analyzed for multi-input
motifs appearing to represent functionally relevant trends as
described below. For each condition-specific network, targets
were grouped into clusters based on their network topology
(Figure 1). For each cluster, the significance of the cluster size was
determined by calculating the probability of having the observed
size or greater (using the cumulative distribution function (CDF)

with error correction) with the null hypothesis that each binding
event of the four factors is independent (see Materials and
methods). The results are displayed in Figure 1 (right panels)
where network topology clusters are listed along the x-axis and
significance of overrepresentation for each is represented by a bar.

For the glucose-specific network, only three topology
clusters had significance scores greater than 2 (CDF P-values
o0.01) (colored clusters) and only one (AO; bound by Adr1p
and Oaf1p) had a score greater than 25 (P-value o1�10�25),
reflecting very high confidence in cooperation of Adr1p and
Oaf1p in the glucose network. In the oleate network, seven
clusters had significance scores greater than 2 and three (AOY,
OPY and AOPY; bound by combinations of Adr1p (A), Oaf1p
(O), Pip2p (P) and Oaf3p (Y)) had scores greater than 25,
suggesting more cooperation among the factors in the
presence of oleate than in glucose. The conditional over-
representation of these network motifs suggests oleate-specific
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Figure 1 Identification of overrepresented multiple input network motifs in the presence of low glucose (A) and 5 h after a switch to oleate (B). Left panels are
condition-specific physical interaction networks between regulators (labeled nodes) and the intergenic regions with which they interact (unlabeled nodes) identified by
large-scale genome localization analysis. Protein–DNA interactions (FDR of 0.001) for the four transcriptional regulators are shown as directed edges. Intergenic regions
with same network topology (i.e. targeted by the same group of factors) are clustered and the number of targets per cluster is given beside each cluster. The network
expands and there is more combinatorial control in the presence of oleate. Right panels are bar graphs showing the significance of overrepresentation for each cluster.
On each graph, each cluster is labeled with up to four letters, representing the regulators targeting the cluster under that condition (A, Adr1p; O, Oaf1p; P, Pip2p; Y,
Oaf3p). Overrepresented clusters have bars, the height of which reflects the significance of enrichment of that cluster in the network; note that as the P-values have been
converted to significance scores (�log10(P-value)), one unit on the scale corresponds to a 10-fold difference in P-value. In all panels, significantly overrepresented
topology clusters are colored in shades of red. Clusters with P-values of less than 1� 10�25, 1� 10�5 and 1� 10�2 (significance scores greater than 25, 5 and 2) are
colored dark red, red and pink, respectively.
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regulation by at least three different multi-input motif
instances (represented by AOY, OPY and AOPY clusters) with
potentially different regulatory mechanisms and outputs.

The topology clusters were also analyzed using an FDR of 0.01
for the large-scale ChIP data. This analysis yielded similar results,
but increased the significance scores for highly connected, high-
scoring network clusters (AOY, AOPYand OPY), in part, because
lowering the stringency reduces false negatives in the network.
False negatives have the effect of reducing the population of
highly connected clusters and erroneously increasing the
occupancy of various less-connected clusters. However, the lower
stringency networks are larger (801 and 570 targets for oleate and
glucose networks, respectively) and presumably contain an
increased number of false positives. Therefore, to maximize the
accuracy of the networks and to increase statistical power of
subsequent analyses, ‘combined threshold’ networks were
generated, for which membership in the network was determined
using the high stringency threshold (FDR B0.001) and topology
of the network was determined using the FDR threshold ofB0.01.
Intergenic regions and their topologies for these networks are
listed in Supplementary Table 1. These networks were used for all
subsequent analyses.

Network structure is an indicator of gene function
and condition-specific expression

To facilitate the integration of gene expression data with the
network, each intergenic region was translated into target genes
with adjacent start sites using the genome annotations generated
by MacIsaac et al (2006). Because of errors introduced by this
conversion and technical limitations inherent to the genome-wide
ChIP analysis (Lee et al, 2002; Hwang et al, 2005), rather than
focusing on the characterization of individual targets in network
clusters, we identified significantly overrepresented gene proper-
ties in each network topology cluster. This was performed using
the CDF with error correction (see Materials and methods) to
determine the probability of finding the observed (or greater)
overlap between genes with a given property and genes in a
topology cluster. The null hypothesis was that the given property
is independent of membership in a topology cluster. This method
of analysis not only provides a measure of confidence in the
results, but also broadens the analysis to global trends and
therefore is likely to reveal an insight into system level network
regulatory function.

The first gene properties measured were the results of a
time-course transcriptome profiling study (Koerkamp et al,
2002), which was conducted under conditions similar to those
of the ChIP experiments performed here (i.e. carbon source
was switched from low glucose to oleate). For this analysis,
several measurements were obtained within minutes after the
switch to oleate, a time when transcription appears to be
changing most rapidly; thus they classified responses that
might otherwise be indistinguishable. This study identified
five distinct expression profile clusters of oleate-responsive
genes, and integration of gene ontology (GO) and DNA motif
data revealed that the expression clusters represented different
biological processes including oxidative stress response,
general stress response and peroxisome biology (Figure 2A).

To analyze the relationship between network structure and
oleate-specific expression, we searched for significant over-

representation of genes of each expression cluster in each
network topology cluster. The analysis revealed significant
enrichment of two of the five expression profile clusters in the
networks (P-value o0.01 for at least one topology cluster).
Each of these clusters (peroxisome-related genes and general
stress response genes) appears to be regulated by multiple
factors in an oleate-specific manner. In the presence of low
glucose, genes of the peroxisome-related expression cluster
were overrepresented in the cluster targeted by Pip2p with low
confidence, but were significantly enriched in the cluster
targeted by Oaf1p, Pip2p and Oaf3p (OPY) or all four factors
(AOPY) in the presence of oleate with higher confidence
(Figure 2B). In contrast, the general stress response expression
cluster was most significantly enriched in topology clusters
targeted by Oaf1p (and/or Adr1p) (O/AO) in the presence of
glucose, but by Adr1p, Oaf1p and Oaf3p in the presence of
oleate (AOY) (Figure 2C).

As mentioned above, the expression profile clusters were
named based on correlations found between expression profiles
and either GO annotations or the presence of transcription factor
binding motifs. Therefore, network enrichments of relevant DNA
binding motifs and GO Slim terms, which are a high-level view of
GO terms (Hong et al, 2006), were also analyzed (see Materials
and methods). OREs (Figure 2B) and Msn2p/Msn4p targets
(Figure 2C) had similar profiles to the corresponding expression
clusters, peroxisome-related and general stress response, respec-
tively. In addition, the distribution of OREs in the glucose network
further suggests that some of these elements can be bound by a
combination of Adr1p, Oaf1p and Pip2p in the absence of oleate.
The GO Slim terms analyzed also had similar network distribu-
tions to the corresponding gene expression clusters (data not
shown). For this analysis, genes annotated with ‘peroxisome’
(component slim term) and ‘response to stress’ (process slim
term) were significantly enriched in oleate network clusters OPY
(P-value of 1.9�10�7) and AOY (P-value of 8.8�10�3),
respectively. Together these data suggest the dynamic regulation
of two biological functions in the network, the oleate-induced
upregulation of peroxisomes and downregulation of general stress
response, which appears to involve oleate-specific targeting of the
OPYand AOY topology clusters, respectively.

Influence of network transcription factors
on gene expression is context specific

To determine the transcriptional response of each topology
cluster, the transcriptional activity of the oleate network was
measured. First, microarray analysis was used to compare poly
Aþ RNA isolated from yeast grown in the presence of 0.1%
glucose to that of yeast grown for an additional 5 h in the
presence of oleate (see Materials and methods). Replicate
experiments were merged and processed as described pre-
viously (Smith et al, 2002), and VERA and SAM analysis tools
(Ideker et al, 2000) were used to generate an error model that
was used to generate a l value reflecting the likelihood of
differential expression for each gene. Log10 expression ratios
and l values for each experiment are provided in Supplemen-
tary Table 2. Next, genes with significant differential expres-
sion in response to oleate were identified (see Materials and
methods). A total of 79 and 137 genes significantly increased
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and decreased in expression in response to oleate, respectively.
The abundance of each class of genes in each topology cluster
in the oleate network was statistically analyzed. This was
performed using CDF with error correction as described above
except that the null hypothesis was that the environmental
change has no effect on genes in the topology cluster (i.e. the
frequency of genes up- and downregulated by oleate in the

cluster is equal to the estimated FDR in the expression data)
(see Materials and methods). The results are shown in
Figure 3A. The significance of enrichment of genes up- and
downregulated after a 5-h oleate induction is represented by
red (above the x-axis) and green bars (below the x-axis),
respectively. The OPY (and OP, AOPYand O) topology clusters
were enriched for genes that increased in expression in
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These data are similar to those of the peroxisome-related and general stress response genes, respectively.
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response to oleate, whereas the AOY (and OY) clusters were
enriched for those that decreased in response to oleate. These
data are consistent with the previous analysis (Figure 2) and a
similar network topology analysis of different microarray
expression data (Smith et al, 2002) comparing glycerol-grown
cells to those grown in oleate for 6 h (data not shown).

To study the influence of each factor on the network,
microarray analysis was used to determine the transcriptome
profiles of each deletion strain (DOAF1, DPIP2, DADR1 and
DOAF3) compared to that of wild type after a 5-h induction
in oleate. The deletion experiments identified 194, 104, 175
and 76 genes with significant differential expression, respec-
tively. Genes significantly up- and downregulated were
identified and data were overlaid onto the oleate network
and statistically analyzed as described above. The topology
clusters with the highest significance scores (Figure 3B–D)
were the same as those identified in the analysis of over-
represented clusters with data from oleate-induced wild-type
cells (Figures 2 and 3A).

Clusters OPY (and AOPY and OP) were enriched for genes
whose expression was reduced by deletion of OAF1, PIP2 or
ADR1. These data reflect the role of these three factors in the
upregulation of peroxisome-related genes in the presence of
fatty acids (Gurvitz and Rottensteiner, 2006), and the role of
Adr1p in directly upregulating PIP2 (Rottensteiner et al,
2003b), which is also supported by the Adr1p–PIP2 interaction
identified here (Supplementary Table 2). There is also
evidence of regulation of the AOY (and OY) clusters by Oaf1p
and Adr1p. Adr1p appears to have a positive influence on
genes of the AOY cluster, whereas Oaf1p appears to negatively
regulate genes in this cluster (and in the OY cluster). This role
in negative regulation appears to be independent of Pip2p
because deletion of PIP2 had no significant influence on the
expression of these clusters. The negative regulatory activity of
Oaf1p is not likely controlled by absence of dimerization with
Pip2p as it has previously been shown that overexpression of
OAF1 can activate transcription from an ORE-containing
promoter in a PIP2 deletion strain (Baumgartner et al, 1999).
Instead, regulation of this activity appears to involve a DNA-
binding context because unlike clusters positively regulated by
Oaf1p, those under negative regulation (AOY and OY in
Figure 3B) are not significantly enriched for OREs (Figure 2B).

Interestingly, these data suggest that a third cluster, genes
targeted by only Oaf1p in the oleate network, might have
biological significance. This cluster is enriched for genes that
increase in expression in response to oleate (panel A) and
those that are positively regulated by Adr1p (panel D). We do
not know the biological function of this enrichment, but it may
be due in part to the presence of genes in the O cluster that bind
both Oaf1p and Pip2p that are false negatives for Pip2p
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Figure 3 Statistical analysis of the influence of network regulators on topology
clusters in the oleate network. Discrete microarray expression data were overlaid
onto the network, and topology clusters significantly enriched for up- or
downregulated genes were identified. Results are displayed as in Figure 2 except
that up- and downregulated gene enrichments are shown as red bars above the
x-axis and green bars below the x-axis, respectively. Also, for significantly
enriched clusters, the number of up- or downregulated genes is given. For the
overlay of oleate induction expression data (5 h oleate induction versus low
glucose (A)), genes upregulated by oleate are most significantly enriched in
three topology clusters binding Oaf1p and Pip2p, whereas downregulated genes
are enriched in two clusters binding Oaf1p and not Pip2p, most prominently the
AOY cluster. The integration of transcription factor deletion array data (deletion
strain induced for 5 h versus wild-type strain induced for 5 h; B–E) with the
network suggests that Oaf1p contributes to both of these effects, whereas Pip2p
and Adr1p contribute only to the gene activation observed in the presence of
oleate. In addition, genes targeted by only Oaf1p are enriched for genes
upregulated by oleate and genes upregulated by Adr1p. No significant effect of
deleting OAF3 was observed (E).
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binding. This is consistent with the weak enrichment of OREs
in this cluster (Figure 2B).

To determine if the influences of the regulators detected here
contribute to the oleate-specific expression patterns that are
enriched in the network (Figure 2), overlap between the three
data sets (oleate topology clusters, expression profile clusters
and discrete transcription factor deletion data) was analyzed.
Topology clusters AOYand AOPY/OPY were reduced to include
only the relevant expression cluster genes (14 general stress
cluster genes and 10 peroxisome cluster genes, respectively)
and then reanalyzed for significant enrichment of genes
affected by transcription factor deletions. The intersection of
the AOY cluster and the general stress response expression
cluster was enriched for genes that are negatively influenced
by Oaf1p, whereas the intersection of the OPY cluster and the
peroxisome-related expression cluster was enriched for genes
that are positively influenced by Oaf1p, Pip2p and Adr1p
(all P-values p1�10�11), suggesting that the factors indeed
contribute to oleate-specific expression patterns associated
with these clusters.

Negative regulatory activity of Oaf1p
is independent of Pip2p

The data suggest that the negative regulatory activity of Oaf1p
is independent of Pip2p. While the Pip2p-dependant role of
Oaf1p is well characterized, the Pip2-independent role is not.
Therefore, we measured the effects of transcription factor
deletions on representatives of the AOY cluster in the oleate
network. DIP5 and ATO3, which are both negatively regulated
by Oaf1p and not regulated by Pip2p (Supplementary Table 2),
were used as reporters. The levels of Dip5p and Ato3p GFP
chimeras were determined after exposure of wild-type and
isogenic mutant strains (DOAF1, DPIP2, DADR1 or DOAF3) to
oleate (Figure 4). Deletion of OAF1 resulted in increased levels
of both chimeras, supporting the conclusion that Oaf1p
negatively influences the expression of these genes. In
contrast, deletion of PIP2 had no detectable effect on either
protein, supporting the conclusion that Oaf1p does not
cooperate with Pip2p in this context. Interestingly, deletion
of OAF3 resulted in increased levels of Dip5p-GFP (1.4-fold),
suggesting that it is a negative regulator of DIP5. Consistent
with this, the deletion of OAF3 resulted in 1.5-fold increased
expression of DIP5 by microarray analysis (Supplementary
Table 2), but the l value reflecting the likelihood of differential
expression was 29, which fell below our threshold of 36.23.
These data suggest that the influence of OAF3 deletion on
network gene expression, as detected by microarrays, is
modest (see also Figure 3E).

Oaf3p functions as a weak negative regulator

To investigate further the role of Oaf3p, we analyzed the OAF3
deletion array data by combining wild-type time-course
expression, deletion strain expression and large-scale ChIP
data sets. We first identified a set of 65 genes that were
differentially expressed in the oleate time-course expression
study (Smith et al, 2002), and significantly upregulated at 5 h
on oleate in the OAF3 deletion strain as compared to wild type.

Next, we determined the frequency of Oaf3p binding (on
oleate) to the 53 of these genes that were represented on the
intergenic microarray, and compared this frequency to the
average frequency of Oaf3p binding among all oleate-
responsive genes (see Materials and methods). Using this
approach, we determined that Oaf3p binding is enriched
among genes transcriptionally responsive to oleate and
negatively regulated by OAF3 on oleate (P-value¼0.0023).
These data support a role for Oaf3p as a negative regulator of
expression of its target genes in response to oleate.

We therefore looked for further validation of Oaf3p
influence on network targets by looking at the protein levels
of its targets under various conditions. The effect of deleting
OAF3 on the levels of Cta1p (encoded by an AOPY group gene)
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Figure 4 Protein levels reflect the Pip2p-independent role of Oaf1p as a
negative regulator. Wild-type and deletion strains each with a GFP-tagged
version of an AOY cluster gene (DIP5 or ATO3) were analyzed by FACS in the
presence of glycerol and 20 h (Dip5-GFP strains) or 5 h (Ato3-GFP strains) after
the addition of oleate to the medium. Deletions of OAF1 but not PIP2 resulted
in lower levels of fluorescence relative to wild-type levels. Deletion of ADR1 or
OAF3 resulted in decreased or increased Dip5-GFP levels, respectively.
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was analyzed by immunoblotting (Figure 5A). A wild-type
strain with a TAP-tagged version of Cta1p was compared to
isogenic strains deleted for either OAF1 or OAF3. In the wild-
type strain, levels of Cta1-TAP were not detected in cells grown
in raffinose-containing media (non-inducing condition), but
levels increased after growth in the presence of oleate or
antimycin, a second peroxisome-inducing condition (Epstein
et al, 2001). Deletion of OAF1 resulted in little or no induction
as expected from the previously published data (Gurvitz et al,
2001), but deletion of OAF3 resulted in oleate expression levels
that were higher than those in the wild-type strain.

The protein levels of other Oaf3p targets were also analyzed
in an OAF3 overexpression strain. Various GFP-tagged strains
were transformed with pYEX-OAF3 (a plasmid with OAF3
under the control of the copper-inducible promoter of CUP1),
induced for 20 h in medium containing copper and oleate, and
analyzed by fluorescence-activated cell sorting (FACS). The
results are shown in Figure 5B. In most cases tested,
overexpression of OAF3 (red lines) resulted in decreased
protein levels of the corresponding target gene (panels 1–4;
1.5- to 2.4-fold decrease), but in some cases, no detectable
effect on protein levels was evident (e.g. Faa1-GFP). This is not
unexpected, as not all members of the topology groups
responded identically to other perturbations.

As overexpression of OAF3 had a negative effect on the
transcription of POT1, a gene involved in fatty acid metabo-
lism, an overexpression strain was also analyzed for its ability
to metabolize the fatty acid myristic acid (Figure 5C). An equal
number of cells of a wild-type strain transformed with either
the empty plasmid or the overexpression plasmid was induced
with copper and then grown on turbid fatty acid medium.
Overexpression of OAF3 resulted in a reduction in the size of
the halo around the cell patches, indicating a reduced ability to
metabolize fatty acids (Smith et al, 2006). Taken together,
these data suggest a role for Oaf3p as a negative regulator of
transcription in the presence of oleate.

Analysis of dynamic network activities reflects
temporal coordination of responses

To explore the potential for temporal coordination of the
network, representative GFP-tagged strains were analyzed by

FACS after growth in the absence of oleate (YPBG) and after 5
and 20 h inductions in the presence of oleate (YPBO)
(Figure 6). Consistent with the gene expression data
(Figure 3A), levels of proteins corresponding to the AOY
cluster decreased in the presence of oleate, whereas those
corresponding to the OPY and AOPY clusters increased in
response to oleate. Interestingly, although the decreases in
expression were clear after a 5-h induction, increases in
expression were prominent after 20 h in oleate. These data
appear to reflect the fact that the transcriptional response of
general stress response genes precedes that of the peroxisome-
related genes as identified previously by microarray analysis
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Figure 5 Oaf3p is a weak negative regulator. (A) Immunoblot analysis of Cta1-
TAP in wild-type cells and in OAF1 or OAF3 deletion strains. Cta1-TAP levels
increase under conditions of peroxisome induction (in the presence of oleate or
antimycin). This induction is not detectable in the absence of OAF1, but is more
robust in the absence of OAF3, suggesting that expression of CTA1 (gene with
AOPY oleate network topology) is activated by OAF1 but repressed by OAF3
in the presence of oleate. Equal protein was loaded in each lane as indicated by
the levels of Gsp1p (a protein whose corresponding gene is not in the network).
(B) FACS analysis of various Oaf3p targets in GFP-tagged strains over-
expressing OAF3 (from copper-inducible promoter in plasmid pYEX-OAF3; red
curve) and in wild-type strain (transformed with empty plasmid, pYEX-BX; blue
curve) after 20 h induction in the presence of oleate and copper. In many cases,
OAF3 overexpression resulted in reduced protein levels of its target genes
(oleate network topologies shown in brackets). (C) Clear zone assays measuring
efficiency of fatty acid metabolism in wild-type and OAF3 overexpression
strains. An equal number of cells of each strain were spotted onto turbid fatty acid
plates and grown for 3 days. Spots of wild-type cells have larger clear zones than
spots of the overexpression strain, suggesting that overexpression of OAF3
inhibits fatty acid metabolism.
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(Koerkamp et al, 2002) (Figure 2A). This suggests temporal
coordination of the two biological processes and provides
insight into the function of the network as described in
Discussion.

Discussion

A dynamic transcriptional regulatory network generated from
genome localization and transcriptome profiling data
was characterized using a novel topology-based clustering
approach. The analysis used simple, widely available tools
that can be applied to the characterization of other regulatory
networks. Results from this analysis were integrated with
literature data to infer a dynamic model of network function
(Figure 7). This was carried out by first generating a model for

the 5 h time point. For this condition, oleate-specific interac-
tions (edges) between regulators and targets were inferred
from ChIP data (Figure 1; Supplementary Tables 1 and 2),
negative (red) and positive (green) influences were inferred
from these data along with expression and protein abundance
data of wild-type, deletion and overexpression strains
(Figures 3–5 and Supplementary Table 2). The states of
these network connections at other time points (before and
after 5 h) are predictions made from these data along
with time-course microarray data of the factors (Supple-
mentary Figure 1B; Smith et al, 2002) and network targets
(Figure 2A; Koerkamp et al, 2002; Smith et al, 2002) and from
protein levels of the target genes at different time points
(Figure 6). Other interactions were added from data in
the literature as indicated. The network is described in detail
below.

Eno1-GFP

Pot1-GFP

Yhr087-GFP

Hsp26-GFP

Yor084-GFP

100 101 102 103 104
0

82

100 101 102 103 104
0

86

100 101 102 103 1040

84

100 101 102 103 104
0

83

100 101 102 103 104
0

80

Oleate
Glycerol

Fluorescence intensityFluorescence intensity

Fluorescence intensity

Fluorescence intensity Fluorescence intensity

Fluorescence intensity

A
O

Y
 to

po
lo

gy
O

P
Y

 to
po

lo
gy

A
O

P
Y

 to
po

lo
gy

100 101 102 103 104
0

82

100 101 102 103 104
0

83

E
ve

nt
s

E
ve

nt
s

E
ve

nt
s

E
ve

nt
s

E
ve

nt
s

E
ve

nt
s

100 101 102 103 104
0

81

100 101 102 103 104
0

76

100 101 102 103 104
0

84

5 h oleate versus glycerol 20 h oleate versus glycerol

Eno1-GFP

Pot1-GFP

Yhr087-GFP

Hsp26-GFP

Yor084-GFP

Figure 6 Sequential changes in protein levels reflect coordination of responses by the network. FACS analysis of various GFP-tagged strains corresponding to genes
under combinatorial control in the oleate network (topologies listed on the left). For each strain, fluorescence intensities of cells grown in glycerol (blue curves) were
compared to those induced in oleate for 5 or 20 h (red curves). Protein levels corresponding to genes of the AOY topology are reduced in the presence of oleate, whereas
those corresponding to genes with AOPY and OPY topologies increase after oleate induction. The negative effect of oleate on AOY gene expression is apparent after
short and long induction periods, whereas the upregulation of gene targeted by Oaf1p and Pip2p is observed only after long induction periods.
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Immediately after the carbon source switch (immediate
response; top panel), the presence of oleate is recognized
directly by constitutively present Oaf1p (Phelps et al, 2006),
which binds upstream of genes of the AOY, general stress
response cluster. Genes of this cluster are known to be acutely
and transiently activated when respiration is turned off
(Lai et al, 2005), and may be involved in reprogramming
cellular metabolism in response to changes in respiratory state
(Lai et al, 2005). Here, these genes are transiently repressed by
Oaf1p (and likely other factors). This Oaf1p-mediated repres-
sion appears to coincide with an efflux of Msn2p and Msn4p
from the nucleus, which also contributes to maintaining these
genes in an off state before subsequent metabolic reprogram-
ming (see below) (Koerkamp et al, 2002).

The carbon source switch signals the rapid and transient
increase in expression levels of ADR1 (immediate response;
top panel; Supplementary Figure 1B). As ADR1 transcripts
accumulate and are translated, Adr1p levels begin to rise,
which positively and directly influences the expression of PIP2
(Supplementary Table 2), genes in the AOY, and AOPY clusters
and likely other pathways controlling utilization of other
carbon sources (Schuller, 2003; Gurvitz and Rottensteiner,
2006) (early response; second panel).

The third panel shows the response approximately 5 h after
the carbon source switch. Here, the activation of PIP2 by Adr1p
leads to accumulation of Pip2p, which (as a heterodimer with
Oaf1p) transmits the oleate signal to genes directly involved in
fatty acid metabolism and positively influences genes of the
OPY and AOPY clusters. As the levels of ADR1 mRNA are
declining at this time (Supplementary Figure 1B), the direct
influence of Adr1p on its targets is shown as a dashed line
representing weak influence in this panel. At this time, Oaf1p/
Pip2p dimers also feedback positively on the expression of
PIP2. This self-regulation, in combination with the Adr1p-
mediated activation of PIP2 and peroxisome-related genes of
the AOPY cluster, constitutes coupled feedback and feedfor-
ward circuitry to activate peroxisome-related genes.

The dual influence of Oaf1p on OPY and AOY clusters
appears to mediate temporally synchronized regulation: the
negative influence of Oaf1p on general stress response genes
immediately follows the carbon source switch because levels
of Pip2p (and thus Oaf1p/Pip2p heterodimers) in the initial
condition are low. Time-delayed accumulation of Pip2p
resulting from feedforward and feedback regulation (Mangan
and Alon, 2003; Maeda and Sano, 2006) subsequently leads to
dramatic upregulation of peroxisome-related genes by Oaf1p/
Pip2p heterodimers. The late response (lower panel) shows
that the influence on the peroxisome-related cluster remains
strong as the negative influence on the general stress response
subsides. This difference in duration reflects steady-state gene
expression data (Koerkamp et al, 2002) (Figure 2A), and is
likely caused by the rising Pip2p level, which increasingly
draws more Oaf1p molecules from AOY to OPY and AOPY
targets through heterodimerization.

As discussed earlier, Oaf3p appears to be a weak negative
regulator in the network (Figure 5). Its influences in the 5 h and
late response panels reflect OAF3 expression levels, which are
reduced immediately after a shift to oleate and gradually
increase over time (Supplementary Figure 1B). The specific
function of Oaf3p in the network is not yet known. We and

Figure 7 Inferred dynamic model of transcriptional regulatory network. The
model, based on data presented here and data from the literature, shows active
paths after the switch from low glucose to oleate at four time points (immediate,
early, 5 h and late). Information flow (directed edges) is shown between stimuli
(diamond nodes), genes (linear nodes with arrows), proteins (circular nodes) and
network topology clusters (box nodes). Activities of nodes and influences of
edges are colored red or green to represent down- or upregulation, respectively.
Regions of the network are highlighted in color and labeled (inverted text with
black background) according to the biological response they represent. It should
be noted that recent data suggest that YDR215C, the ORF immediately
upstream of ADR1, is unlikely to encode a protein (Fisk et al, 2006).
Accordingly, intergenic region iYDR214W is annotated as a regulator of ADR1
(Macisaac et al, 2006) and ADR1 is in the AOY topology cluster in the oleate
network (Supplementary Table 2). However, owing to the preliminary nature of
the evidence, these interactions do not appear in the model.
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others have shown that transcriptional repression can ensure a
more homogeneous expression level of a target gene across a
cell population, in the context of network structure such as
negative feedback regulation (Becskei and Serrano, 2000;
Orrell and Bolouri, 2004; Ghosh et al, 2005; Ramsey et al,
2006). Kinetic modeling of the response, as performed to
understand negative regulation in the galactose utilization
pathway (Ramsey et al, 2006), will help to elucidate its role.
Modeling can be facilitated by refining the qualitative network
model by investigating other potential influences such as other
transcriptional regulators not yet considered, as well as mRNA
and protein degradation, which have been implicated pre-
viously in regulating carbon source utilization (Carlson,
1999).

The topology-based clustering and analysis methods out-
lined here identified a transcriptional regulatory network
involving the participation of a bi-functional regulator in
multiple multi-input network motifs to control and synchro-
nize related biological processes. The data suggest that,
beyond providing specificity in promoter binding, heterodi-
merization of transcription factors can contribute temporal
control of tightly coordinated biological responses.

Materials and methods

Strains and growth conditions

Haploid deletion strains are isogenic to either BY4742 or BY4739, and
are from the commercially available deletion set (Invitrogen, Carlsbad,
CA). Haploid strains with myc-tagged genes were made by genomi-
cally tagging target genes with the sequence encoding 13 copies of the
c-myc epitope from pFA6-13MYC (Longtine et al, 1998) by homo-
logous recombination into BY4742 using a previously described PCR-
based procedure (Aitchison et al, 1995). Strains with no apparent
growth defects and appropriately sized fusion proteins were used.
Haploid strains tagged with Aequorea victoria (S65T) GFP or TAP tag
are isogenic to BY4741 and are from the commercially available GFP-
clone collection (Invitrogen, Carlsbad, CA) or TAP fusion collection
(Open Biosystems, Hunstville, AL), respectively. Strains containing
both gene deletions and gene tags were made by mating, sporulation
and tetrad dissection. For all experiments, control strains were isogenic
to test strains. Unless otherwise stated, strains were grown in YPD (1%
yeast extract, 2% peptone, 2% glucose); SCIM (1.7 g yeast nitrogen
base without amino acids and ammonium sulfate (YNB�aa�as)/l,
0.5% yeast extract, 0.5% peptone, 0.79 g complete supplement
mixture/l, 5 g ammonium sulfate/l) containing either 0.1% glucose
or 0.5% Tween 40 (w/v) and 0.15% (w/v) oleate, or both; or YPB
(0.3% yeast extract, 0.5% potassium phosphate (pH 6.0), 0.5%
peptone) with either 3% glycerol (YPBG) or 0.5% Tween 40 (w/v) and
0.15% (w/v) oleate (YPBO).

Large-scale ChIP analysis

For each transcriptional regulator, genome-wide chromatin localiza-
tion experiments were performed to comprehensively identify DNA-
binding locations by ChIP followed by microarray analysis as
developed previously (Ren et al, 2000; Lee et al, 2002). YPD-grown
cultures of strains containing myc-tagged regulators were grown in
SCIM medium containing 0.1% glucose for 16 h to a density of
B8�106 cells/ml, and then transferred to SCIM containing 0.1%
glucose or 0.15% oleate and 0.5% Tween 40, and grown for an
additional 1.75 or 5 h, respectively. Proteins were crosslinked to their
cognate DNA binding sites (and each other) with formaldehyde. Cells
were disrupted and chromatin sheared into fragments by glass bead
lysis followed by sonication. myc-tagged factors were collected by
ChIP with magnetic beads. Crosslinking was reversed in fractions of
the ChIP and WCE, linkers were annealed to the DNA ends and DNA

was amplified and labeled by PCR in the presence of Cy5-dUTP and
Cy3-dUTP, respectively. DNA in ChIPand WCE samples was compared
by hybridizing both samples together to yeast intergenic DNA
microarrays.

For each experiment (i.e. ChIP of one factor under one growth
condition), there were three biological replicates, each hybridized to
different microarrays. As each array contains four replicates of each
intergenic region, the total number of replicates for each condition is
12. Data were processed by a previously published method (Ideker
et al, 2001) using the SBEAMS microarray database software (Marzolf
et al, 2006). Processing included normalizing scan intensities,
subtracting background, merging data from replicate spots and
generating an error model. A likelihood statistic, l, was computed
for each intergenic region to determine whether its abundance was
significantly enriched in either the ChIP fraction or the WCE fraction.
Two threshold l values were chosen that yielded an approximate FDR
of 0.01 and 0.001, corresponding to 64 and 6 false positives per 6438
intergenic regions, respectively. This was determined by utilizing the
fact that differential enrichment for ChIP microarray data is one
directional (i.e. DNA targets tend to be enriched in the ChIP fraction
only) as opposed to expression array data, for which genes can go up or
down in expression. For each experiment, the l value was identified,
above which there were 64 or 6 targets enriched in the WCE fraction
instead of the ChIP fraction (false positives). Intergenic regions with
l values above this threshold (minus the known false positives
enriched in the WCE fraction) were chosen as target intergenic regions.
Genes with start sites adjacent to these target intergenic regions were
chosen as target genes.

The chromatin localization data have been submitted to Gene
Expression Omnibus database under accession number GSE5863.

Statistical analysis of overrepresented network
motifs

For each condition, physical interaction data for each of the four factors
were combined and graphically displayed using Cytoscape network
visualization software version 2.2 (Shannon et al, 2003). Targets were
grouped based on their network topology. For every topology cluster,
the CDF (equation (1)) was used to calculate a P-value equal to
P(XXx), the probability of the cluster size being equal to or greater
than the observed size by chance (using R 2.3.0), with the null
hypothesis that the four factors have independent sets of targets. x is
the observed cluster size, n is the number of trials (the number of
intergenic regions on the array in this case) and pcluster is the
probability that a given target intergenic region will have this
particular network topology assuming the null hypothesis. The
calculation of pcluster is shown in equation (2), in which n represents
an estimate of the population size and is the number of intergenics on
the array and z is the number of targets of a given transcription factor.
The F subscript denotes the subset of the four transcription factors
analyzed that target the cluster, whereas f represents those that do not.
An example calculation shows the probability of an intergenic region
being in cluster AO (i.e. targeted by Oaf1p and Adr1p but not by Pip2p
or Oaf3p) (equation (3)). To reduce error due to multiple statistical
comparisons of a single data set, the a-level was adjusted to 15
representing each of the clusters analyzed (Bonferroni correction). In
the graphs in Figure 1, bars reflecting statistical significance are shown
only if the cluster contained more than two members.
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Gene and intergenic region attributes

Time-course expression profiles and expression profile clusters for
genes in response to oleate exposure were obtained from previously
published microarray analyses (Koerkamp et al, 2002; Smith et al,
2002). GO Slim terms were downloaded from the Saccharomyces
Genome Database website (Hong et al, 2006). For binding motif
enrichment studies, Fuzznuc, the nucleic acid pattern search
algorithm component of EMBOSS software (Rice et al, 2000), was
used to identify intergenic regions containing one or more ORE(s)
conforming to the consensus CGGN3TN(A/G)N8�12CCG as defined
previously (Rottensteiner et al, 2003a). Msn2p/Msn4p targets were
defined as intergenic regions that interacted with one or both of the
factors in genome localization data (Harbison et al, 2004) as
determined by Macisaac et al (2006) (Po0.005 and conserved in
three species). The experimental conditions of this data set include
various stress-inducing environments.

Statistical analysis of enrichment of gene
attributes in network clusters

To facilitate the integration of gene attribute and gene expression data
with the network, each intergenic region in the combined threshold
networks (Supplementary Table 1) was translated into target genes
with adjacent start sites using the genome annotations generated by
MacIsaac et al (2006). Topologies of gene targets are given in
Supplementary Table 2. Genes assigned to more than one network
topology, due to the fact that multiple intergenics regions can be
assigned to one gene, have one entry with the multiple topologies
merged together.

For each test, the CDF formula and Microsoft Excel software were
used to calculate a P-value, equal to the probability that by chance, the
enrichment of the attribute in the topology cluster is greater than or
equal to that observed, with the null hypothesis that annotation with
the gene attribute and membership in the topology cluster are
independent. The equation used is similar to equation (1) except that
x is the observed number of genes with the attribute in the topology
cluster, n is the total number of genes in the topology cluster and pcluster

is replaced by p, the probability of a gene with the attribute being in the
cluster assuming the null hypothesis. To reduce error due to multiple
statistical comparisons of a single data set, the a-level was adjusted to
15 representing each of the clusters analyzed (Bonferroni correction).
In all graphs, bars reflecting statistical significance are shown only if
the cluster contained more than two members with the attribute. For
analysis of binding motifs, intergenic region networks were used
instead of gene networks.

Generation and analysis of expression
microarray data

For the comparison of mRNA levels in each of four deletion strains
(DOAF1, DPIP2, DADR1 or DOAF3) to those in wild-type cells and for
the wild-type versus wild-type control experiment, all strains were
grown in YPD overnight and then transferred to SCIM with 0.1%
glucose and without oleate and Tween 40, and grown for 16 h to
B8�106 cells/ml, oleate and Tween 40 were added to the medium and
cells were grown for an additional 5 h and then harvested. For the
comparison of glucose- to oleate-grown cells, the experiment was
carried out the same way except that the reference culture was
harvested before the 5-h oleate induction. For all experiments, poly
Aþ RNA was extracted and cDNA was synthesized with incorporated
Cy3 or Cy5 fluorescent dyes, and equimolar amounts of each label
were mixed and hybridized to yeast ORF oligonucleotide microarrays
as described previously (Smith et al, 2002). There were two biological
replicates for each experiment, and for each replicate both label
orientations were analyzed on arrays containing four replicate spots of
each gene, resulting in a total of 16 replicate spots per gene.
Spotfinding was performed using Analyzer DG software (Molecular-
ware, Irvine, CA) and data analysis was carried out as described
previously (Smith et al, 2002) except that the l likelihood value
threshold of 36.23 was chosen which resulted in an FDR of 0.01 as

determined from a wild type versus wild-type control experiment.
Genes having l values above the threshold were annotated as up- or
downregulated as a result of the deletion, and genes with l values
below the threshold were annotated as unchanged. The statistical
analysis of the representation of genes up- and downregulated in each
network topology cluster was performed as described above for other
gene attributes except the null hypothesis was that the environmental
change has no effect on genes in the topology cluster. For example, for
the analysis of upregulated genes, P-value (the probability of a gene
being upregulated and in the cluster assuming the null hypothesis) is
0.005, or half of the estimated FDR of differential expression. In cases
where the actual rate of upregulated genes was lower than the
estimated FDR, the actual rate was used.

The gene expression data have been submitted to Gene Expression
Omnibus database under accession number GSE5862.

Analysis of transcriptional regulation
of oleate-responsive genes by OAF3

First, we determined the significance of enrichment of genes
negatively regulated by OAF3 in a subset of genes transcriptionally
responsive to oleate. Time-course microarray data measuring the
transcriptional response to oleate were taken from Smith et al (2002).
The l values for all microarray expression ratios for this and the OAF3
deletion experiment were normalized by dividing by the mean un-
normalized l value for the wild-type versus wild-type control
experiment described above. P-values were computed from the
normalized l values using the right-tailed CDF of the w2 distribution
with one degree of freedom (Ideker et al, 2000). For each gene, a vector
of P-values was obtained from all the ratios of the time-course
experiment. From this vector, a P-value threshold of 0.0012 was
determined to correspond to an FDR of 0.005 (Benjamini, 1995). Using
this P-value threshold, 3871 genes were determined to be significantly
differentially regulated relative to the glycerol condition, in at least one
replicate-combined wild-type time-course measurement. These genes
were then analyzed in the DOAF3 versus wild-type experiment. A total
of 2240 genes (of the 3871) were found to have a positive expression
log-ratioDOAF3/wild type. From the vector of P-values for these genes,
an FDR of 0.1 was found to correspond to a P-value threshold of
0.0057. A total of 65 genes were found to be significantly differentially
expressed in DOAF3 relative to wild type, based on this significance
threshold. The binding of Oaf3p to the 53 (out of 65) OAF3-repressed
genes represented on the ChIP array was then analyzed. The
enrichment of binding of Oaf3p (in oleate) to the 50 flanking intergenic
regions of the 53 genes was computed, relative to the background set of
all 3387 oleate-responsive genes on the ChIP array (resulting in a more
conservative enrichment estimate than if all intergenic regions
represented on the ChIP array were used as the background set).
Using the CDF of the hypergeometric distribution, the enrichment
P-value was found to be 0.0023.

OAF3 overexpression experiments

The plasmid pYEX-OAF3 was made by amplifying the open reading
frame of OAF3 from genomic DNA by PCR with primers containing
flanking BamH1 and Kpn1 sites, and ligating into the corresponding
sites of pYEX-BX (Clontech Laboratories, Mountain View, CA). Strains
analyzed by FACS were grown overnight in CM�ura�leu (0.77 g CSM
minus uracil and leucine (BIO 101 (Carlsbad, CA))/l, 1.7 g
YNB�aa�as/l, 5 g ammonium sulfate/l) containing 3% glycerol and
0.5 mM CuSO4, transferred to CM�ura�leu containing 0.5% Tween
40, 0.15% oleate and 0.5 mM CuSO4 and grown for 23 h. Clear zone
assays were performed as described previously (Smith et al, 2006)
except that BY4742 cells containing either pYEX-OAF3 or pYEX-BX
were grown in CM�ura containing 2% glucose overnight and induced
for 2 h by adding 0.5 mM CuSO4 to the medium. Cells were washed
with water and B10 000 cells of each strain were spotted onto solid
minimal myristate medium (1.7 g YNB�aa�as/l, 5 g ammonium
sulfate/l, 0.5% potassium phosphate buffer, pH 6.0, 0.77 g CSM minus
uracil/l, 2% agar, 0.5% Tween 40, 0.125% myristic acid) and grown
for 3 days.
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FACS analysis

Fluorescence intensity of individual cells was measured using an FACS
Caliber flow cytometer (BD Biosciences, San Jose, CA). Data analysis
was performed using WinMDI 2.8 (available from http://FACS.scripp-
s.edu/), a forward scatter gate of 452 units, event normalization and
smoothing of 25 units.

Supplementary information

Supplementary information is available at the Molecular Systems
Biology website (www.nature.com/msb).
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