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ABSTRACT Linear molecular motors translocate along polymeric tracks using discrete steps. The step length is usually mea-
sured using constant-force single molecule experiments in which the polymer is tethered to a force-clamped microsphere.
During the enzymatic cycle the motor shortens the tether contour length. Experimental conditions influence the achievable step
length resolution, and ideally experiments should be conducted with high clamp-force using slow motors linked to small beads
via stiff short tethers. We focus on the limitations that the polymer-track flexibility, the thermal motion of the microsphere, and the
motor kinetics pose for step-length measurement in a typical optical tweezers experiment. An expression for the signal/noise
ratio in a constant-force, worm-like chain tethered particle, single-molecule experiment is developed. The signal/noise ratio is
related to the Fourier transform of the pairwise distance distribution, commonly used to determine step length from a time-
series. Monte Carlo simulations verify the proposed theory for experimental parameter values typically encountered with
molecular motors (polymerases and helicases) translocating along single- or double-stranded nucleic acids. The predictions are
consistent with recent experimental results for double-stranded DNA tethers. Our results map favorable experimental conditions
for observing single motor steps on various substrates but indicate that principal resolution limits are set by thermal fluctuations.

INTRODUCTION

Helicases and polymerases are linear molecular motors that

translocate along a variety of nucleic acids (NA). Significant

insight into the working of these motors has been gained

from single molecule experiments (1–6). In particular, opti-

cal tweezers have been instrumental in delineating the mech-

anisms of RNA polymerase (7,8) and RecBCD helicase

(9,10). Recent developments in optical trapping technology

have suppressed instrumental noise and drift to a level that

permits measuring RNA polymerase translocation with single

base (;0.3 nm) resolution (8). In contrast to other linear

molecular motors, like kinesin and myosin, the NA tracks

of helicases and polymerases are flexible, with persistence

lengths (Lp) ranging from ,1 nm for single-stranded (ss)

NAs (11) to 50 nm for double-stranded (ds) NAs (12,13). In

comparison, actin filaments and microtubules are stiffer

(Lp . 10 mm) (14), and often rigidly immobilized in single-

molecule stepping assays. Immobilization of the NA track

is precluded for motors that topologically enclose the NA

during translocation. Thus, the flexibility of the NA chain,

especially in the case of ssNA, needs to be taken into account

in optical tweezers experiments. While recent experimental

results have provided a set of favorable experimental con-

ditions for observing steps down to single basepair resolution

on dsDNA, no steps have yet been resolved for motors that

move along single-stranded substrates. Many replicative DNA

and viral RNA polymerases fall into this motor category (15–

21). In addition, single-strand translocation is a common ac-

tivity of helicases (22) and viral RNA packaging motors (23).

A typical optical tweezers experiment involving an NA-

translocating motor is performed by observing a trapped

handle (;1 mm diameter polystyrene or silica bead) tethered

through the motor and the bound NA to a stationary sample

chamber or another trapped bead (8,12).The motor can be

bound to either end of the NA, and its enzymatic cycle results

in a successive reduction of the NA contour length with a

step size characteristic of the motor. However, in experi-

ments performed under physiological conditions, thermal

fluctuations of the microsphere due to the flexible NA limit

the achievable spatial resolution (24). Thus, to take full ad-

vantage of sub-nanometer resolution instrumentation (8,25,26),

an understanding of the experimental conditions under which

a given step length can be measured is needed. A recent study

has assessed the detection of steps in the so-called dumb-

bell configuration by analyzing correlated motions of the two

trapped handles (25). Here we focus on the one-handle, surface-

immobilized configuration, which is preferred when simulta-

neous detection of single-molecule fluorescence is desired (27).

We present a theoretical assessment of the signal/noise

ratio (SNR) for a motor step-size measurement in a model

optical tweezers experiment (Fig. 1). The idealized motor

shortens the tether contour length in discrete steps of uniform

length at a given average rate. The tether is modeled as a

worm-like chain (WLC). A simple approximate formula for

the SNR is also derived from the theory. The theory is

verified by Monte Carlo simulations for a range of plausible

experimental parameters (force-clamp set point, microsphere

diameter, molecular motor step length, stepping rate, and

WLC contour/persistence length) relevant to the study of NA

translocating molecular motors (Table 1). From the simula-

tions, the minimum SNR at which steps can be measured is

predicted. The proposed theory is consistent with the limits
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observed in recent high-resolution experimental studies on

dsDNA motors (8,28). The theory enables predicting SNR

for ssNA motors and yields a set of favorable experimental

conditions under which short steps can be detected, while

exposing the intrinsic limitations of the assay.

THEORY

The motion of a micron-sized particle of diameter d, with negligible inertia,

in a viscous fluid (viscosity h), tethered to a stationary object by a WLC

polymer with contour length L and persistence length Lp, (Fig. 1), is de-

scribed by the Langevin equation (29),

g _x ¼ FC � FWLC 1 FR; (1)

where _x is the particle velocity, g is the hydrodynamic drag coefficient

(we use the Stokes formula g ¼ 6ph(d/2) throughout this article), FC is

the constant clamp-force imposed by the optical tweezers, and FWLC is the

restoring force of the WLC tether. The random thermal force FR is modeled

as white noise with a constant power spectral density of 4 kBTg.

The WLC model describes the equilibrium force-extension relationship

for dsDNA(12), ssRNA(30), and dsRNA(13) well, but accurate modeling of

ssDNA may require use of the modified freely-joined chain model (31). To

apply the theory presented here to ssDNA, the force-extension curve can be

approximated locally in a limited force region with a WLC model. Here

we consider only the equilibrium WLC model, since the time constant for

longitudinal relaxation of long dsDNA molecules is ;10�3 s (32), one-to-

two orders-of-magnitude faster than the step rate for typical molecular

motors.

Due to ease of computation, we use the approximation for the WLC force-

extension relationship of Marko and Siggia (33):

FWLCðx; LÞ ¼
kBT

Lp

1

4
1� x

L

� ��2

�1

4
1

x

L

� �
: (2)

where Lp, L, and x are the persistence length, the contour length, and end-to-

end distance, respectively.

As the force clamp is applied the particle relaxes to an equilibrium posi-

tion xe, where

FWLCðxe; LÞ ¼ FC: (3)

To derive an expression for the SNR we first consider noise, i.e., position

fluctuations of the bead around this equilibrium (24). Expanding Eq. 2 into a

Taylor series around xe, and retaining only the first-order term, Eq. 1 can be

rewritten as

g _x ¼ Kðxe � xÞ1 FR; (4)

where

K ¼ dFWLCðx;LÞ
dx

����
x¼xe

(5)

is the effective stiffness of the system, determined by the elasticity of the

WLC. Since FR is a random variable with a white-noise spectrum, its vari-

ance can be calculated as the integral of the noise power within the given

observation bandwidth fLP (34). The square-root of the variance, the root

mean-square (RMS) of FR, is thus

DFRRMS ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4gkBT fLP

p
: (6)

This force uncertainty results in bead position noise

DxRMS ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4gkBT fLP

p

K
: (7)

We next consider the magnitude of the position signal produced by an

active molecular motor. One enzymatic cycle of the motor results in a

decreased WLC contour length L0�DL, where L0 and DL are the original

contour length and the step length, thus increasing both the extension of the

WLC and the restoring force FWLC. This produces a change (signal) Dxe so

that a new equilibrium is established where FWLC (xe 1 Dxe, L0�DL) ¼ FC.

To first-order, this is achieved when

@FWLCðx; LÞ
@x

���� x¼xe

L¼L0

Dxe 1
@FWLCðx; LÞ

@L

���� x¼xe

L¼L0

DL ¼ 0: (8)

Using Eq. 2, this simplifies to

Dxe ¼ �
xe

L0

DL: (9)

Thus a step measurement will yield a measured step length Dxe, which is

attenuated by the nondimensional extension of the chain xe=L0 compared to

the true step length DL. The (amplitude) SNR is defined as the ratio of the

signal, Eq. 9, to the noise, Eq. 7, as

SNR ¼
xe

L
DL

DxRMS

¼ xe

L

DLffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4gkBTfLP

p K: (10)

The effect of step length, drag coefficient, and measurement bandwidth

on SNR is readily seen. However, from this expression it is not apparent

how the SNR behaves as a function of force, WLC contour length, or WLC

persistence length, since these affect both xe and K. Using the root formulas

for cubic equations to solve Eq. 3, the equilibrium extension can be found,

FIGURE 1 Model for single-molecule motor experiment. A microsphere

(diameter d) is tethered to a stationary sample chamber by an NA modeled as

a worm-like chain (WLC) with contour length L, end-to-end distance x, and

persistence length Lp. The effect of a molecular motor (MM) is modeled by

successively shortening the contour length of the WLC by an amount DL,

the molecular motor step length. The microsphere is held in a force-clamp

with a constant pulling force FC, balanced by the counter-force FWLC.

TABLE 1 Input parameters used for simulations

Parameter Range

Step length DL 0.3–6 nm

Step rate kcat 10–1000 s�1

Contour length L 0.1–10 mm

Persistence length Lp 1–100 nm

Microsphere diameter d 0.1–10 mm

Clamp force FC 1–50 pN

Detection bandwidth 100 kS/s sampling followed by

low-pass filtering at fLP ¼ kcat
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and substituted into Eq. 5 to obtain the local stiffness. However, these long

explicit expressions offer little additional insight into how to design an

experiment. To derive a simpler SNR expression from which quantitative

SNR estimates in a variety of conditions can be obtained, we analyze the

nondimensional WLC model,

f ¼ 1

4
ð1� eÞ�2 � 1

4
1 e

� �
; (11)

where f ¼ ðFWLCLpÞ=ðkBTÞ is the nondimensional force, and e ¼ x=L is the

nondimensional extension. By examining the nondimensional extension

(Fig. 2 A) and stiffness k ¼ ðdf Þ=ðdeÞ (Fig. 2 B) as a function of f, we find

approximate expressions for e and k. In the low force region (I in Fig. 2 A)

below f � 0.2, extension increases linearly with force. In the intermediate

force region (II in Fig. 2 A) between f � 0.2 and f � 12, extension increases

logarithmically with force. Finally, in the high force region (III in Fig. 2 A)

above f� 12, extension is a polynomial function of force. Similarly, stiffness

is approximated well by an exponential function of f up to f � 2, and by a

polynomial for higher forces. These approximations are accurate to within

610% of the exact solutions, and should thus allow estimating SNR with

620% accuracy. The simplified expressions for the SNR are

SNRð f , 0:2Þ � 0:63f
DLffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4gkBT fLP

p kBT

LpL
0:99 3 3:4

f
; (12)

SNRð0:2 , f , 1Þ � 0:19 logð9:3f Þ

3
DLffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4gkBT fLP

p kBT

LpL
0:99 3 3:4

f
;

(13)

SNRð1 , f , 12Þ � 0:19 logð9:3f Þ DLffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4gkBT fLP

p kBT

LpL
3:2f

1:6
;

(14)

SNRð f . 12Þ � 0:83f
0:026 DLffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4gkBT fLP

p kBT

LpL
3:2f

1:6
: (15)

Since temperature is seldom changed by .10% in experiments with

biological macromolecules, the persistence length and the clamp-force

essentially determine the nondimensional force range. Using two model

cases, one with Lp¼ 1 nm and one with Lp¼ 50 nm (corresponding to ssNA

and dsNA, respectively), and forces from 1 pN and up, we compare these

approximations to the exact solution, Eq. 10, in Fig. 3. We find good

agreement, and note that steps are likely to be detected only in the medium or

high force regions, since SNR � 1 in the low force region. We therefore

restrict further discussion of the approximate expressions to the high and

medium force range (f . 0.2).

SIMULATION AND TIME-SERIES ANALYSIS

Numerical simulations of the experiment shown in Fig. 1

were done: 1), to determine a threshold SNR, above which

steps can be detected; and 2), to assess the validity and lim-

itations of the approximations used in the derivation of the

approximate SNR formulas, Eqs. 12–15.

In our simulations, Eq. 1 was solved numerically using the

Euler method (35). The position xi of the bead at time step i is

related to the position xi�1 at the previous time step i–1 by

xi ¼ xi�1 1
dt

g
ðFC 1 FWLC 1 FRÞ; (16)

where we use an integration time step dt, and the Stokes

formula g ¼ 6ph(d/2), in which h and d are the dynamic

viscosity of the surrounding medium and the bead diameter,

respectively.

The enzymatic cycle of a molecular motor is modeled as a

successive stochastic shortening of the WLC contour length

by an amount DL for each step. The distribution of dwell

FIGURE 2 (A) Extension as a function of force for the nondimensional

WLC model. The solid line indicates an exact solution to Eq. 3. Circles,

triangles, and squares indicate exponential, logarithmic, and polynomial

approximations, respectively. Each approximation is accurate to 610% in its

force region, indicated by dotted lines. (B) Nondimensional stiffness as a

function of force. The solid line is calculated from Eq. 5. Triangles and

squares indicate linear and polynomial approximations, respectively. Force

regions as in panel A. Typical experimental forces of between 1 and 50 pN

correspond to the high force range (III) for a WLC with Lp¼ 50 nm (dsNA),

and to the medium force range (II) region when Lp ¼ 1 nm (ssNA).
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times between steps is exponential, with a time-constant of

k�1
cat ; corresponding to a mechano-chemical transition of the

molecular motor with a constant probability per unit time,

and average rate kcat.

A suitable simulation time step, dt ¼ 0.1 ms for all sim-

ulations, was found empirically by decreasing dt until further

decrease resulted in negligible change in Fourier transform

of the pairwise distance distribution (FTPWD). This time

step corresponds to, on average, 104 simulation time steps

during the shortest investigated dwell time between molec-

ular motor steps (kcat ¼ 1000 s�1). The simulation code was

written in MatLab (Ver. 7), with CPU-intensive subfunctions

implemented in C.

We extract a step length from the simulated time-series by

analyzing the periodicity of the pairwise distance distribution

(PWD). The position of a peak at a particular spatial fre-

quency in the FTPWD corresponds to the step length in the

time-series.

To relate predicted SNR values (Eq. 10) to the height of

observed peaks in the FTPWD obtained by simulation, we

analyze an idealized time-series. The PWD of an infinitely

long time-series of spatial jumps with a fixed step size DL,

modulated by normally distributed noise of RMS-amplitude

DxRMS, can be written as a convolution (5) (29),

PWDðxÞ ¼ exp � x
2

2ð
ffiffiffi
2
p

DxRMSÞ2
� �� �

5 +
k¼1N

k¼�N
dðx � kDLÞ

� �
;

(17)

where the first term is the distribution of distances between

any two points in the time series, and d is the delta function.

Thus the PWD is a sum of Gaussians with variance 2Dx2
RMS

placed along the x axis at intervals of DL. Any normalizing

prefactor is irrelevant for the following analysis and is

omitted for simplicity. The Fourier transform of Eq. 17 is

FTPWDðvÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4pDxRMS

p
exp � v

2

4 1=ð2DxRMSÞ2
� 	

 ! !

3
2p

DL
+

k¼1N

k¼�N
d v� k

2p

DL

� �� �
; (18)

where v is the spatial frequency. This FTPWD consists of a

sequence of peaks modulated by a Gaussian envelope. The

peak that corresponds to the step of length DL is found at

v ¼ 2p=DL: Steps are resolved when this peak is discernible

in the FTPWD. We designate the normalized height of this

peak step detectivity (SD):

SD [

FTPWD
2p

DL

� �
FTPWDð0Þ ¼ exp � 2pDxRMS

DL

� �2
 !

: (19)

This ratio is independent of PWD counting statistics and

normalization, and serves as a numerical indicator of when

steps can be resolved. Substituting SNR for DL=DxRMS (Eq.

10), SD is readily related to the theoretically derived SNR,

SD ¼ exp � 2p

SNR

� �2
 !

; (20)

or conversely,

SNR ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ð2pÞ2

ln SD

s
: (21)

This expression allows us to analyze the FTPWD of a

time-series, obtain the SD, and calculate the corresponding

FIGURE 3 The simple SNR formulas (symbols, Eqs. 13–15) approximate

the exact SNR (solid line, Eq. 10) well. The SNR for detecting steps in an

experiment with a 1-mm diameter bead in water at room temperature (T ¼
300 K, h¼ 1 mPas) and a 100 Hz bandwidth is shown. WLC contour length

was 1 mm, and two cases are shown: Lp ¼ 50 nm (A) and Lp ¼ 1 nm (B),

corresponding to dsNA and ssNA, respectively. The upper and lower curves

are the SNR for detecting a 1.5 nm and a 0.3 nm step, respectively. Symbols

correspond to the force regions as in Fig. 2 A: squares in the high force

region (III), Eq. 15, and triangles in the medium force region (II), Eqs. 13

and 14.
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SNR, which can be compared to the theoretically predicted

exact, Eq. 10, or approximate, Eqs. 12–15, SNR.

Here, for simplicity, we have analyzed an infinite time-

series. A finite experimental FTPWD will exhibit broader

peaks (the Fourier transform of a finite sum in Eq. 17 is the

sinc function). While the finite time-series should not affect

the SNR or the obtained FTPWD peak-height (SD), it may

degrade the precision with which the peak position (step

length) is determined. We have examined the effect of a

finite duration experiment on the SD calculation using sim-

ulation, as described in Results.

To calculate the SNR using Eq. 21, time-series obtained

by simulation were analyzed as follows. First, to account for

the finite experimental detection bandwidth of typical opti-

cal tweezers instruments (36,37), the solution of Eq. 1 was

sampled at a sampling frequency of 100 kS/s (shaded line,

Fig. 4 A). Second, to increase the SNR the detection band-

width was reduced to fLP ¼ kcat by low-pass filtering, and

to reduce the CPU-time required for the PWD calculation

the signal was then resampled at 100 kcat S/s (solid line, Fig.

4 A). Third, the PWD was calculated and normalized (Fig.

4 B). Fourth, the FTPWD (Fig. 4 C) was calculated (no

windowing was used) and the normalized height (SD) and

position of any peak near v ¼ 2p=DL was found using a

peak-search algorithm.

Using this protocol, the SNR was mapped for a range

of typical experimental parameters (Table 1) by perform-

ing numerous simulations. The step lengths and rates were

chosen to correspond to those proposed or observed for poly-

merases or helicases. The WLC contour lengths correspond

to 0.3–30 kb tethers, commonly used for single molecule

experiments. The WLC persistence lengths were chosen to

span the stiffness range of NA substrates, ranging from

ssRNA (Lp . 1 nm) to dsDNA and dsRNA (Lp . 50 nm).

The bead size and clamp-force were varied to cover ranges

typically used in experiments. An aqueous solution at room

temperature was assumed in all simulations (T ¼ 300 K,

h ¼ 1 mPas).

RESULTS

Measuring step length requires [20 steps
at SNR [ 4

To investigate the minimum required experiment duration,

simulations of variable length ranging from, on average, 10

to 100 motor steps were performed. The results show that an

experiment encompassing 20 steps or more is sufficient to

determine the step length with a precision of 610% (Fig. 5,

A–D). Fewer steps obviously suffice at high SNR when step

length can be determined from the time-series directly, and

no further analysis is required. A step detection threshold,

defined as the minimum SNR at which the step length could

repeatedly be correctly (610%) determined, was established

as SNR $ 4 by comparing multiple simulations with dif-

ferent SNRs (Fig. 5 E).

General notes on SNR: step length, contour
length, bead diameter, and step rate

Examining the approximations in the different force regions,

Eqs. 12–15, we find that the SNR is of a form

SNRðf Þ � e
DLffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4gkBT fLP

p kBT

LpL
k; (22)

where only the approximations for the nondimensional ex-

tension e and stiffness k change with force region. We note

that step length, bead diameter, step rate, and contour length

all appear in identical form in these expressions. Predictably,

SNR is proportional to step length DL. A doubling of step

length is required to double SNR. Similarly, SNR is in-

versely proportional to contour length; a doubling in SNR is

obtained by halving L. Bead diameter and step rate have a

less direct effect on SNR. A fourfold decrease in either d or

fLP is required to double SNR. Below we consider force and

persistence length effects on SNR in the medium and high

(nondimensional) force regions. Note that the effect of tem-

perature cannot be assessed from Eq. 22 alone, because e, k,

FIGURE 4 (A) Typical simulated time-series (sampled

data in shaded, filtered in solid representation). (B)

Pairwise distance distribution (PWD) for the filtered data

in panel A. (C) Fourier transform of the pairwise distance

distribution (FTPWD) in panel B. Note that due to step

attenuation, the peak in the FTPWD is displaced toward a

higher spatial frequency compared to the frequency corres-

ponding to DL (dashed line).
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and g (through viscosity) are functions of temperature. But

since temperature usually cannot be varied by .610% for

most biological experiments, we do not consider it in detail

here.

SNR in the medium force region (0.2 \ f \ 12)

Two approximations, above and below f ¼ 1, must be con-

sidered in this force region (Eqs. 13 and 14). The lower region,

where 0.2 , f , 1, applies when 0.8 pN , F , 4 pN, if

Lp ¼ 1 nm (ssNA), and 0.02 pN , F , 0.08 pN if Lp ¼ 50

nm (dsNA). In this region SNR can be approximated by

SNRð0:2 , f , 1Þ � 0:19 logð9:3f Þ DLffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4gkBT fLP

p kBT

LpL
3:4

f
:

(23)

For higher forces, 1 , f , 12, applicable when 4 pN , F ,

50 pN, if Lp ¼ 1 nm (ssNA), and 0.08 pN , F , 1 pN if

Lp . 50 nm (dsNA), SNR can be approximated by

SNRð1 , f , 12Þ � 0:19 logð9:3f Þ DLffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4gkBT fLP

p kBT

LpL
3:2f

1:6
:

(24)

In these expressions, the effect of force on e is best read

from Fig. 2 A, due to the logarithmic dependence on f. The

nondimensional extension ranges from 0.1 to 0.8, and thus has

a dramatic effect on SNR. The effect of force on nondimen-

sional stiffness is more readily expressed quantitatively (Fig.

2 B): In the lower range (0.2 , f , 1), an increase of 0.56

(nondimensional units) in f is required to double SNR. In the

upper range (1 , f , 12), a 1.54-fold increase in f doubles

SNR. Here we have stated our results in terms of the non-

dimensional force, since the effect of force and persistence

length on SNR is difficult to decouple in Eqs. 23 and 24.

SNR in the high force region (f [ 12)

The high force region is applicable above F ¼ 50 pN when

Lp ¼ 1 nm (ssNA), and above F ¼ 1 pN when Lp ¼ 50 nm

(dsNA). In this region SNR can be approximated by

SNRðf . 12Þ � DLffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4gkBT fLP

p kBT

LpL
2:67

FLp

kBT

� �1:58

: (25)

We note that a 3.3-fold increase in persistence length is

required to double SNR. Force, on the other hand, affects

SNR strongly: a 1.55-fold increase in force doubles the SNR.

Comparing simulation to theory

To verify the predictions for how each parameter (step length,

step rate, bead diameter, WLC contour- and persistence length,

and force) affects SNR, we compared SNR values obtained

by analysis of simulated time-series to predicted SNR (Eq.

10 and 25). The dependence of the SNR on all six parameters

is hard to visualize in one figure, so we chose to plot the SNR

threshold for step detection as a function of two parameters

at a time, with force on the y axis. Fig. 6 A shows results

when varying the step length. Fig. 6 B verifies that the mea-

sured step is attenuated according to Eq. 9. Fig. 7 shows SNR

threshold contour results when varying the step rate (Fig. 7

A) and the WLC persistence length (Fig. 7 B). Fig. 8 shows

SNR threshold contour results when varying the bead diam-

eter (Fig. 8 A) and the WLC contour length (Fig. 8 B). Sym-

bols show threshold SNR contours extracted from analysis of

simulated time-series data. Solid lines show the predicted

location of the SNR threshold (SNR¼ 4) from Eq. 10. Dashed

FIGURE 5 (A–D) FTPWD graphs when analyzing time-series with different

number of steps, to determine the influence of time-series length on the SD and

the determined step length. A short time-series (five steps, A) results in multiple

broad peaks. The false peaks are absent in the curve for 10 steps (B), but the

main peaks remain broad. A time-series of 20 steps (C) shows well-defined

peaks that allow step-length determination with 10% accuracy. Further

lengthening the time-series (40 steps, D) improves step length measurement

only little. All FTPWD curves show roughly equal SNR (the peaks are equally

high). (E) Measured step length as a function of SNR. The average and standard

deviation of the determined step length from 10 simulations is shown. Step

length can be accurately determined when SNR $ 4. Dashed lines correspond to

step lengths of 90 and 110% of the true (corrected for attenuation) step length.
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lines indicate the SNR threshold derived from the high-force

approximation, Eq. 25.

DISCUSSION

Designing experiments for measuring step length of molecular

motors requires quantitative assessment of the experimental

parameters which can be adjusted to achieve sufficient SNR.

Measuring molecular motor step length from bead position

time-series is complicated by the effect of the compliant tether

and by thermal fluctuations of the bead. The finite tether

stiffness affects the magnitude of thermal noise (Eq. 7), and

causes step attenuation (Eq. 9 and Fig. 6 B), i.e., the apparent

shortening of the measured steps compared to the true step

size. To observe steps, thermal fluctuations larger than the

attenuated step size must be averaged out, limiting the band-

width of the measurement.

Here we present an approximate model that quantitatively

and explicitly accounts for the motor properties, tether elasticity,

FIGURE 6 (A) SNR is inversely proportional to step length DL. Simulated

step detection threshold contours (SNR ¼ 4) as a function of FC, for step

lengths DL ¼ 0.3–6 nm at different stepping rates: kcat ¼ 10 s�1 (triangles),
kcat ¼ 100 s�1 (squares), and kcat ¼ 1000 s�1 (circles). Solid lines indicate

step detection thresholds calculated from the exact formula, Eq. 10, and

dashed lines indicate the SNR threshold calculated from the approximate

formula, Eq. 25. L¼ 1000 nm, Lp¼ 50 nm, and d¼ 1000 nm. (B) Measured

step lengths are attenuated by the nondimensional extension of the WLC.

Step attenuation (ratio of measured to true step length) as a function of FC,

for persistence lengths of Lp ¼ 50 nm (squares) and Lp ¼ 1 nm (triangles).
The measured step length was determined from the spatial frequency of a

peak in the FTPWD. Lines indicate theoretical prediction, Eq. 9.

FIGURE 7 (A) SNR is inversely proportional to the square-root of the

measurement bandwidth fLP, and proportional to L0:58
p : Simulated step

detection threshold contours (SNR¼ 4) as a function of FC for stepping rates

between 10 s�1 and 1000 s�1, and (B) for persistence lengths between 1 nm

and 100 nm. Contours for three step lengths are shown, DL ¼ 0.3 nm

(triangles), DL ¼ 0.9 nm (squares), and DL ¼ 1.5 nm (circles). Solid lines

indicate step detection thresholds calculated from the exact formula, Eq. 10,

and dashed lines indicate the SNR threshold calculated from the approx-

imate formula, Eq. 25. L¼ 1000 nm, d¼ 1000 nm, in (A) Lp¼ 50 nm, and in

(B) kcat ¼ 100 s�1. In panel B, the dotted line indicates the border between

the high-force (III) and the medium-force (II) regions.
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and bead fluctuations, and can be used to optimize experi-

ments. We first discuss the validation of the model by simula-

tions. Then we expose the impact of each model parameter on

SNR and discuss optimizing tethered-bead constant-force

assays. Finally, we compare the theoretical predictions with

published experimental results for selected NA motors.

Validation of the approximate model

The approximate theoretical model accounts for the salient

features of the experimental system. This is demonstrated by

the good agreement between the theoretical and simulated

results in Figs. 6–8. The discrepancies between simulation

(symbols) and theory (solid lines) are due to the theory only

describing an equilibrium state of the system. The simulation

takes into account the drag force on the bead which results in

a settling-time before equilibrium is reached. Thus, in simu-

lations we expect that a higher force is required to reach the

threshold SNR in cases with fast motors (Fig. 7 A) or big

beads (Fig. 8 A). A general tendency for the SNR threshold

obtained from simulation to lie at higher force than the

theoretical threshold can be explained by the finite roll-off

of the bandwidth-limiting low-pass filter employed in the

analysis of the time-series. The filter allows slightly more

thermal noise to pass than an ideal filter assumed in the

theory. The closed form high-force SNR approximation

(Eq. 25, dashed lines) agrees well with the exact SNR (Eq. 10,

solid lines).

Optimization of experimental parameters for
step size detection

Below we discuss the effect of different experimental param-

eters on the SNR in the high-force regime in which steps are

most likely to be detected. External force has the strongest

impact on SNR (SNR is proportional to F1.58), so clamp-

force should ideally be maximized for step length measure-

ments. However, the stalling force of the molecular motor

limits the usable clamp-force. Measured stalling forces range

from a few pN (38) up to and exceeding 50 pN for viral

packaging motors (39). A high clamp-force results in in-

creased WLC extension and a stiffening of the system due to

the nonlinear force-extension relationship. This stiffening

reduces thermal fluctuations. However, fluctuations on the

order of the step length are essential for molecular motors

using the Brownian ratchet mechanism (40). For these motors

the stalling force should therefore be close to the force nec-

essary for single step observation. This was recently con-

firmed experimentally for an RNA polymerase (8). In addition,

the structural strength of the tether and associated handles (e.g.,

complementary DNA oligos attached to ssDNA tether) limits

the maximum usable clamp-force.

SNR is inversely proportional to the WLC contour length.

Tether length is mainly limited by experimental design,

i.e., interference from surface-effects between the bead and

microscope coverslip or interaction between the two beads

in the dual-trap (dumbbell) setup. Tether length should be

minimized whenever possible; in practice, tethers of similar

length to the bead diameter have been used.

The persistence length of the tether is crucial in determin-

ing the overall stiffness, and consequently the magnitude of

thermal noise of the system. SNR is proportional to Lp
0.58. A

long persistence length, or buffer conditions that maximize

Lp, should be chosen whenever possible. At very low ex-

tensions, a shorter persistence length may increase the local

WLC stiffness (k), but these conditions also yield very low

FIGURE 8 SNR is inversely proportional to the square-root of the bead

radius, and inversely proportional to the WLC contour length. Simulated

step detection threshold contours (SNR ¼ 4) as a function of FC for (A)

microsphere diameters between 0.1 and 10 mm, and (B) for WLC contour

lengths between 100 nm and 10 mm. Contours for three step lengths are

shown: DL ¼ 0.3 nm (triangles), DL ¼ 0.9 nm (squares), and DL ¼ 1.5 nm

(circles). Solid lines indicate step detection thresholds calculated from the

exact formula, Eq. 10, and dashed lines indicate the SNR threshold cal-

culated from the approximate formula, Eq. 25. Lp ¼ 50 nm, kcat ¼ 100 s�1,

in (A) L ¼ 1000 nm, and in (B) d ¼ 1000 nm.
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SNR (Eq. 10). In particular, our results suggest that the use

of double-stranded substrates, compared to single-stranded

substrates, improves the possibility of detecting short steps.

This could be experimentally verified for helicases that trans-

locate along ssNA substrates but are able to unwind dsNA.

A motor running exclusively on ssNA can be studied using a

short ssNA substrate with longer stiff dsNA handles at each

end.

Although the step rate and the bead diameter affect SNR

most weakly (SNR is proportional to 1=
ffiffiffiffiffiffiffiffi
dfLP

p
) these ex-

perimental parameters can be readily varied. Slowing down

the molecular motor, and thus reducing the measurement

bandwidth, offers a simple way of increasing SNR in an

experiment. This can be done either by changing the tem-

perature of the sample solution (41), by using clamp-force as

an inhibitor (42), or by restricting the step rate by lowering

ATP concentration (when ATP binding constitutes the rate

limiting step). Measurements at these nonphysiological con-

ditions still provide relevant information about the function

of a molecular motor in vivo since the lengths of the ele-

mentary steps are determined by the molecular architecture

of the motor rather than by external conditions.

Single molecule measurements on the nanoscale require

micron-sized beads as handles to couple the experiment to

macroscopic instrumentation. A macroscopic handle effec-

tively transmits the thermal bath fluctuations to the micro-

scopic system and thus constitutes a significant noise source.

Decreasing the bead size reduces the power of the noise

source. The minimum bead size is limited by the requirement

to resolve individual beads by light microscopy and, for

optical-tweezers-based measurements, by the dependence of

the trapping force on the bead volume. The smallest bead for

which the desired clamp-force can be achieved should be

chosen. However, small beads require high trapping laser

power, so the increase in SNR must be weighed against

unwanted damage and local heating of the specimen (43,44).

In this study we have assumed ideal instrumentation, i.e.

absence of 1/f (pink) noise in the bead position detection.

Close approximations to this situation have recently been

realized using either an optically levitated dumbbell assay

(8), or differential detection (26,45), which decouple or com-

pensate for stage-drift (the dominating noise source at low

frequencies). In practice, a balance between the benefits of

limiting the observation bandwidth, which allows longer

averaging of the zero-mean thermal noise, and shortening the

measurement time, which limits instrumentation related 1/f
drift, has to be found. Optimization of the measurement time,

by including 1/f noise in the model, could easily be done by

adding a 1/f noise source to the simulation, but we have not

found a straightforward way to include 1/f noise in the the-

oretical formulas presented here.

Comparison with experimental data

Since instrumentation with sub-nanometer noise levels has

only become available recently, the step length for NA bound

molecular motors has been successfully determined only for

one RNA polymerase. In this section we apply the theory to

compute a theoretical SNR and compare it to experimental

SNRs from several single molecule studies on polymerases

and helicases translocating on dsDNA substrates. We limit

ourselves to the studies in which the conditions used were

described at the necessary level of detail. These comparisons

show that the theoretical predictions correlate well with the

success or failure to observe discrete steps. The comparisons

are summarized in Table 2.

Recently, Abbondanzieri et al. (8) observed single 0.37

nm steps of Escherichia coli RNA polymerase with a rate of

kcat � 0.5 s�1 using an assay with a 600-nm-diameter bead

held in a 18 pN force-clamp. This corresponds to SNR ; 28,

approximately fivefold higher than the detection threshold of

SNR . 4 established by the proposed theory. We attribute

this discrepancy to the fact that the theory does not account

for instrumentation-related drift, and to the fact that the

authors chose to present data where steps can be resolved by

eye from the filtered time-series. Perkins et al. (28) did not

observe discrete steps of RecBCD at SNR ;9, most likely

due to instrumental drift. We predict that a realistic experi-

mental SNR threshold for detecting steps lies somewhere

between the ideal-instrument lower limit of ;4 derived here,

and the value of ;28 experimentally verified by Abbondanzieri

et al. Notably, Wang et al. (7), Shaevitz et al. (2), Thomen

TABLE 2 SNR for recent NA translocating single-molecule motor experiments

Motor

Bead diameter

(nm)

Clamp force

(pN)

Step rate

(s�1)

Step length

(nm)

Contour length

(nm)

SNR

(Eq. 10)

RNA Polymerase, Wang et al. (7) 500 10 25 0.34 1500 ;2.4

RNA Polymerase, Shaevitz et al. (2) 500 8.4 15 0.34 2000 ;1.8

RNA Polymerase, Thomen et al. (42) 500 15.5 15 0.34 16000 ;0.5

RNA Polymerase, Abbondanzieri et al. (8) 600 18 0.5 0.37 2000 ;28

f29 portal motor, Smith et al. (39) 2200 57 100 0.68 6600 ;1.7

RecBCD, Perkins et al. (28) 460 7 2 0.34 852 ;9

Double-stranded DNA with a persistence length of 50 nm, and room temperature (T¼ 300 K) was assumed for all experiments. Where a range of values were

used in the experiments, the values maximizing SNR have been chosen, and the SNR calculated using Eq. 10. Abbondanzieri et al. (8) were the only ones to

observe steps of RNAP at SNR ; 28. In the absence of instrumental noise, our analysis shows that Perkins et al. (28) could have observed single RecBCD

steps at SNR ; 9.
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et al. (42), and Smith et al. (39) all conducted experiments at

SNR roughly close to one, and consistent with our predic-

tion, did not observe discrete steps.

Although ssRNA binding to the ribosome was studied

using OT (11) there has been no account of translocation

along ssNA by any motor against applied force, let alone an

attempt to determine the step. An assessment of the force

required to detect steps of 0.5–1.5 nm (expected for many

helicases) for a motor translocating on ssNA (Lp ¼ 1 nm)

(Fig. 7 B) leads us to conclude that this might be impossible,

except for very slow or strong motors.

CONCLUSIONS

Using a simplified theory of a tethered bead, constant-force,

single-molecule experiment, we have investigated experi-

mental parameters that influence the detection of stepwise

tether shortening. The simplified theory was verified by

Monte Carlo simulation and is consistent with experimental

results obtained for dsDNA. The theory allows assessment

and optimization of experimental conditions for motors trans-

locating along single-stranded NA substrates for which there

is little experimental data available. Most importantly, in the

absence of instrumentation-related noise, an SNR threshold

of ;4 was found for measuring step length, and in contrast

to previous work where the tether stiffness was assumed

constant (24,25), we have derived quantitatively the depen-

dence of the SNR on the clamp-force and tether persistence

length.
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