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ABSTRACT We perform a systematic analysis of mechanisms of feedback regulation that underlie short-term adaptation in
intracellular signaling systems. Upon receiving an external cue, these systems generate a transient response that quickly returns to
basal levels even if the stimulus persists. Signaling pathways capable of short-term adaptation are found in systems as diverse as
the high osmolarity response of yeast, gradient sensing in Dictyostelium, and the cytokine response in vertebrates. Using
mathematical analysis and computational experiments, we compare different feedback architectures in terms of response
amplitude and duration, ability to adapt, and response to variable stimulus levels. Our analysis reveals three important features of
these systems: 1), multiple step signaling cascades improve sensitivity to low doses by an effect distinct from signal amplification;
2), some feedback architectures act as signal transducers converting stimulus strength into response duration; and 3), feedback
deactivation acts as a dose-dependent switch between transient and sustained responses. Finally, we present characteristic
features for each form of feedback regulation that can aid in their identification.

INTRODUCTION

Intracellular signaling pathways are an important component

of the biochemical systems that allow cells to survive and

proliferate in constantly changing environmental conditions.

These pathways convert an external cue, such as a hormone,

growth factor, or environmental stress, into an intracellular

signal that generates an appropriate response to the challenge

(1). Such responses can include changes in genetic expres-

sion and regulation of metabolic processes. The genetic pro-

gram a cell follows is determined by both the amplitude and

duration of the signal generated by the stimulus. For ex-

ample, it has been demonstrated that epidermal growth factor

causes transient activation of the ERK MAP kinase and leads

to cell proliferation, while nerve growth factor causes sus-

tained ERK activation and results in cell differentiation (2).

It has also been suggested that, in yeast, sustained activa-

tion of the MAPK Kss1 leads to invasive growth, whereas

transient Kss1 activation is required for a proper mating

response (3). Moreover, abnormal or inappropriate activation

of MAP kinase activity can lead to a number of diseases,

including asthma and cancer. Therefore, understanding the

control mechanisms that regulate the activity of signaling

pathways is a fundamental problem in cell biology.

The external stimulus received by a cell, as well as the

elicited response, can be temporally transient or sustained.

However, the time-dependent behavior of the two does not

have to coincide. For example, signaling systems termed

adaptive generate a transient response in the presence of a

sustained stimulus. Long-term adaptation results from in-

duced changes in genetic expression. For example, stimulus-

dependent induction of Socs1/3 is thought to inhibit Janus

kinase’s ability to phosphorylate Stat1/3, leading to long-

term adaptation in the cytokine immune response (4). Short-

term adaptation requires feedback or feed-forward regulation

mediated by protein-protein interactions, phosphorylation

events, or other biochemical mechanisms. In this case, the

pathway not only functions as information transduction sys-

tem but also plays an important role in regulating the whole

cellular response. For example, we recently demonstrated

that in the high osmolarity pathway of yeast, feedback phos-

phorylation of the osmosensor Sho1 by the MAPK Hog1

plays an important role in rapid signal attenuation after cells

are exposed to high osmotic stress (5). To establish Sho1 as a

target of feedback regulation, we combined experimental

analysis with mathematical modeling. These investigations

motivated the theoretical and computational studies pre-

sented below.

To provide a better understanding of the control mecha-

nisms that lead to short-term adaptation, we performed a

systematic analysis of various pathway architectures that

regulate signaling through feedback inhibition. The models

are compared in terms of their ability to produce a strong

response followed by good adaptation, and the advantages

and shortcomings of each signaling system are discussed.

Also investigated is the ability of these systems to perform in

the presence of changing conditions. Our results reveal that

multilevel cascades improve the sensitivity of adapting sys-

tems by a mechanism distinct from signal amplification. We

also demonstrate how feedback deactivation can be used to

construct a dose-dependent switch between transient and

sustained signaling and illustrate how certain pathway ar-

chitectures convert stimulus strength into signal duration.

The biological implications of these results are discussed.

Submitted February 23, 2007, and accepted for publication April 12, 2007.

Address reprint requests to T. C. Elston, Tel.: 919-843-7670; E-mail:

telston@med.unc.edu.

Editor: Herbert Levine.

� 2007 by the Biophysical Society

0006-3495/07/08/806/16 $2.00 doi: 10.1529/biophysj.107.107516

806 Biophysical Journal Volume 93 August 2007 806–821



Additionally, we present characteristic features of each model

system that can be used to help establish the underlying

mechanism of adaptation in signaling pathways.

Mechanisms of adaptation

Broadly speaking, there are three strategies for achieving

adaptation: integral control, feed-forward motifs, and neg-

ative feedback loops (Fig. 1). Integral control uses the time

integral of the difference between the response and its pre-

stimulus level to regulate signaling. This control mechanism

has been discussed extensively in the literature in the context

of bacterial chemotaxis (6–9). Systems containing feed-

forward motifs, in which two stimulus-dependent pathways

converge on a common signaling component, also produce

adaptation when the parallel pathways have opposing effects

on the common component. Feed-forward motifs have re-

ceived considerable attention in the literature and underlie

the regulation of genetic networks as well as signaling sys-

tems (9–12). Negative feedback loops, the focus of this

article, are pervasive in signaling systems, and many models

of pathway regulation based on negative feedback have been

proposed (13–16). In these systems, adaptation is achieved

when a signaling species initiates a feedback loop that neg-

atively regulates its own activity either directly or indirectly

by targeting an upstream pathway component. Here, regu-

lation occurs as a result of the transduced signal (output),

whereas in feed-forward architectures, regulation is mediated

by upstream components (input) independently of the path-

way’s output. As a result, in feedback-based systems, the

strength of upstream pathway inhibition is determined by the

magnitude of the downstream response. For this reason,

feedback is usually the method of choice for engineered

systems in which control is exercised as a function of how

the actual measured output compares to the desired target

value. Negative regulation in signaling cascades can assume

many forms including deactivation (17), desensitization

(5,16), sequestration of an upstream species (18), spatial

relocalization (19,20), or stimulus-dependent degradation of

a pathway component (21). Both integral control and feed-

forward motifs are capable of perfect adaptation in the sense

that the signal returns exactly to its prestimulus level. Neg-

ative-feedback-based regulation does not, in general, pro-

duce perfect adaptation. However, in many cases it is capable

of near-perfect adaptation that for biological purposes is

indistinguishable from strict perfect adaptation. It is impor-

tant to note that adaptation to sustained stimuli must meet

two criteria: the propagated signal must be of sufficient am-

plitude and appropriate duration to elicit the required re-

sponse, and, at the same time, return to basal or near-basal

levels in the presence of a sustained stimulus. As we show in

this work, these requirements are often in conflict with each

other.

METHODS

Mathematical modeling

In all the models, we assume activation and deactivation reactions follow

Michaelis-Menten kinetics. This choice was made because Michaelis-

Menten is the simplest form of saturable kinetics and is used extensively

to describe enzymatic reactions. The rates of these reactions have the form

reaction rate ¼ ðki 1 kj½E�Þ½X�
KMl 1 ½X�

; (1)

where [E] is the concentration of the enzyme (e.g., kinase or phosphatase),

[X] is the concentration of the substrate (e.g., unphosphorylated or phos-

phorylated pathway component), kj [E] is the maximum reaction velocity,

KMl is the Michaelis constant, and ki represents basal enzymatic activity not

associated with [E]. Note that for simplicity the Michaelis constant of the

basal enzymatic activity is assumed to be the same as that of the enzyme

E. Protein degradation involves enzymatic steps, and, therefore, should also

follow some form of saturable kinetics. For simplicity, we assume the reac-

tion rate for protein degradation also follows Eq. 1. The limit of first-order

kinetics for protein degradation is achieved by taking KMl� [X]. Receptor/

ligand binding follows mass-action kinetics. We use an asterisk to denote an

activated protein (e.g., [X*]), and a dash to denote an inhibited protein (e.g.,

[X�]). In the models that do not involve production and/or degradation, the

concentrations have been normalized to the total amount of each species and

normalization factors have been included in the kinetic constants. The

differential equations describing our models were solved numerically using

the software Mathematica (Wolfram Research, Champaign, IL). The pro-

grams used to simulate the models are available upon request. In all the

experiments, the models were subject to a small basal activity and run to

steady state before each experiment.

Model criteria and parameter selection

Parameter selection was performed using a uniform set of criteria for all the

models. A signaling pathway must produce a response of sufficient strength

FIGURE 1 Mechanisms for adaptation. (A) Integral control. (B) Feed-

forward regulation. (C) Feedback inhibition through decreased activation (*)

or increased deactivation (**).
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and duration to be recognized by downstream machinery, while at the same

time being capable of adapting to a wide range of stimulus doses. To assess

the models’ ability to meet these criteria, we make use of the following

definitions. Let [X*] denote the time-dependent concentration of the active

form of the signaling molecule. The response amplitude is defined as the

maximum concentration of [X*] after stimulation. The response duration is

defined as the time between half maxima of [X*]. The adaptation level is

defined as the steady-state level of [X*] in the presence of a sustained

stimulus. The recovery time is defined as the time for the system to return to

its prestimulus state after removal of the stimulus. Based on examples from

the literature, we required that the models be able to generate signals with

duration between 5 min and 2 h and for adequate adaptation we require that

[X*] returns within a range of 20% of its basal level. We require that the

signal amplitude be at least five times the basal concentration of the

signaling species, and for the models that do not include production and

degradation, we require the amplitude to be a significant fraction (.10%) of

the total available signaling pool. Mathematical analyses of the models

allowed us to pick parameter sets by hand that met the above criteria. The

cases for which this was not possible are discussed below.

RESULTS

Because we are interested in mechanisms of short-term

adaptation, we use the term response (output) to refer to the

activity level (e.g., phosphorylation state of a MAP kinase)

of the downstream pathway component responsible for re-

laying the signal that results from an external stimulus

(input). We refer to the transcriptional program and other

nongenetic processes initiated by this output as the cellular

response. Deactivation is taken to mean a process by which

an active signaling species is transformed back to its original

inactive state, but is available for reactivation if the stimulus

persists. An example of deactivation is dephosphorylation of

kinase that becomes active upon phosphorylation. Desensi-

tization refers to the conversion of a signaling species to a

form that cannot propagate the signal even when the pathway

component is activated. In general, desensitization is re-

versible, and when the reverse steps are relatively fast,

desensitization is equivalent to deactivation. In the case of

degradation, the protein is permanently removed from the

signaling pool. Sequestration involves the removal of a

species from the signaling pool by the formation of protein

complexes or spatial relocalization of signaling components.

For our purposes, it can be considered a form of desensi-

tization. The nature of the negative feedback (deactivation,

desensitization, or degradation) places different constraints

on the system’s ability to signal and adapt. To understand the

advantages and disadvantages of these mechanisms, we ana-

lyze several simple negative feedback architectures; three

based on feedback deactivation, Models I–III, and two that

rely on desensitization or stimulus-dependent degradation,

Models IV, A and B.

Model I: Feedback deactivation generates a
dose-dependent switch

In Model I the signaling component directly activates its own

negative regulator (Fig. 2 A). This mechanism is inspired by

experimental evidence showing that the activity of some

phosphatases can be increased upon phosphorylation by their

substrate kinase (14). This feature suggests a scenario in

which the stimulus leads to phosphorylation and activation

of a kinase. In turn, the kinase regulates its activity level by

phosphorylating and activating a phosphatase. Note that

rather than increasing the rate of deactivation of a pathway

component, it is possible that the negative feedback de-

creases the rate at which the component is activated. We

investigated this scenario as well and found no significant

differences between the two mechanisms.

In its simplest form, Model I can be written in terms of two

variables, [K*] and [P*], the concentrations of the phos-

phorylated forms of the kinase and phosphatase, respec-

tively. The model equations are given in Eqs. 2 and 3.

Because this model consists of only two variables, its be-

havior can be understood by considering the phase plane for

the system (Fig. 2 B). That is, a graph whose axes are [K*]

and [P*]. Two special curves on the phase plane are the

nullclines defined by the conditions d[K*]/dt ¼ 0 and d[P*]/

dt ¼ 0. These are shown in Fig. 2 B for two stimulus levels.

The K* nullcline can be interpreted as the signal-response

curve for the activated kinase concentration as a function

of the active phosphatase concentration. Similarly, the P*

nullcline can be thought of as a dose-response curve for the

active phosphatase concentration as a function of the active

kinase concentration. Notice that the stimulus does not affect

the P* nullcline. The intersection of the nullclines represents

the steady state of the system. In the absence of a stimulus, the

steady state corresponds to point A in Fig. 2 B. When the

stimulus is present, the K* nullcline shifts to the right and

the new steady state becomes point C. With the right choice of

parameters, the new steady-state value of K* is very similar to

its prestimulus level. This occurs because the P* nullcline

remains close to the horizontal axis (low K* concentration) as

P* increases.

The second requirement for adaptation is that the stimulus

generates a response of sufficient amplitude and appropriate

duration to elicit the correct cellular response. Clearly if the

phosphatase responds very rapidly to changes in the acti-

vation level of K, then the K* concentration will not increase

significantly above basal levels and no transient behavior

will be observed. If, however, the activation kinetics of the

kinase are fast, the K* concentration will rise rapidly and

closely approach point B shown in Fig. 2 B, which represents

the quasi-steady-state value of [K*] for the prestimulus [P*]

concentration. The activated phosphatase concentration then

slowly increases, bringing [K*] back to near-basal levels.

Interestingly, for a sufficiently large stimulus, this mech-

anism loses its ability to adapt and the resulting response

becomes sustained. This occurs when the K* nullcline shifts

far enough to the right so that the level of active phosphatase

saturates and is insufficient to counteract the stimulus-

induced activation of the kinase. If the activation kinetics of

the kinase K are ultrasensitive (23) with respect to the
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stimulus, then the transition between a transient response

and a sustained one occurs in a switchlike manner (see

Appendices). A transition from transient to sustained sig-

naling was proposed to underlie a cell fate decision in yeast

(3). In this system, transient MAPK activation promotes a

mating response, whereas sustained activation leads to

filamentous growth. We note that this design also provides

a mechanism for ensuring the pathway is not activated by

a spurious low-level stimulus. Below the threshold, the

response is transient and rapidly returns to near-basal levels.

These two properties of feedback deactivation are considered

further in the Discussion.

Fig. 2 C depicts the typical dose-dependence of the

response amplitude (shaded curve) and steady-state level

(solid curve) for this architecture. Fig. 2 D shows a similar

plot for the response duration (solid curve) and time for the

response to reach its maximum value (shaded curve). For

very low stimuli doses, the response amplitude (Fig. 2 C,

shaded curve) increases with the dose and can be estimated

from the K* signal-response curve for the case in which the

phosphatase is absent (Fig. 2 C, dashed line). In this regime,

the duration of the response is roughly dose-independent

(Fig. 2 D, inset, solid curve). At higher doses, when the

stimulus level is sufficient to activate almost the entire pool

of K, the amplitude becomes dose-independent while the

response duration starts to increase (Fig. 2 D, solid curve). In

this regime, the system is converting dose information into

response duration (see Discussion). Fig. 2 E shows time

series generated by this model using the stimulus levels

labeled in Fig. 2 D.

For this model, the recovery time is intrinsically linked

to the adaptation time. When the stimulus disappears, K*

quickly return to basal levels but, because of its slow ki-

netics, it takes a considerable time for P* to subside. In the

FIGURE 2 Model I—feedback deac-

tivation. (A) Schematic diagram of the

model. (B) The phase plane of the

system showing nullclines for [K*] and

[P*]. (C) Response curves for K* as

function of the stimulus dose: maxi-

mum [K*] amplitude with negative

feedback (shaded curve) and without

(dashed curve), and the steady-state

level of [K*] with negative feedback

(solid curve). (D) Response duration

(solid curve) and time to maximum

amplitude (shaded curve) as a function

of the dose. The inset shows an ampli-

fication of the low dose regime. (E)

Time series for [K*] generated using

the stimulus levels indicated in panel D.

The model equations and parameter

values used to generate this figure are

given in Appendices and Table 1.
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best-case scenario, recovery can happen within the same

timescale as adaptation. However, the constraints set by the

requirements of good adaptation and strong signaling often

necessitate that the rate of P* deactivation be significantly

slower than that of its activation resulting in long recovery

times (sometimes by orders of magnitude). Additionally, the

large strength of the negative feedback needed to produce

adaptation in this model means that signaling is strongly

inhibited during most of the recovery phase, thereby

generating a refractory period in which the system is not

able to respond to a new challenge.

Model II: Direct deactivation of a positive regulator
fails to produce good adaptation

A second strategy for producing adaptation through negative

feedback is for the signaling component to deactivate an

upstream element. The simplest architecture, albeit the least

biologically realistic, is one in which the signaling molecule

K is directly responsible for deactivating the pathway com-

ponent KK located directly upstream (Fig. 3 A). As we show,

this model does not produce good adaptation, but its study

highlights the specific benefits of more complex systems as

well as the limitations of a feedback mechanism in which the

same molecule that transmits the signal also directly inhibits

pathway activity. A potentially more biological realistic sce-

nario is one in which the feedback effect of K is to decrease

the rate at which KK is activated. Similar to Model I, this sce-

nario does not produce qualitatively different results from the

case of feedback deactivation.

The simplest version of this model is very similar to the

one studied in the previous section with the difference being

that, in this case, the species K both propagates the signal and

deactivates KK*. Therefore, the analysis of this model will

follow closely the one carried out in the previous section.

Fig. 3 B shows the phase plane for this model, where again

the signaling species K* is on the vertical axis and the

horizontal axis is the activated kinase KK*. Analysis of the

nullclines seems to indicate that adaptation could be possible

if the K* nullcline (labeled as d[K*]/dt ¼ 0 in Fig. 3 B) is

sufficiently switchlike as a function of [KK*]. However, this

system cannot fulfill the requirement of generating a sig-

nificant response. To understand this shortcoming, it is use-

ful to consider the two limiting cases in which the kinetics of

K are fast or slow as compared to those of KK. When the KK

kinetics are fast, the stimulus causes the KK* level to rapidly

rise from its basal level (A in Fig. 3 B) to its quasi-steady-

state level (B) located on the post-stimulus [KK*] nullcline.

Next, K becomes activated causing the KK* level to de-

crease along the [KK*]-nullcline until it reaches the new

steady-state C. This scenario produces a monotonic increase

in K* and no transient signaling. In the second limiting case

in which the kinetics of K are fast compared to those of KK,

the system evolves along the [K*] nullcline toward point C.

FIGURE 3 Model II—direct feed-

back deactivation. (A) Schematic dia-

gram of the model. (B) The phase plane

of the system showing nullclines for

[K*] and [KK*]. (C) Response curves

for K* as function of the stimulus dose:

maximum [K*] amplitude (shaded
curve) and the steady-state level of K*

(solid curve) (D) Time series for [K*]

generated using the stimulus levels in-

dicated in panel C. The model equations

and parameter values used to generate

this figure are given in Appendices and

Table 1.
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Again, the increase in K* is monotonic in time. While these

two limiting cases seem to indicate that this system is not

capable of both adapting and producing a significant re-

sponse, they do not address the intermediate regime where

the kinetics of K and KK are comparable. In fact, in this

intermediate regime, the system is capable of showing some

degree of transient signaling. With the right choice of

parameters, the system can overshoot the equilibrium point C
producing a transient increase in the [K*] level. However,

this strategy has two serious caveats. First, in the presence of

the stimulus, the steady-state K* concentration (C in Fig. 3

B) has to be significantly higher than the basal level, thereby

precluding significant adaptation. Second, this setup is very

prone to oscillations. Fig. 3 C shows the dependence of the

response amplitude and steady-state level on the stimulus

strength. The time-dependent response for various doses is

shown in Fig. 3 D. These figures clearly show how adap-

tation quickly disappears and the response turns into a small

transient overshoot. In this model, response duration is not a

relevant quantity because the response does not return to

below its half-maximum. The principal advantage of this

system is its very fast recovery time after the stimulus has

been removed. This is due to the fact that K* is responsible

for both propagating the signal and deactivating KK*,

making activation and recovery times similar.

The difference in the behavior of Models I and II may

appear puzzling, especially because both rely on feedback

deactivation. The major difference between the models is

that in Model I feedback occurs through an intermediate step,

whereas in Model II, the kinase deactivates its upstream

activator directly. This difference is crucial because adapta-

tion requires a sustained feedback that responds on a time-

scale slower than that of activation. Model I can produce a

transient response because the activation of the signaling

species K occurs faster than the feedback timescale deter-

mined by the kinetics of the phosphatase. However, in Model

II, activation of the signaling species K and the onset of the

feedback are the same process and therefore occur on the

same timescale. Based on these observations, we find that for

systems in which adaptation occurs as a result of deactivating

a pathway component, intermediate steps that separate the

activation timescale from that of feedback deactivation are a

necessary feature. Such intermediate steps allow for a strong

negative feedback capable of returning the pathway output to

near-basal levels, while at the same time providing a time

delay that enables a large transient response. A strong feed-

back is incompatible with fast kinetics because it prevents

the development of a transient response. To further explore

this observation, in the next section we analyze more

complex variants of Model II that include intermediate steps.

Model III: Intermediate steps enhance adaptation

To better understand the dynamics of feedback deactivation

we considered two extensions of Model II. The first case

(Model III A, Fig. 4 A) represents a scenario in which the

signaling species K inhibits an upstream activator KK

through activation of a negative regulator. This can be

thought of as a terminal kinase K activating a phosphatase P,

which in turns dephosphorylates the kinase KK directly up-

stream of K. In the second scenario (Model III B, Fig. 4 C),

the signaling species K deactivates a pathway component

two levels upstream. Even though the direct interaction as-

sumed in this model is unlikely to appear in real signaling

systems, the analysis of this case reveals the specific effects

of targeting a component further upstream.

Model III A is almost equivalent to Model I, except that

the negative regulator P now acts on an upstream component

rather than the terminal signaling species K. Therefore, it is

not surprising that the model is capable of near-perfect

adaptation and possesses dynamics and dose-response rela-

tionships very similar to Model I (not shown). Fig. 4 B de-

picts the response produced by the system in the presence of

various stimulus levels. As with Model I we can see that

good adaptation is possible over a range of doses, but at

some point the system loses the ability to adapt and a per-

sistent response ensues. A difference between this model and

Model I is that at low stimulus levels there is region of con-

centrations for which the response duration decreases with

increasing dose. The decrease occurs in systems in which the

feedback targets elements upstream of the signaling species.

A key feature of this model is the relatively slow kinetics of

the intermediate species P. This feature decouples the acti-

vation and feedback timescales, allowing a sufficiently

strong feedback for adaptation to a wide range of doses while

at the same time producing a strong transient response.

Model III B (Fig. 4 C) resembles Model II in that the

signaling species is directly responsible for feedback deac-

tivation causing both timescales to be intrinsically linked.

Fig. 4 D shows the dose dependence of the response ampli-

tude and steady-state level when the intermediate species KK

was adjusted to react slower than the upstream component

KKK. Fig. 4 E shows responses produced at different doses

as well as the [KK*] and [KKK*] responses (inset). The

steady-state level after adaptation is roughly similar to that of

Model II. However, the presence of a slower intermediate

step dramatically increases the amplitude of the response,

especially at lower doses (compare with Fig. 2 C). The slow

deactivation kinetics of KK produces a delay between

feedback-deactivation of KKK* and its downstream effect

on K*. It is important to notice that the negative feedback

starts acting as soon as K* levels rise and quickly deactivates

the upstream element KKK, causing different components of

the pathway to adapt on different timescales. This effect is a

purely transient phenomenon, and as such cannot overcome

the poor adaptation (a steady-state property) observed with

this model. The steady-state level of K* has to be sufficient

to deactivate KKK*. Such a strong negative feedback pre-

vents transient signaling just as in Model II. It is interesting

to contrast Models III, A and B. In Model III A, the slow

Mechanisms of Adaptation 811
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intermediate species delays the effects of the negative

feedback while in Model III B what is delayed is the time

at which the effect of the feedback reaches downstream

components. This has interesting implications for cross-talk

between pathways (see Discussion). As expected, adding

additional levels to the pathway makes it easier to generate

oscillatory responses that may be undesirable in actual

signaling networks. As a matter of fact, the combination of

negative feedback loops and delays is a classic recipe for

oscillations (24,25). In all our examples, the strength or slow

timescale of the feedback mechanisms precluded any sig-

nificant oscillations. However, low amplitude ringing (very

overdamped oscillations) was observed in some cases.

As one would expect, Model III A’s response duration and

recovery time are very similar to Model I. On the other hand,

Model III B inherits Model II’s fast recovery time. The only

slow component in this model is the intermediate element

KK, which by the time adaptation is reached, has already

come back to near-basal levels. Therefore, this mechanism

provides a very fast adapting system, albeit one that produces

good signaling and adaptation only at low dose levels.

Model IV: Feedback degradation and
desensitization provide an effective strategy for
dose-independent adaptation

The reason adaptation is lost at high dose levels in the case of

feedback deactivation (Models I–III) is because the species

acted upon by the feedback immediately becomes available

for reactivation. Additionally, the dual role played by species

K, both as a signaling molecule and negative regulator,

requires it to be a very effective deactivator to counteract a

persistent stimulus, but not so strong that it prevents transient

signaling altogether. An alternative approach is to use

desensitization or degradation rather than deactivation as the

feedback mechanism. In this scenario, the desensitized (or

degraded) component is removed (transiently or perma-

nently) from the signaling pool, thereby relaxing the need for

a strong sustained feedback. This mechanism plays a role in

Raf-1 regulation (16) and the yeast pheromone response

(21), among others. Desensitization and degradation based

systems display behavior markedly different from feedback

deactivation. To illustrate these differences, we focus on the

two models depicted in Figs. 5 and 6.

FIGURE 4 Intermediate pathway

components. (A) Model III A is similar

to Model I except that pathway deacti-

vation occurs upstream of K. (B) Time

series of K* generated by Model III A

for various dose levels. (C) Model III B

is similar to Model II except feedback

deactivation occurs at an upstream

pathway component. (D) Response

curves for K* as function of the stim-

ulus dose for Model III B: maximum

[K*] amplitude (shaded curve) and the

steady-state level of K* (solid curve).

(E) Time series for [K*] generated

using the stimulus levels indicated in

panel D. The inset shows time series of

the upstream species KK* and KKK*

illustrating the delay effect discussed

in the text. The model equations and

parameter values used to generate this

figure are given in Appendices and

Table 1.
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In Model IV A (Fig. 5 A), feedback regulation targets an

upstream component of the pathway for degradation, thereby

permanently removing it from the signaling pool. A possible

scenario is one in which a kinase K feedback-phosphorylates

the receptor R and phosphorylation targets the upstream

receptor for ubiquitination and degradation. Because this

mechanism relies on protein degradation, it is necessary to

include protein synthesis in the model to maintain a finite

concentration of R. Model IV B (Fig. 6 A) involves a feed-

back mechanism in which the active form R* of the upstream

signaling component is transformed to a desensitized form

R� that cannot signal. This transformation is reversible with

the desensitized component eventually reentering the sig-

naling pool. As the rate at which desensitization is reversed

becomes very small, we recover Model IV A. In theory there

are two scenarios for how the desensitized element is rein-

troduced into the signaling pool. In the first case, removing

desensitization causes the protein to reenter the active state.

In the second scenario, the desensitized component must

pass back through the inactive state before it can become

active again. Recently, this mechanism has been suggested to

describe a branch of the osmotic response in yeast (5).

Under normal conditions, the Sho1 osmosensor exists as an

oligomer (R) that, when exposed to osmotic stress, initiates a

signaling cascade that results in the phosphorylation of the

kinase Hog1. Phopsho-Hog1 then feedback-phosphorylates

Sho1, causing the oligomer to dissociate and signaling to

stop. The Sho1 monomers (R�) must then be dephosphory-

lated before reformation of the signaling-competent oligo-

mers (R).

Models IV, A and B, work in a similar fashion producing

good adaptation regardless of the stimulus strength. The

mechanism of adaptation in these systems can be understood

in terms of the dose-response curves of the components

R and K as shown in Fig. 5, B and C, for Model IV A. As can

be seen, the activation curve of K* as a function of the

concentration of R* (Fig. 5 B) shows a sharp threshold below

which virtually no activation occurs. Fig. 5 C shows the

dose-response curves for R (shaded dashed line) and R*

(solid line) when feedback is present, and for R* (dark
dashed line) when the feedback loop is absent. When ex-

posed to a sufficient stimulus level, the maximum amplitude

FIGURE 5 Model IV A—feedback

degradation. (A) Schematic diagram of

the model. (B) The [K*] versus [R*]

dose-response curve. The vertical dot-

ted line indicates the threshold for K*

activation. (C) Response curves for R*

and R as function of the stimulus dose:

maximum [R*] amplitude with nega-

tive feedback (shaded curve) and with-

out (dashed curve), steady-state level

of R* with negative feedback (solid

curve). The dotted shaded line indicates

the R* threshold for K activation. (D)

Dose response curves for K*: maxi-

mum amplitude with feedback (shaded

curve) and without (dashed curve) and

the steady-state level with feedback

(solid curve). The inset shows the

response duration (solid curve) and

time to maximum amplitude (shaded
line). No signal is generated at very low

doses due to the activation threshold

(see text). (E) Time series for [K*] and

[R*] (inset, dotted line indicates the

activation threshold) generated using

the stimulus levels indicated in panel

D. The model equations and parameter

values used to generate this figure are

given in Appendices and Table 1.
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of R* (Fig. 5 C, shaded line) transiently rises over the

threshold value (dotted line, Fig. 5, B and C) for activating K

and triggering feedback degradation. The systems adapt

because the negative feedback is sufficient to maintain the

steady-state level of R* below the K* activation threshold.

This architecture results not only in the adaptation of the

signaling species K*, but also of the active receptor R* (Fig.

5 E, inset). An ultrasensitive K* response curve is not

required to achieve adaptation. However, for a system with a

graded K* response curve to show good adaptation, the

feedback must considerably reduce the level of active R*, by

degrading or desensitizing virtually all of R. Fig. 5 D shows

the response amplitude (shaded curve) and steady-state level

(solid curve) for K* as a function of the stimulus strength.

For comparison also shown in the figure is the maximum

response of K* in the absence of feedback (dashed curve).

Shown in the inset is the response duration (solid curve) and

time to reach the maximum K* amplitude (shaded curve).

Fig. 6 B shows the respective curves for Model IV B. Fig. 5

E, and 6 C, show typical time series for Models IV, A and B,

respectively. In both cases, adaptation is very good; and

unlike the case of feedback deactivation, it is not lost as the

stimulus level increases. The response duration is mostly

dose-independent, except at low stimulus levels where it

decreases with dose. Fig. 5 E illustrates a very characteristic

pattern in which the response duration initially becomes

shorter, with increasing stimulus levels eventually becoming

dose-independent. The reason for this is that, at high stim-

ulus levels, K* has saturated—in which case, the rate of

degradation or desensitization becomes signal-independent.

As a result, in the high dose regime, these models generate a

strong transient response, with amplitude and duration in-

dependent of the stimulus strength. The implications of this

behavior are considered in the Discussion. This behavior is

in contrast to feedback deactivation in which case the re-

sponse length is dose-independent at low stimulus levels and

increases as stimulus strength grows. The time series for

Model IV A (Fig. 5 E) illustrate two interesting phenomena

associated with the sharp K* response curve. The complex

decay observed at different doses is caused by the interplay

between R* degradation and K* deactivation kinetics. At

high doses, elevated K* levels cause the rapid degradation of

R* (see Fig. 5 E, inset) without producing a significant drop

in K*. As R* activation decays beneath the K* activation

threshold, K* levels rapidly fall, causing R* degradation

to slow down. At the final stage, K* and R* activation levels

slowly decline until reaching steady state. The initial and

final phases are dominated by R kinetics, whereas the inter-

mediate stage is dominated by K* deactivation kinetics. At

lower doses, R* levels are not sufficient to fully activate K*,

and the initial phase is missing. The second effect is a delay

in the onset of signaling observed at low stimulus doses

because of the time it takes R to reach K’s activation thresh-

old. This phenomenon is not exclusive to Model IV A and

often occurs when elements with ultrasensitive response

curves are involved in signaling.

The addition of intermediate steps in Models IV, A and B,

can be accomplished in two ways: 1), extra steps can be

placed between the upstream activator and the signaling

species K (Fig. 7 A); or 2), extra steps can be placed in the

feedback loop (Fig. 7 B). Both architectures add new features

to the models and increase the likelihood of generating

oscillations. In the first case, the addition of an extra step

again introduces a transient memory in the system that delays

the downstream effect of the feedback desensitization (or

degradation) of R*. As clearly illustrated in Fig. 7 C, this

effect allows the system to achieve better sensitivity at

low doses. This figure compares the maximum response for

FIGURE 6 Model IV B—feedback desensitization. (A) Schematic dia-

gram of the model. (B) Dose response curves for K*: maximum amplitude

with negative feedback (shaded curve) and without (dashed curve) and the

steady-state level with negative feedback (solid curve). (Inset) Signal

duration (solid curve) and time to maximum amplitude (shaded curve).

(C) Time series for [K*] using the stimulus levels indicated in panel B.

The model equations and parameter values used to generate this figure are

given in Appendices and Table 1.
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Model IV B and the model shown in Fig. 7 A. The figure was

produced using similar parameter values for both models

with the exception of the feedback strength (k5 in Eq. 21),

because the delay produced by the extra step allows a

stronger feedback without the loss of the ability to produce

a strong response (values for the parameters are listed in

Table 1). Note that this increased sensitivity does not

require the signal to be amplified by the pathway. The

introduction of an intermediate step in the feedback loop

(Fig. 7 B) allows a separation of timescales between signal

initiation and attenuation. In general, the introduction of

intermediate components endows these systems with more

flexibility and permits the dynamics of species K to differ

from that of R, producing different response profiles with

potentially interesting biological implications (see Discus-

sion).

For both models, recovery is slow—because good adap-

tation requires slow protein production (Model IV A) or slow

recovery from the desensitized state (Model IV B). The

recovery time can be improved in Model IV A by a pro-

portional increase in both the production and degradation

rates. However, the timescales for these processes are

constrained in living cells. Model IV B recovery can be

accelerated if the feedback desensitization not only acts on

R* but also on the inactive form R. This additional depletion

of R permits a faster R� to R turnover, allowing for quicker

recovery. When restimulated after the removal of the signal,

we observed that significant signaling was still possible even

before recovery was complete. This effect is strongly dose-

dependent and depends on the amount of activator still avail-

able as well as the production and resensitization rates.

Response to time-dependent stimulus levels

To test the ability of each model to respond to a changing

environment, we exposed each system to a series of stepped

increases in the stimulus level and observed the resulting

response. Not surprisingly, each model’s behavior depended

on both the duration and amplitude of the steps in stimulus

level. We observed that when the increases are sufficiently

strong and occur on timescales long compared to the

adaptation time, most systems produce a train of discrete

peaks of varying amplitude (Fig. 8 A). In general, models

based on deactivation (I and III) responded to more steps

than models based on degradation and desensitization (IV),

provided that the maximum stimulation level remained in the

region where adaptation is possible. The degradation or de-

sensitization of a pathway component resulting from the

initial challenge severely reduced Model IV’s ability to

respond to subsequent increases in the stimulus level. When

the time interval between stimulus changes is short com-

pared to the adaptation timescale, the systems effectively see

one challenge and for strong enough stimuli the response is a

single, complex-shaped signal (Fig. 8 B), usually of lower

amplitude than the response the system generates when

exposed to a single dose of maximum strength. Our exper-

iments also showed that the magnitude of the stimulus

increase plays a fundamental role. If the dose increase at each

step is small, and the interval between steps is long enough to

allow for adaptation, then the stimulation level can be in-

creased substantially without a response being produced

(Fig. 8 C). These results can be extrapolated to ramped

stimuli indicating that feedback-based adapting systems can

only generate responses for a limited range of temporal

variations in the stimulus strength. This represents a serious

limitation for pathways that must respond and adapt to

stimulus levels that fluctuate over a wide range of timescales

(see Discussion).

FIGURE 7 Intermediate pathway components. (A) An intermediate step

between stimulus activation of R and the response element K. (B) An

intermediate step in the negative feedback loop. (C) Maximum response

amplitude for Model IV B (solid curve) and the model shown in panel A

(dashed curve).
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DISCUSSION

Separating timescales

Signaling systems that adapt to sustained stimuli must meet

two requirements. The pathway must generate a response of

sufficient strength and duration to elicit the correct response,

while at the same time returning to basal levels upon con-

tinued exposure to the stimulus. We analyzed different

strategies of adaptation that revealed several general princi-

ples. First, when the signaling molecule is also a direct

negative regulator of an upstream pathway component, the

timescales for signaling and feedback inhibition are linked

limiting the dynamic properties of the pathway. This intrinsic

connection is the reason Model II, which relies on feed back

deactivation, cannot adapt or signal well. The near irrevers-

ible nature of feedback mechanisms based on desensitization

and/or degradation (Model IV, A and B) allows strong

signaling and good adaptation without requiring a strong

sustained negative feedback. The removal of the signaling

species from the signaling pool means that a weak feedback

is sufficient for adaptation. Even for these models, the

addition of a feedback intermediary greatly adds flexibility

by allowing different temporal dynamics at different levels in

the signaling cascade. This could have interesting implica-

tions for the locations of branching points where signaling

pathways feed into secondary pathways to elicit a complex

cellular response. Different dynamics at different points along

the pathway could allow for a variety of responses, depending

on where the secondary branches are connected.

Increased sensitivity

It has been recognized that multiple-level signaling cascades

can amplify weak signals (26–29), and it has been suggested

such cascades provide a mechanism for increasing the rate of

signal propagation (26,30). Here we have shown a novel way

in which intermediate steps in a signaling cascade can

improve sensitivity to low stimulus levels. In this mecha-

nism, a long-lived intermediate step can store information

about the activity level of an upstream component after

feedback inhibition has terminated it. The result is prolonged

and increased activity of any downstream components. An

advantage of placing the delay downstream of the feedback

target is that this architecture allows a rapid decrease in the

activity of promiscuous upstream elements without a rapid

attenuation of the response. In contrast, mechanisms that rely

on slow intermediary steps in the feedback loop to decouple

the signal and feedback timescales (e.g., Model I) must wait

until the feedback acts, for the upstream target activation

level to subside. This could have adverse effects potentially

leading to cross talk, if the upstream component is involved

in multiple pathways.

A switch from transient to sustained signaling
and dose-duration transduction

It has been suggested that response duration plays a role in

developmental decisions. For example, Sabbagh et al. (3)

proposed that, in yeast, sustained activation of the MAPK

Kss1 leads to invasive growth, whereas transient activation

is required for proper mating. We have demonstrated that

FIGURE 8 The response of Model I (feedback deactivation) to stepped

increases in the stimulus. (A) When the steps in stimulus level (shaded

curve) are sufficiently long and of sufficient amplitude, the model responds

with a series of pulses (solid curve) of roughly equal amplitude until

adaptation is lost. (B) If the duration of the stimulus steps is short (shaded

curve), a complex response is generated (solid curve) whose maximum

amplitude is less than the response produced by exposure to constant

stimulus at the final concentration level (dashed curve). (C) If the amplitude

of the stimulus increases is too small, the system cannot see the stimulus and

does not respond (solid curve). For comparison, the response produced by a

constant stimulus of at the final concentration level is also shown (dashed
curve).
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feedback deactivation provides a mechanism capable of

switching between a transient response at low stimulus levels

and a sustained response at high levels (Fig. 9 A). The model

we presented was based on feedback dephosphorylation.

However, the switch behavior is not specific to this mech-

anism of deactivation and arises in situations when the feed-

back inhibition dominates at low stimulus doses but saturates

before stimulus-dependent activation. A related feature is the

ability of feedback deactivation to translate stimulus strength

into response duration. This is especially evident in the

models that include a multistep feedback loop that allows

the buildup of a transient response (e.g., Models I and III A).

The ability to convert stimulus strength to response duration

is important because it provides an alternative to response

amplitude for transmitting information. This has implica-

tions for avoiding cross talk in pathways that share common

components. That is, in one pathway the signaling elements

below the common component might detect amplitude,

while in the other pathway, the duration of the response

would determine whether the signal is transmitted (Fig. 9 B).

Dose-independent signals

Feedback deactivation has the ability to produce responses

in which the response duration depends on the stimulus

strength. In contrast, for sufficiently strong stimulus levels

mechanisms that rely on desensitization or degradation, the

response amplitude and duration become independent of

dose. This effect is due to the finite amount and/or dose-

independent production rate of the upstream activator that is

the target of the feedback. Because of this feature, Models

IV, A and B, are well suited for situations in which the

stimulus strength is irrelevant for the response and/or an all-

or-none response is desired. An interesting observation is

that with the appropriate choice of parameters these models

can be made into signal repositories with signal potency

(area under the peak) regulated by the amount of activator

burned (i.e., degraded or desensitized) by the feedback in

each event. No signal will result once the pool has been

depleted, potentially avoiding multiple reactions to the same

event.

Reaction and recovery timescales

Our study suggests that systems that adapt through feedback

regulation are inherently slow to recover, often resulting in a

refractory period much longer than the adaptation time. The

notable exception is Model III B, which relies on an in-

termediate step delaying the effect of the feedback, to

produce a transient response. This model is capable of fast

recovery because the slow pathway component returns to its

prestimulus level during the adaptation process. However,

fast recovery comes at the price of a very limited range of

stimulus strengths for which good adaptation is achievable.

Obviously, slow recovery times may render these models

unsuitable for pathways that must respond to time-dependent

stimuli. Interestingly, the responses observed when the mod-

els are exposed to stepped increases in the stimulus level

demonstrate that, in general, models based on feedback

deactivation (Models I–III) do a better job responding to

subsequent increases in the stimulus level than models based

on degradation or desensitization (Models IV, A and B).

However, this effect is strongly dose-dependent, and for a

limited range of doses, any of the systems can generate a

FIGURE 9 (A) A transient to sustained switch. An adapting pathway

based on saturable negative feedback (e.g., Model I) can produce transient or

sustained signals in a dose-dependent fashion. Transient or sustained

activation of a kinase (or transcription factor) results in the activation of a

different subset of genes, thereby eliciting alternative responses. (B) The

ability of this architecture to encode stimulus concentration as signal

duration provides a mechanism for preventing cross-talk. The response on

the left (RL) is initiated only when MAPK activation is sustained, whereas

activation of the response on the right (RR) requires the MAPK activation to

transiently exceed a threshold. The upstream adaptive system of the right

pathway prevents inappropriate activation of RL by stimulus SR and

regulates response LR by transforming the concentration of the stimulus

SL into signal duration.
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response to this type of stepped increase in the stimulus

level. Interestingly, when the stimulation level increases

faster than the system can adapt, the result are often complex

responses of lower amplitude than the response correspond-

ing to the same final stimulus level applied all at once,

potentially resulting in a suboptimal cellular response. Fur-

thermore, feedback-based adapting systems can produce

strong responses only for stimuli that increase fast relative to

the adaptation timescale, with slow rising stimuli becoming

invisible. Taken together, these observations mean that

adapting systems not only must be tailored to elicit a re-

sponse from their downstream targets, but also to receive

particular temporal profiles from upstream activators. This

limitation raises the interesting possibility that the redun-

dancy present at the upper levels on some signaling networks

(e.g., yeast’s osmotic stress response) (31) may have evolved

to provide signaling capabilities at multiple timescales and

also leads to the intriguing possibility that the parallel path-

ways found in many signaling systems are designed to deal

with different temporal patterns of stimulation.

Signatures of adaptation

Our results allow us to list the distinctive features of each

model that can be used to distinguish feedback mechanisms

of adaptation. The most obvious distinguishing characteristic

of feedback deactivation is the loss of adaptation at high

stimulus levels. This loss of adaptation is generally preceded

by an increase in response duration. In contrast, adaptation

and response duration in mechanisms that rely on degrada-

tion or desensitization tend to become dose-independent at

moderate to high stimulus levels. In these systems, response

duration at low doses frequently decreases with increasing

stimulus concentration maintaining (or even improving) the

adaptation level. The recovery time can also help identify

feedback mechanisms. As discussed above, most mecha-

nisms are slow to recover with the notable exception of

Model III B. Unlike other features that are sensitive to the

choice of parameter values (such as amplitude or response

duration for a given dose) the properties described above are

robust features of the different models and exist for a wide

range of parameter values. Alternatively, these properties can

be used as predictions to support candidate mechanisms

suspected to be responsible for adaptation in actual signaling

systems. In most real scenarios, adaptation is not based

solely on a single mechanism, but rather relies on multiple

feedback and feed-forward mechanisms. Nevertheless, when

combined with experimental analysis the results presented

here provide powerful clues for determining the biochemical

mechanisms that underlie adaptation in signal transduction

pathways.

APPENDIX A: MODEL EQUATIONS

This Appendix lists the equations for each model described in the text.

Model I

d½K��
dt
¼ k1sð1� ½K��Þ

k1m 1 ð1� ½K��Þ �
V2½K��

k2m 1 ½K�� �
k3½P��½K��
k3m 1 ½K��; (2)

TABLE 1 Model parameter values

Model I Model II

k1 1 k1 2 3 10�1

k1m 5 3 10�3 k1m 1

v2 3 3 10�4 v2 1 3 10�6

k2m 1 3 10�2 k2m 5 3 10�1

k3 2.5 3 10�1 k3 1.5 3 10�2

k3m 2 3 10�3 K3m 1 3 10�2

k4 1 3 10�3 v4 6 3 10�4

k4m 5 3 10�1 k4m 1 3 10�2

v5 1 3 10�5 k5 3.2 3 10�2

k5m 1 k5m 1 3 10�3

Model III A Model III B

k1 1 3 10�1 k1 5 3 10�1

k1m 1.5 3 10�1 k1m 1.5

v2 3 3 10�3 v2 1 3 10�6

k2m 1 k2m 8 3 10�2

k3 4.8 3 10�4 k3 1.5 3 10�1

k3m 1 k3m 6 3 10�1

v4 5 3 10�6 v4 3 3 10�3

k4m 1 k4m 6 3 10�1

k5 3 3 10�2 k5 8 3 10�2

k5m 2 3 10�3 k5m 3 3 10�3

k6 10 k6 1 3 10�2

k6m 0.1 k6m 1

v7 1 v7 5 3 10�3

k7m 1 3 10�1 k7m 1

Model IV A Model IV B

k1 5 3 10�2 k1 6 3 10�1

k1m 1 k1m 5 3 10�1

v2 1 3 10�3 v2 2 3 10�2

k2m 1 3 10�2 k2m 1 3 10�1

k3 7.5 3 10�1 k3 1 3 10�2

k3m 5 3 10�2 k3m 5 3 10�2

v4 1.9 3 10�1 v4 4 3 10�3

k4m 5 3 10�3 k4m 1 3 10�1

k0 7.5 3 10�5 k5 4 3 10�3

k 7.5 3 10�5 k5m 1

k9 9.6 3 10�3 k6 2 3 10�5

Model Fig. 7 A

k1 6 3 10�1 k5 8 3 10�3

k1m 5 3 10�1 k5m 1

v2 2 3 10�2 k6 2 3 10�5

k2m 1 3 10�1 k8 2.5 3 10�3

k3 1 3 10�2 k8m 1 3 10�2

k3m 5 3 10�2 k9 5 3 10�5

v4 4 3 10�3 k9m 1 3 10�2

k4m 1 3 10�1
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d½P��
dt
¼ k4½K��ð1� ½P��Þ

k4m 1 ð1� ½P��Þ �
V5½P��

k5m 1 ½P��; (3)

½P�1 ½P�� ¼ 1 ½K�1 ½K�� ¼ 1: (4)

Model II

d½KK��
dt

¼ k1sð1�½KK��Þ
k1m 1ð1�½KK��Þ�

V2½KK��
k2m 1 ½KK���

k5½K��½KK��
k5m 1 ½KK�� ;

(5)

d½K��
dt
¼ k3½KK��ð1�½K��Þ

k3m 1ð1�½K��Þ �
V4½K��

k4m 1 ½K��; (6)

½K�1 ½K�� ¼ 1 ½KK�1 ½KK�� ¼ 1: (7)

Model III A

d½KK��
dt

¼ k1sð1�½KK��Þ
k1m 1ð1�½KK��Þ�

V2½KK��
k2m 1 ½KK���

k5½P��½KK��
k5m 1 ½KK��;

(8)

d½K��
dt
¼ k6½KK��ð1�½K��Þ

k6m 1ð1�½K��Þ �
V7½K��

k7m 1 ½K��; (9)

d½P��
dt
¼ k3½K��ð1�½P��Þ

k3m 1ð1�½P��Þ �
V4½P��

k4m 1 ½P��; (10)

½KK�1 ½KK�� ¼ 1 ½K�1 ½K�� ¼ 1 ½P�1 ½P�� ¼ 1: (11)

Model III B

d½KKK��
dt

¼ k1sð1� ½KKK��Þ
k1m 1 ð1� ½KKK��Þ �

V2½KKK��
k2m 1 ½KKK��

� k5½K��½KKK��
k5m 1 ½KKK��; (12)

d½KK��
dt

¼ k6½KKK��ð1� ½KK��Þ
k6m 1 ð1� ½KK��Þ �

V7½KK��
k7m 1 ½KK��; (13)

d½K��
dt
¼ k3½KK��ð1� ½K��Þ

k3m 1 ð1� ½K��Þ �
V4½K��

k4m 1 ½K��; (14)

½KKK�1 ½KKK�� ¼ 1 ½KK�1 ½KK�� ¼ 1 ½K�1 ½K�� ¼ 1:

(15)

Model IV A

d½R�
dt
¼ K0 �

k1s½R�
k1m 1 ½R�1

V2½R��
k2m 1 ½R�� �

�k½R�; (16)

d½R��
dt
¼ k1s½R�

k1m 1 ½R� �
V2½R��

k2m 1 ½R�� �
�k½R�� � �k9½K��½R��;

(17)

d½K��
dt
¼ k3½R��ð1� ½K��Þ

k3m 1 ð1� ½K��Þ �
V4½K��

k4m 1 ½K��; (18)

½K�1 ½K�� ¼ 1: (19)

Model IV B

d½R�
dt
¼ k6½R�� �

k1s½R�
k1m 1 ½R�1

V2½R��
k2m 1 ½R��; (20)

d½R��
dt
¼ k1s½R�

k1m 1 ½R� �
V2½R��

k2m 1 ½R�� �
k5½K��½R��
k5m 1 ½R��; (21)

d½R��
dt
¼ k5½K��½R��

k5m 1 ½R�� � k6½R��; (22)

d½K��
dt
¼ k3½R��ð1� ½K��Þ

k3m 1 ð1� ½K��Þ �
V4½K��

k4m 1 ½K��; (23)

½R�1 ½R��1 ½R�� ¼ 1 ½K�1 ½K�� ¼ 1: (24)

Model Fig. 7 A

d½R�
dt
¼ k6½R�� �

k1s½R�
k1m 1 ½R�1

V2½R��
k2m 1 ½R��; (25)

d½R��
dt
¼ k1s½R�

k1m 1 ½R� �
V2½R��

k2m 1 ½R�� �
k5½K��½R��
k5m 1 ½R��; (26)

d½R��
dt
¼ k5½K��½R��

k5m 1 ½R�� � k6½R��; (27)

d½KK��
dt

¼ k8½R��ð1� ½KK��Þ
k8m 1 ð1� ½KK��Þ �

V9½KK��
k9m 1 ½KK��; (28)

d½K��
dt
¼ k3½KK��ð1� ½K��Þ

k3m 1 ð1� ½K��Þ �
V4½K��

k4m 1 ½K��; (29)

½R�1 ½R��1 ½R�� ¼ 1 ½K�1 ½K�� ¼ 1 ½KK�1 ½KK�� ¼ 1:

(30)
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APPENDIX B: ANALYSIS OF MODEL I

Adaptation in Model I can be further clarified by studying the individual

dose response curves for [K*] and [P*]. The dose response curve for [P*] as

a function of active [K*] is depicted in Fig. 10. The curve for [K*] as a

function of stimulation level s is depicted in Fig. 11 for the cases when [P*]

is absent and only basal regulation is acting (shaded line) and when [P*]

reaches its maximum theoretical value (solid line). Note that in Fig. 10, the

P* dose response, is the [P*] nullcline of Fig. 2 B with the axes rotated. This

is not surprising given that P is activated by K and does not directly depend

on the stimulus level. This explains why the [P*] nullcline cannot be

perfectly horizontal, because this would require an infinite slope. On the

other hand, the [K*] dose response curves make it evident how this

mechanism produces adaptation: In the basal state, the activation threshold

for K lays at a low dose level. Upon stimulation, K is modified to its active

form K*, which causes the production of P*. This in turn shifts the K*

activation threshold to higher stimulus levels. Eventually, enough P* is

produced and the threshold moves above the current the stimulus level,

turning off the signal. The feedback loop reaches steady state when the

amount of P* is enough to keep the threshold slightly above the applied

dose. This analysis can be extended to the other models even for higher

dimensional systems, where it can be used to estimate maximum peak

amplitudes and dose dependency of the signals.
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