
How Well Can We Understand Large-Scale Protein Motions Using
Normal Modes of Elastic Network Models?

Lei Yang,*y Guang Song,*z§ and Robert L. Jernigan*y§

*Program of Bioinformatics and Computational Biology, yDepartment of Biochemistry, Biophysics and Molecular Biology, zDepartment of
Computer Science, and §L. H. Baker Center for Bioinformatics and Biological Statistics, Iowa State University, Ames, Iowa

ABSTRACT In this article, we apply a coarse-grained elastic network model (ENM) to study conformational transitions to
address the following questions: How well can a conformational change be predicted by the mode motions? Is there a way to
improve the model to gain better results? To answer these questions, we use a dataset of 170 pairs having ‘‘open’’ and ‘‘closed’’
structures from Gerstein’s protein motion database. Our results show that the conformational transitions fall into three cate-
gories: 1), the transitions of these proteins that can be explained well by ENM; 2), the transitions that are not explained well by
ENM, but the results are significantly improved after considering the rigidity of some residue clusters and modeling them
accordingly; and 3), the intrinsic nature of these transitions, specifically the low degree of collectivity, prevents their confor-
mational changes from being represented well with the low frequency modes of any elastic network models. Our results thus
indicate that the applicability of ENM for explaining conformational changes is not limited by the size of the studied protein or
even the scale of the conformational change. Instead, it depends strongly on how collective the transition is.

INTRODUCTION

In the current age of biological research, sequence, structure,

and function have been the major focuses. Much work has

been devoted to the study of how these are related. This will

be increasingly the case as more genomes are sequenced and

annotated. We are just at the beginning of being able to under-

stand how the different parts of a biological system work

together, and how information flows through the system and

causes it to function harmoniously or aberrantly.

Recently the CASP competitions, i.e., the Critical Assess-

ment of Techniques for Protein Structure Prediction, started

back in 1994 (http://predictioncenter.org/), have driven ef-

forts at the structure-sequence interface. It is well accepted

that the three-dimensional native structure of a protein is

determinable from its sequence. Another important part of

protein computational research focuses on the motion: how a

protein folds up in detail—the pathways, how fast it folds,

the kinetics, the shape of the energy landscape, and why

most proteins have a unique native fold.

Motion is equally important, if not more so, for under-

standing how a protein functions, given its structure. Protein

functions are closely tied to their motions. Therefore, the dy-

namics of folded proteins is critically important for under-

standing the mechanisms by which they function. Many

proteins make large conformational changes upon binding a

ligand, for example, to realize their functions. How such a

process occurs is of broad interest.

One common approach has been to apply molecular

dynamics (MD) (1–3). However, similar to the limitations

encountered when applying MD to protein folding, the compu-

tational demands limit its usefulness.

The fact that proteins move mostly collectively in the

process of realizing their functions encourages us to look at

some other approaches. As made clear by Gerstein’s protein

motion database (4,5), proteins demonstrate mostly large-

scale hinge motions, shear motions, and some other types of

motions. Therefore, instead of using MD and treating the

protein system as an assemblage of interacting atoms and

being limited by the system’s complexity, we are motivated

to look at coarser levels of modeling for an approach more

appropriate to the problem.

One such approach is normal mode analysis (NMA) (6–8),

which is good at studying the collective motions of macro-

molecules, and expresses the motions in terms of some col-

lective variables, known as the normal modes. Researchers

have found that the mode motions predicted by NMA match

well with the conformational changes of a number of pro-

teins upon ligand binding, such as hexokinase (9), lysozyme

(6), citrate synthase (10), and hemoglobin (11,12). Tama

et al. (13) carried out NMA on a dataset of 20 proteins, each

of which has two conformations in ‘‘open’’ and ‘‘closed’’

forms. They compared the overlap between the conforma-

tional change (i.e., the displacement vector between open

and closed forms) and the normal modes for each given

protein, and found that for most proteins, there exists a single

low-frequency normal mode that overlaps well with the

conformational change. Krebs et al. (14) performed NMA of

macromolecular motions in a database framework. They

integrated normal mode calculations into the Macromolec-

ular Movements Database (4,5), and found that most of 3814

known protein motions can be described well by a few low-

frequency normal modes. In many cases, only one or two

low-frequency normal modes are sufficient to capture the
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protein motions well. They also developed a new metric,

mode concentration, as a useful classifier for motions. These

studies support the findings that only a small number of low-

frequency normal modes are sufficient to characterize protein

dynamics.

Instead of using a detailed all-atom potential, Tirion (15)

showed that NMA using atoms interacting with only a single

parameter harmonic potential was able to reproduce well the

low frequency modes of motion. Bahar et al. (16) and Hinsen

(17) took the simplification one step further. They demon-

strated that a single parameter harmonic potential together

with a simplified protein model having only one point mass

per residue was sufficient to produce the correct low fre-

quency mode motions, a result that is supportive of the

collectiveness of protein motions. Such models are now

referred to as elastic network models (ENMs). Specifically,

the ENM for isotropic fluctuations is usually called the

Gaussian network model (18,19), where only the magni-

tudes of the fluctuations are considered. Its anisotropic

counterpart, where both the magnitudes and directions of

the collective motions are treated is called the anisotropic

network model (20), and this is the model that we will use

in this article.

ENMs are based on a harmonic potential so that the mode

motions they produce yield only the small local fluctuations

of atoms. Therefore, they are good for reproducing the tem-

perature B-factors of proteins, usually representing small-

scale fluctuations, as first demonstrated by Bahar et al., and

followed by others (16,21,22). But, are they suitable for un-

derstanding the larger-scale molecular motions?

In this work, we aim to address several questions. We

want to know, how large are the conformational changes that

can be predicted well with the mode motions? And for the

proteins exhibiting poor overlaps between conformational

changes and mode motions, is there anything we can do to

improve the ENM to gain better results?

To answer these questions, we use a dataset of 170 pairs of

open and closed structures that were obtained from Gerstein’s

protein motion database (4,5) (http://www.molmovdb.org/).

These protein sizes range widely from tens of residues to

near a thousand residues, and their conformational dis-

placements can be as large as 28 Å. Our results show that

the conformational transitions of these 170 proteins fall into

three categories: 1), the transitions that can be explained

well by ENM; 2), the transitions that are not explained well

by ENM but the results are significantly improved after

considering the rigidity of some residue clusters and mod-

eling them accordingly; and 3), those where the intrinsic

nature of these transitions, those having a low degree of

collectivity, prevents their being interpreted with the low

frequency modes of elastic network models. Our results

thus indicate that the applicability of ENM for explaining

conformational changes is not limited by either the size of

the studied protein or even by the scale of the conforma-

tional change. Instead, it depends strongly on how collec-

tive the transition is.

METHODS

Protein dataset

In this work, we use a protein dataset that is obtained from Gerstein’s

Macromolecular Movements Database (4,5) (http://www.molmovdb.org/).

There are ;200 pairs of structures in Gerstein’s database, classified by the

motion scales and types of pairwise structures. A few structures are excluded

here since their PDB entries are not specified. The remained 170 pairs of

structures are used in our analyses (Table 1 lists the number of proteins in

each motion category). The number of pairs in each motion category ranges

from 2 to 59. The 340 PDB files are downloaded from Protein Data Bank

(http://www.pdb.org/). For each pair of structures, the residues that do not

have corresponding partners in both structures are removed and the a-carbon

coordinates are then extracted for further analysis.

Identifying rigid domains

Given two experimentally stable structures of a protein, our goal is to

identify the relatively most rigid portions between the two structures. A

number of computational methods have been developed for this purpose. In

Nichols et al. (23), a difference-distance matrix-based method was proposed

to determine sets of residues such that the distance between any pair of

residues within the set has the same distance in the two structures. One

drawback of difference-distance-based approaches is their low tolerance to

the imprecision in the atomic coordinates. To overcome this, Wriggers and

Schulten (24) developed a method that extracts the rigid domains by iterative

superposition of the protein structures. The preserved geometry (which is

used to identify domains) defined by such a superposition process is gen-

erally insensitive to the local fluctuations of individual atoms. Hinsen et al.

(25) proposed an approach using the so-called ‘‘deformation energy.’’ The

idea is that residues in the rigid regions are hardly deformed. In addition,

deformation energy provides a scale of how rigid a certain region of the

protein is locally. Once all the rigid residues are identified, they are then

clustered to form domains. Here we present a simple method, which utilizes

root mean-square deviation (RMSD) calculations. In this sense, it relates

TABLE 1 Classification of protein motions in Gerstein’s

Database of Macromolecular Movements (4,5)

Motion scale Motion type # of Pairs

I. Motions of fragments

smaller than domains

A. Motion is predominantly shear 11

B. Motion is predominantly hinge 21

C. Motion can not be fully

classified at present

10

D. Motion is not hinge or shear 6

II. Domain motions A. Motion is predominantly shear 27

B. Motion is predominantly hinge 59

C. Motion can not be fully

classified at present

10

D. Motion is not hinge or shear 2

E. Motion involves partial

refolding of tertiary structure

6

III. Larger movements than

domain movements

involving the motion

of subunits

A. Motion involves an allosteric

transition

9

B. Motion does not involves

an allosteric transition

4

C. Complex protein motions 5

The categories in motion scale and motion type are the same as those used

in the Gerstein’s database.
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most closely to the work by Wriggers and Schulten. The idea is to separate

the local fluctuations (intrinsic ‘‘noise’’ in the x-ray or NMR structures)

from the global transitions. Since the local fluctuations are typically on a

scale ,1–2 Å, we define a set of residues to be rigid between the two

structures if the RMSD between the two corresponding sets of coordinates is

,2 Å. However, there are a significant number of transitions among the 170

pairs of proteins in our dataset whose scale (i.e., the RMSD between the

open and closed forms of the protein) is ;2 Å and or even smaller. For these

protein pairs (specifically scale , 4 Å), because using a threshold of 2 Å

would cause more or less the whole structure to be considered as rigid, we

use a smaller threshold that is dependent on the translation scale, which is

1 Å if 2 Å # scale # 4 Å, 0.5 Å if 1 Å # scale # 2 Å, and so on.

For convenience, we make the following definitions.

Definition 1

Given two structures of the same protein, a subset of its residues is con-

sidered to form a rigid domain if the RMSD of that group between the two

structures is smaller than a predefined threshold. A rigid segment is defined

as a rigid group made up of consecutive residues. A smaller threshold is used

in searching for rigid segments and is set to be 3/4 (a parameter) of the

threshold set for defining a rigid domain.

The method has two major steps. In the first step, we calculate a set of

rigid segments by comparing the two structures. In the second step, we

combine the rigid segments as much as possible to form larger rigid groups.

We merge two rigid groups together if and only if the combined group is still

rigid by the above definition. The iteration continues until no more new rigid

groups can be formed. The resulting rigid groups are then identified as the

rigid domains. Note that there are usually residues that do not belong to any

of these rigid groups. They normally fall into the ‘‘hinge’’ regions and are

the ones connecting between the rigid groups. They are much more flexible

in nature compared to the residues in the rigid groups. For the remainder of

the article, we refer to these as hinge residues.

Algorithm A. Input: two structures of a protein. Output: a set of non-

overlapping rigid domains.

Steps:

1. For any i (1 # i # N, where N is the number of residues), find the

longest rigid segment starting with residue i, i.e., find the largest j

for which RMSD(Xopen(i:j), Xclosed(i:j)) , threshold. Save all these

segments in a set by Q.

2. Create an empty set S.

3. Among all the segments in Q, find the longest one, remove it from Q

and move it into set S. Update the remaining segments in Q so that they

do not overlap with any segment in the set S. This means that some seg-

ments in Q must be shortened or discarded.

4. Repeat Step 3 until the set Q is empty. Return the set S.

5. Starting with the segments in the set S as separate rigid groups, iter-

atively merge them with one another to form larger rigid groups until

no new groups can be formed. (At each iteration, a greedy algorithm is

applied to select a pair of rigid groups to merge. The selected pair is

the one that, once merged, has the smallest RMSD change between the

open and closed structures than for any other choice of pairs. The

iteration stops when the smallest RMSD found is larger than the preset

threshold.)

6. Lastly, absorb as many free residues (those not in any rigid group) as

possible into the rigid groups. A similar greedy algorithm to that in the

previous step is used to select the best rigid group-free residue pair to

merge. Again, the iteration stops when the selected rigid group would

result in a RMSD larger than the preset threshold if absorbing the

selected free residue. The resulting rigid groups are returned as rigid

domains and the free residues as hinge residues.

The rigid groups defined by this algorithm are then considered as the

rigid domains of the proteins. With such modeling, the degrees of freedom,

d, of a protein is reduced approximately from doriginal ¼ 3N to dreduced ¼
6 3 ndomain 1 3 3 nhinge, where N is the protein size (the number of resi-

dues), ndomain is the number of rigid domains, and nhinge is the number of

hinge residues. Compared with doriginal, dreduced serves as a metric indicating

how collective the transition between the open and closed form is, i.e., the

smaller dreduced, the more collective the transition is. Indeed, dreduced/6 gives

an estimate of how many rigid domains there are. In the extreme case when

there is just one single rigid domain, the motion of the protein would be fully

collective.

We thus define collectivity as follows:

Definition 2

The collectivity, x, of a protein transition is defined as the inverse of dreduced/6,

the estimated number of its rigid domains. In short, x ¼ 6/dreduced.

The collectivity thus defined is unitless and has a range of [0,1], where

x ¼ 1 means complete collectivity, while a smaller x means the transition is

less collective.

We also define a variable to measure, on average, how many residues

move together, or how large the average domain size is. We thus define

concertedness as the collectivity scaled by the protein’s size.

Concertedness is defined as: definition 3

The concertedness of a motion, k, is defined as the collectivity x times the

size of the protein, i.e., k ¼ N 3 x.

Realize that k¼ N 3 x ¼ N 3 6/dreduced¼ 2 3 doriginal/dreduced. Therefore,

the concertedness k also measures the extent of reduction in the degrees of

freedom.

In the next section, we describe how to build a special kind of ENM,

namely domain-ENM, once the locations of the rigid domains and hinge

residues are established.

Constructing elastic network of
rigid domains—domain-ENM

In Song and Jernigan (26), we presented a new way for constructing elastic

network for domain-swapped proteins, which is called domain-ENM. In

domain-ENM, we assign a larger spring constant for intradomain contacts.

This conveniently and effectively encodes domain rigidity with a single

parameter. It also enables rigid body domain motions to be separated from the

low amplitude fluctuations of each rigid domain, thereby making the domi-

nant rigid body domain motions more easily captured than with uniform ENMs.

Another way to incorporate the rigidity is to use the block normal mode

analysis or the rotation-translation block method (27,28). These methods

normally work by modeling a small number of consecutive residues (e.g., six

residues) as a rigid block. To adapt such methods to our case where the

residues within a rigid cluster are not necessarily consecutive in sequence,

one may artificially reorder the residues to treat them as if they were con-

secutive. After the vibration modes or the fluctuation patterns of each residue

are obtained, one can reconstruct the modes so that they reflect the original

residue sequence order.

The improved overlap measure

The commonly used definition of ‘‘overlap’’ (10,13) is a measure of the

similarity between the direction of global conformational displacement and

the direction given by one normal mode, that is,

O
original

j ¼ jMj � DXj
jMjj � jDXj; (1)

where Mj is the jth eigenvector and DX is the displacement between the open

and closed forms after the two structures are superimposed.

However, the global conformational displacement is a finite motion,

whereas the mode motions are infinitesimal motions. The two are not
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directly comparable, especially when large-scale rotations are involved. In

such a case, the initial motion direction, which is comparable with the mode

motions, may little resemble what is depicted in the global conformational

displacement (illustrated in Fig. 1) (26).

In light of this, in Song and Jernigan (26) we proposed a new measure for

calculating overlaps for domain-swapped proteins. This improved overlap

definition was originally designed for domain-swapped proteins with two

distinct domains, but it can easily be extended to systems consisting of

multiple rigid domains. For such a system, the global conformational change

for each domain can always be expressed as

DXðiÞ ¼ Rðki; uiÞ � Xi 1 Ti � Xi; 1 # i # Nr; (2)

where Ti, R(ki, ui) are the translation and rotation for the ith domain, ki and ui

are the rotational axis and rotational angle, Xi contains the coordinates of the

residues in the ith domain relative to its center of mass, and Nr is the number

of rigid domains. To make a fair comparison with the infinitesimal motions

of the modes, we use an infinitesimal motion extracted from the global

conformational changes in Eq. 2. In other words, we use

DXðiÞ0 ¼ Rðki; ui=MÞ � Xi 1 Ti=M � Xi; 1 # i # Nr; (3)

as the infinitesimal version of the global conformational displacement,

where M is a large positive number corresponding to the step size (e.g., M¼
100). For any residue m that is not in any domain, we use plain linear

interpolation. Now we form a new directional vector V to obtain an approx-

imate overlap measure. For each residue, the motion direction is

VðmÞ¼ DXðiÞ0 if residuem is indomain i
ðXclosedðmÞ�XopenðmÞÞ=M otherwise;

�

(4)

and hence the overlap is

O
improved

j ¼ jV �Mjj
jVj � jMjj

: (5)

Oimproved
j measures how well the two directions, the initial moving direction

DX0 and the direction of the jth mode Mj, line up, by calculating the cosine

of the angle between them. A perfect agreement in directions corresponds

to an overlap value of 1.

Based on the above overlap definition, we define the maximum overlap

between a conformational displacement with any mode as

Omax ¼ maxðOjÞ: (6)

We also define the cumulative square overlap (CSO) of the first k vibra-

tional modes as

CSOðkÞ ¼ +
k

j¼1

O
2

j : (7)

While maximum overlap indicates how the best mode overlaps with the

conformational displacement, it is often helpful to use CSO of the first k

modes to measure how well the first k modes together can capture the whole

transition.

RESULTS AND DISCUSSION

Initial analysis of protein dataset

The histogram of our protein sizes is shown in Fig. 2 a. From

the figure we can see that the sizes of the 170 pairs of

proteins fall over a wide range, from tens of residues to near a

thousand residues. Out of the total of 340 protein structures

in our dataset, 34 are NMR structures. The resolutions for the

remaining 306 x-ray structures are shown in Fig. 2 b, giving

a mean of 2.28 Å and a standard deviation of 0.48 Å. The

histogram of pairwise RMSDs is shown in Fig. 2 c. It can be

seen that .50% of the pairs of structures have an RMSD

value within 4 Å.

The 170 transitions analyzed

Before we apply a mode analysis method to interpret the

transitions, it is important for us to analyze these transitions

first to gain a better understanding of the characteristics of

these transitions, especially the collectivity (Definition 2).

This is because for all mode analysis methods, they all aim to

describe the motions using a small number of collective

variables, i.e., the low frequency modes, from fine-grained

all-atom models to coarse-grained models that, for example,

represent each residue with its a-carbon only (as is usually

with ENM). For a motion to be well described with a small

number of collective variables, it is necessary that the motion

is intrinsically highly collective.

While neither the displacement between the open and

closed forms nor the motion direction as defined in Eq. 4

directly tells us how collective a transition is, the collectivity

we have defined above (see Definition 2) does. It gives us a

simple measure of how likely residues are to move together,

or separately. This intrinsic property of the transition thus

poses an inherent limit on how well any NMA-like method,

even before it is applied, can interpret the transition. For

transitions with low collectivity, mode analysis methods

have little chance of performing well. While for those tran-

sitions that do display large collectivity, there is clearly the

possibility that a properly chosen mode analysis method

could provide an excellent representation of how the

FIGURE 1 A simple illustration of the pathway difference for a global

conformational change DX involving a rotation and the initial moving di-

rection DX0 when translation is utilized to represent a rotation, as a rigid stick

rotates counterclockwise 90� from position A to B.
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transition may take place. How to choose a proper model in

such a case will be addressed later.

For many proteins, the intrinsic nature of their transitions

are not collective. This is demonstrated in Fig. 3, which

shows the reduced degrees of freedom dreduced of the proteins.

As we can see, some significant number of proteins still pos-

sess high degrees of freedom, indicting that the level of col-

lectivity for their transitions is quite low.

Besides the collectivity of a transition, we are also inter-

ested in knowing the average number of residues that move

together collectively, i.e., the concertedness as in Definition 3.

Fig. 4 shows the dimensionality reduction, or concertedness

of all 170 transitions after rigid domains are identified and

modeled accordingly. We can see from this figure that there

is a large dimensionality reduction (concertedness), espe-

cially for domain hinge motions.

With the inherent limit to mode representations in mind,

we are now ready to explore how we may best explain the tran-

sitions.

How large a conformational change can be
predicted by mode motions?

Tama and Sanejouand (13) looked at the open and closed

structures of 20 proteins and studied the overlap of the mode

most involved in the conformational changes. Krebs et al. (14)

performed NMA on the Macromolecular Movements Data-

base (4,5), and found that most of the 3814 known protein

motions can be described well by a small number of low-

frequency normal modes. These works relate to the previous

works by Harrison (9), Brooks and Karplus (6), Gibrat and G�o
(29), and Marques and Sanejouand (10) with the findings that

a low frequency mode motion, but not necessarily the very

lowest one, compares well with the conformational changes

that these proteins make upon ligand binding.

One question that naturally arises is, how large a confor-

mational change can the mode motion predict well? Is there a

limit? Since the modes are based on the local equilibrium

vibrations of a structure, it is reasonable to expect that the

motions predicted by modes are only locally meaningful.

And one may reasonably doubt any attempt to use mode

FIGURE 2 Characterization of the protein dataset: distributions of protein

sizes, resolutions, and pairwise RMSDs. (a) Histogram of protein sizes.

(b) Histogram of protein resolutions for x-ray structures. (c) Histogram of

pairwise RMSDs.

FIGURE 3 Histogram of the reduced degrees of freedom dreduced. There

are some proteins that possess high degrees of freedom, and thus low col-

lectivity, although most have ,100 degrees of freedom.
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motions to analyze large-scale conformational transitions,

say over 10 Å, or even 5 Å.

Using the dataset of 170 pairs of open and closed struc-

tures that we created based on Gerstein’s Database (4,5),

with the scale of conformational changes ranging from ,1 Å

to 28 Å (see Fig. 2 c), we are ready to look into this question.

Based on a previous study by Tama and Sanejouand (13), the

normal modes calculated from the open form generally have

better overlap with the conformational change than those

obtained from the closed form. In this article, we only show

results for the normal modes obtained from the open form.

We also did the same analysis using the normal modes cal-

culated from the closed form and the results are quite similar

to those obtained from the open form (see Supplementary

Materials).

Fig. 5 a shows the distribution of the best overlaps versus

the scale of conformational changes (i.e., RMSD between the

open and close structures). From the figure we can see that

the overlap is quite significant even for a number of proteins

having large conformational displacements. Fig. 5 b displays

the histogram of the best overlaps found for each protein.

One can see that there are a significant number of proteins

with overlaps .0.7, though more proteins have overlaps ,0.5.

Though one may expect that as the scale of conforma-

tional displacement increases, the quality of the match (in

terms of overlap values) would decrease, this is not evident

from Fig. 5 a. Even though the overlap value for the last few

proteins (with largest conformational changes) is relative

small, there are too few of them to draw such a strong

conclusion. Instead, the data suggest that, up to ;15 Å, the

mode motions can perform fairly well in interpreting the

conformational transitions.

However, for many other proteins, we do see that the over-

lap between conformational changes and mode motions is

rather small (say, ,0.5). We are prompted to ask whether

such poor overlaps are due to any inappropriateness in how

the proteins are modeled or something more intrinsic, such

as the inherent collectivity of the transition as discussed ear-

lier. The answer to this question will help us determine the

applicability and limits of ENMs in understanding confor-

mational transitions. In the following sections, we will show

how an enhanced ENM can significantly improve the over-

lap values for some proteins, while for some others, the

intrinsic nature of their conformational transitions prevent

their displacements from being explained by low-frequency,

collective-mode motions.

Dimensionality reduction: proteins move as
rigid domains

In our previous study of domain-swapped proteins (26), one

key conclusion we arrived at is that to better understand the

large-scale domain-swapping motions, it is helpful to take do-

main rigidity into account and to apply the more appropriate

FIGURE 4 Concertedness of conformational transitions for 170 pairs of

proteins. For category II.B (see Table 1) the domain hinge motions (with

proteins indexed from 76 to 134, are marked by the black bar at the top of

the figure), there typically exists a higher concertedness than for the other

motion classes.

FIGURE 5 Maximum overlaps using ENM. (a) Maximum overlap as a

function of the transition scale, the RMSD between the open and closed

structures. (b) Histogram of maximum overlaps.
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overlap calculation that was first proposed in Song and

Jernigan (26) and extended here to systems having multiple

rigid domains. With this in mind, we use Algorithm A (see

Methods) to identify rigid domains and then apply domain-

ENM (see Methods) to study all the transitions. Table 2 lists

the average dimensionality reduction (or concertedness) for

the different motion types. One notable point is that for hinge

domain motions (category II.B), the concertedness is appar-

ently higher than for other groups.

Consequently, we see significant improvements in the

overlap values for a large percentage of protein pairs, and

this is true even for those structure pairs having large

conformational displacements. Table 2 shows that there is a

significant increase in the maximum overlap and CSO for all

motion types, all with a similar extent of improvement. The

apparent reason why results for domain hinge motions (cat-

egory II.B) do not have a more significant improvement than

the other types of motions, despite their larger dimension-

ality deduction, is that some of the concertedness of these

transitions have already been captured by the uniform ENM.

This is confirmed by their apparent larger overlap values

even before domain rigidity is taken into account.

Fig. 6, a and b, compare the scatter plots of the maximum

overlaps and CSOs from uniform ENM (without domain

rigidity) and domain-ENM (with domain rigidity) calcula-

tions. From the figures we can see that for most protein pairs,

domain-ENM is able to improve overlap (maximum overlap

and CSO) by a significant amount. Fig. 7 gives a few ex-

amples of proteins with their CSO distributions. It is seen

clearly that both rigid domain modeling and the improved

overlap definition need to be applied to achieve a truly sig-

nificant improvement.

Why certain residues form a rigid group and how rigid the

group is are not easy to discern. Our analysis of domain-

swapped proteins (26) implied that the rigidity comes from

strong hydrophobic interactions and hydrogen bonding,

which is the basis of the FIRST rigidity analysis method (30).

As explained in Methods, here we determine the rigid groups

within a protein by directly comparing its open and closed

structures. For simplicity and consistency with the coarse-

grained ENM, we assign a uniform, but larger, spring constant

for the contacts within all rigid domains without considering

their specific, detailed interactions (26).

Where ENM fails: the limitation of using mode
motions to study conformational transitions

Despite the improvement in overlap values that comes from

domain-ENM, there remains a significant number of proteins

whose overlap values remains small. This is reflected in the

points at the lower-left corner of Fig. 6, a and b. For these

protein pairs and their transitions, neither uniform ENM nor

domain-ENM is able to produce modes that have large

overlaps with their conformational displacements. Is there

TABLE 2 Analyses of the conformational transitions by the

motion types

Motion type

I.

Fragments

II.A

Shear

II.B

Hinge

II.

Other III.

Number of pairs (170 total) 48 27 59 18 18

Concertedness (k) 23.9 37.4 99.7 51.8 46.0

Reduced DOF* dreduced (6/x) 81 107 68 79 113

Original maximum overlap 0.37 0.50 0.59 0.38 0.43

Improved maximum overlap 0.50 0.58 0.67 0.46 0.50

Original CSO(20) 0.35 0.53 0.67 0.42 0.46

Improved CSO(20) 0.56 0.70 0.79 0.61 0.60

The numbers shown are the mean values over all the structure pairs in each

motion type.

*Degree of freedom.

FIGURE 6 Comparison of the new model (domain-ENM) with the old

(uniform ENM). (a) Scatter plot of the maximum overlaps. (b) Scatter plot of

the CSO(20)s. The lines, along the direction of the arrow, indicate where the

increasing scales of improvement are.
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an intrinsic reason for this? From our earlier analysis, we

can more or less guess the answer—that the low frequency

modes from ENMs are good at describing only the col-

lective motion of a system, but not localized, uncorrelated

motions. Therefore, those points with small overlap values

probably correspond to proteins exhibiting noncollective

transitions.

This intuition is confirmed in Fig. 8, which shows the

correlations between the overlaps (maximum overlap and

CSO) and the inverse of collectivity (dreduced) for both

uniform ENM and domain-ENM (which uses the improved

overlap definition), as well as the correlations between the

overlaps and the protein size. In contrast to the fact that there

is little correlation (;0.1) between the overlap and the pro-

tein size (Fig. 8 c), there is a strong correlation between the

overlap and the inverse of collectivity for both uniform ENM

and domain-ENM (Fig. 8, a and b).

For ENM, the correlation values are ;0.5 (0.49 between

the maximum overlap and dreduced and 0.55 between CSO(20)

and dreduced). It is remarkable that ENM, with a uniform

spring constant, is able to capture the potential collective

behavior of a protein rather accurately from a single structure

(see Fig. 8 a). This suggests it might be possible to use ENM

to identify protein domains (31).

Domain-ENM is a better model than ENM when the ri-

gidity of domains can be determined and explicitly taken into

account in the model (as is the case here) and is more suited

for studying the collective motions of a protein. Indeed, we

see much better correlations between the overlaps and the

inverse of collectivity (0.65 between the maximum overlap

and dreduced and 0.70 between CSO(20) and dreduced) in Fig. 8 b.

This strong correlation between the overlap and the inverse

of the collectivity demonstrates that it is the inherent col-

lectivity of a transition that limits the effectiveness of using

normal modes to interpret protein conformational transitions—

it is neither the size of the protein, nor the scale of the

conformational transition that matters, since both have low

correlations (see Figs. 8 c and 5 a). Note that a similar con-

clusion could be drawn from the results of ENM (especially

Fig. 8 a). However, for ENM it would be less conclusive be-

cause the correlation between the overlap and the collectivity

is obscured to some extent by the inaccurateness of the mod-

eling, especially since the stronger interactions within a domain

are not explicitly treated.

It is useful to predict the collectivity of a protein from a

single structure (here it is done by comparing two structures).

Then for the proteins with high collectivity, we might be able

to use ENM (or domain-ENM) for the reliable prediction of

their conformational transitions.

CONCLUSIONS

In this article we have carried out a study on a large protein

dataset (170 pairs of open and closed protein structures) to

FIGURE 7 Cumulative square over-

laps (CSOs) for some proteins using

different models: uniform ENM, ENM

with rigid domains, ENM with the im-

proved overlap definition (see Eq. 5),

and ENM with both rigid domains and

the improved overlap definition (i.e.,

domain-ENM). The first six modes ac-

count for the rigid body translation and

rotation of the system.
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investigate how well conformational changes can be

explained with normal mode motions. Our results show that

the 170 pairs of structures and their conformational transi-

tions fall into three categories: 1), the transitions of these

proteins can be explained well by the uniform ENM; 2), the

transitions cannot be explained well by the uniform ENM but

the results are significantly improved after considering the

rigidity of domains and modeling it accordingly; and 3),

those where the intrinsic nature of these transitions, i.e., low

degree of collectivity, prevents them from being explained

with the low-frequency modes of either ENM.

Our results indicate that the applicability of ENM for ex-

plaining conformational changes is not limited by either the

size of the protein studied or even by the scale of the con-

formational change. Therefore, the answer to the question

posed in the title of this article—how well we can understand

large-scale molecular motions using normal modes—really

depends strongly on how collective the motion is. As shown

in this article, the collectivity of a transition can be estimated

by comparing the open and closed forms of the studied pro-

tein. The collective nature of ENM low-frequency modes

makes it unsuitable for explaining noncollective transitions.

Perhaps an investigation of packing densities and atomic in-

teractions could be used to predict the collectivity of a

structure (32,33).

For this reason, ENMs show extremely promising results

for understanding large-scale, collective motions, such as

that of the ribosome (34). Yet on the other hand, it is not an

appropriate method in simulating protein folding, since that

process is not always collective (35,36).

FIGURE 8 Relationship between the

overlap (maximum overlap or CSO(20))

and dreduced (the inverse of collectivity)

using the original overlap definition and

ENM (a), the improved overlap defini-

tion and domain-ENM (b), and their

dependence on protein size N (c). There

is a strong correlation between overlap

and collectivity (0.49 and 0.55 in a and

0.65 and 0.70 in b, from left to right),

while there is almost no correlation be-

tween the overlap and the protein size

(0.11 and 0.16 in c, from left to right).
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SUPPLEMENTARY MATERIAL

An online supplement to this article can be found by visiting

BJ Online at http://www.biophysj.org.
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