
ANTIMICROBIAL AGENTS AND CHEMOTHERAPY, July 2007, p. 2621–2624 Vol. 51, No. 7
0066-4804/07/$08.00�0 doi:10.1128/AAC.00029-07
Copyright © 2007, American Society for Microbiology. All Rights Reserved.

Binding of Ceftobiprole and Comparators to the Penicillin-Binding
Proteins of Escherichia coli, Pseudomonas aeruginosa,

Staphylococcus aureus, and Streptococcus pneumoniae�

Todd A. Davies,1* Malcolm G. P. Page,2 Wenchi Shang,1 Ted Andrew,1
Malgosia Kania,2 and Karen Bush1

Johnson & Johnson Pharmaceutical Research and Development, LLC, Raritan, New Jersey,1 and Basilea Pharmaceutica AG,
Grenzacherstrasse 487, P.O. Box CH-4005, Basel, Switzerland2

Received 10 January 2007/Returned for modification 15 February 2007/Accepted 19 April 2007

Ceftobiprole exhibited tight binding to PBP2a in methicillin-resistant Staphylococcus aureus, PBP2x in
penicillin-resistant Streptococcus pneumoniae, and PBP3 and other essential penicillin-binding proteins in
methicillin-susceptible S. aureus, Escherichia coli, and Pseudomonas aeruginosa. Ceftobiprole also bound well to
PBP2 in the latter organisms, contributing to the broad-spectrum antibacterial activity against gram-negative
and gram-positive bacteria.

Ceftobiprole, an investigational parenteral cephalosporin in
phase 3 clinical trials, exhibits a broad spectrum of activity
against many clinically important gram-negative and gram-
positive bacteria (3, 4, 7, 18, 20, 21, 29). Ceftobiprole is dis-
tinguished from other marketed �-lactams by its increased
binding to penicillin-binding protein (PBP) 2a (PBP2a)
from methicillin-resistant staphylococci (18, 24).

PBPs, the targets of �-lactam antibiotics, are membrane-
associated enzymes involved in the last steps of peptidoglycan
biosynthesis. The affinities of ceftobiprole for PBPs from Esch-
erichia coli, Pseudomonas aeruginosa, Staphylococcus aureus,
and Streptococcus pneumoniae were determined.

(This work was presented in part at the 106th General Meet-
ing of the American Society for Microbiology, Orlando, FL, 21
to 25 May 2006; the 45th Interscience Conference on Antimi-
crobial Agents and Chemotherapy, Washington, DC, 16 to 19
December 2005; and the 46th Interscience Conference on An-
timicrobial Agents and Chemotherapy, San Francisco, CA, 29
September 2006.)

MICs were determined according to CLSI methods (5) using
Trek Diagnostic Systems (Cleveland, OH) panels, except for
ceftobiprole, which was prepared fresh for each assay. E. coli,
P. aeruginosa, or S. aureus PBPs were isolated as described
previously (18, 30). For S. pneumoniae, whole cells were used.
PBPs were labeled with Bocillin FL (Invitrogen, Carlsbad, CA)
as described previously (26). S. aureus OC 3726 membranes
were preincubated with 1 mg/ml clavulanic acid (USP, Rock-
ville, MD) to saturate all PBPs except PBP2a. PBPs were
visualized using a LumiImager (Roche, Indianapolis, IN), and
50% inhibitory concentration (IC50) values were determined
using Quantity One software (Bio-Rad, Hercules, CA). P.
aeruginosa cell morphology after ceftobiprole exposure was
monitored by microscopic examination at a magnification of

�1,000. S. pneumoniae pbp1a, pbp2x, and pbp2b were amplified
by PCR as described previously (23) and sequenced by ACGT
(Wheeling, IL).

For E. coli MC4100, all drugs had good affinity for PBP3, the
primary target for monobactams and most cephalosporins (10,
12) (Table 1). Ceftobiprole, ceftriaxone, and cefepime also had
good affinity for the essential PBP2 (IC50s of �0.6 �g/ml)
(Table 1). However, they were at least 20-fold less potent than
imipenem (Table 1), for which the primary target is PBP2 in
gram-negative bacteria (28). Ceftobiprole and ceftriaxone had
IC50s for PBP1a and PBP4 that were approximately 5- to
10-fold lower than those for cefepime and ceftazidime (Table
1). Ceftriaxone and imipenem had greater affinity for PBP1b
than the other drugs (Table 1). Only imipenem had high af-
finity for the nonessential PBP5 and PBP6 (Table 1). Cepha-
losporins like cefotaxime and ceftazidime target primarily
PBP3 and have at least a 50-fold-lower affinity for PBP2 (6,
17, 25). Conversely, the increased affinity of ceftriaxone and
cefepime for PBP2 compared to those of other cephalosporins
(9, 14, 25) was confirmed in this study and also observed for
ceftobiprole (Table 1).

For P. aeruginosa PAO1, the cephalosporins had the greatest
affinity for PBP1a and PBP3 (Table 1). Ceftobiprole and
cefepime had approximately a 10-fold-higher affinity for PBP4
than ceftazidime (Table 1). Ceftobiprole and imipenem had
the lowest IC50 values for PBP1b. Imipenem had the highest
affinity for PBP2 (IC50 of 0.1 �g/ml), with ceftobiprole having
the greatest affinity (IC50 of 3 �g/ml) among the cephalospo-
rins (Table 1). Cefepime and ceftazidime bound PBP2 with at
least an 80-fold-lower affinity than that for PBP3, similar to
previously reported data (17, 25). Conversely, ceftobiprole had
measurable affinity for PBP2, with an IC50 value 30-fold higher
than that for PBP3. The cephalosporins did not bind to PBP5/6
at concentrations as high as 32 �g/ml (Table 1). Aztreonam
had highest affinity for PBP3 (Table 1). P. aeruginosa cells
grown in the presence of ceftobiprole produced filamentation
(Fig. 1), suggesting that PBP3 was the primary target.

In methicillin-susceptible S. aureus ATCC 29213, ceftobiprole
had good affinity (IC50 of �1 �g/ml) for all four PBPs (Table
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2). Ceftobiprole had the greatest affinity for PBP3, with an IC50

that was 20-fold lower than that of ceftriaxone. Inhibition of
this PBP leads to cell enlargement and the termination of
septation (11). Ceftobiprole had better affinity than ceftriaxone
for all PBPs except PBP2 (Table 2), whose inhibition leads to
cell lysis (11).

PBP2a from methicillin-resistant S. aureus strain OC 3726
(Table 2 and Fig. 2) had high affinity for ceftobiprole, unlike
ceftriaxone and ceftazidime. Entenza et al. previously reported
low ceftobiprole IC50s for PBP2a (�0.47 �g/ml), which were
�100 times lower than those for methicillin (8). Hebeisen et al.
also reported potent binding of ceftobiprole to PBP2a from S.
epidermidis (18).

S. pneumoniae OC 8865 was penicillin susceptible and had
no pbp1a, pbp2b, and pbp2x mutations. Ceftobiprole and ceftri-
axone PBP-binding profiles were similar (Table 2), having high
affinity for PBP1a and PBP2x, the primary cephalosporin tar-
gets (13, 22). Unexpectedly, ceftobiprole had good affinity for
PBP2b (IC50 value of 0.06 �g/ml), unlike ceftriaxone, which
had an IC50 of �1 �g/ml (Table 2). Studies have shown that

TABLE 1. Binding of selected �-lactams to PBPs from gram-negative bacteria

Organism PBP
IC50 (�g/ml)a

Ceftobiprole Ceftriaxone Ceftazidime Cefepime Imipenem Aztreonam

E. coli MC4100 1a 0.3 0.2 1.1 2 0.5 �8
1b 8 0.5 1.1 3.7 0.5 �8
2 0.2 0.2 4 0.6 0.01 �8
3 0.2 �0.01 0.07 0.1 8 0.03
4 0.5 0.4 �4 �4 0.01 �8
5 �8 6 �4 �4 0.5 �8
6 3 �8 �4 �4 0.1 �8

MICb 0.03 0.06 0.12 0.015 0.12 0.12

P. aeruginosa PAO1 1a 0.1 NDc 0.2 0.1 0.5 2
1b 0.5 ND 5 2 0.5 2
2 3 ND �32 8 0.1 16
3 0.1 ND 0.1 0.1 0.1 0.03
4 0.2 ND 2 0.3 0.01 16
5/6 �32 ND �32 �32 2 �16

MICb 1 ND 1 2 1 4

a Concentration of �-lactam that inhibits 50% of Bocillin FL binding to that PBP compared to a no-drug control. For E. coli MC4100, 10 concentrations of each drug
ranging from 0.016 �g/ml to 8 �g/ml were used in the competition assay, and for P. aeruginosa, 10 concentrations ranging from 0.06 �g/ml to 32 �g/ml were used.

b MIC in �g/ml.
c ND, not determined.

FIG. 1. P. aeruginosa PAO1 grown for 1.5 h in (A) nutrient broth
alone (control) or (B) nutrient broth containing 1 �g/ml ceftobiprole
(1� MIC). Magnification, �1,000.

TABLE 2. Binding of ceftobiprole, ceftriaxone, and ceftazidime to
PBPs from gram-positive cocci

Organism PBP
IC50 (�g/ml)a

Ceftobiprole Ceftriaxone Ceftazidime

S. aureus ATCC 29213 1 0.1 0.5 NDc

(methicillin susceptible) 2 0.5 0.1 ND
3 0.05 1 ND
4 1 10 ND

MICb 0.25 2 ND

S. aureus OC 3726
(methicillin resistant)

2a 0.9 �50 �50

MICb 2 �64 �128

S. pneumoniae OC 8865 1a 0.03 0.01 ND
(penicillin susceptible) 1b 0.05 0.03 ND

2x 0.01 0.03 ND
2a 0.03 0.1 ND
2b 0.06 �1 ND
3 0.02 0.02 ND

MICb 0.008 0.03 ND

S. pneumoniae OC 8819 1a 0.1 0.02 ND
(penicillin resistant) 1b �8 0.02 ND

2x 1 8 ND
2a 0.1 0.5 ND
2b �8 �8 ND
3 0.01 0.01 ND

MICb 1 8 ND

a Concentration of �-lactam that inhibits 50% of Bocillin FL binding to that PBP
compared to a no-drug control. The following concentration ranges of each drug were
used in the competition assays for the following organisms: S aureus ATCC 29213, 0.001
�g/ml to 50 �g/ml; S. aureus OC 3726, 0.16 �g/ml to 50 �g/ml; S. pneumoniae OC 8865,
0.004 �g/ml to 1 �g/ml; and S. pneumoniae OC 8819, 0.06 �g/ml to 8 �g/ml.

b MIC in �g/ml.
c ND, not determined.
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cefotaxime, ceftriaxone, cefuroxime, and ceftazidime have
poor affinity for PBP2b (13, 16, 22). The ceftobiprole affinity
for PBP2b may be due to improved kinetic interactions as seen
with the methicillin-resistant staphylococcus PBP2a (18).

In pneumococcal clinical isolates, �-lactam resistance is
caused primarily by alterations in PBP1a, PBP2x, and PBP2b
(1, 2, 15, 27). Penicillin- and ceftriaxone-resistant S. pneu-
moniae OC 8819 had the following substitutions: T371S to S
and P432 to T in PBP1a; T338 to A, M339 to F, I371 to T, R384
to G, M400 to T, and L546 to V in PBP2x; and T446 to A and
A619 to G in PBP2b. For PBP2x, ceftobiprole had an eight-
fold-higher binding affinity than ceftriaxone (Table 2). Heinze-
Krauss et al. similarly reported that a ceftobiprole analog had
IC50 values that were approximately sixfold lower than those of
ceftriaxone against purified PBP2x from two cefotaxime-resis-
tant isolates (19). Neither ceftobiprole nor ceftriaxone bound
to PBP2b at concentrations of �8 �g/ml (Table 2), which was
probably due to the PBP2b T446-to-A substitution known to
contribute to penicillin resistance (13). Affinities for PBP1a,
PBP2a, and PBP3 were similar for both drugs, but ceftriaxone
had a higher affinity for PBP1b than did ceftobiprole (Table 2).

In summary, ceftobiprole demonstrated potent binding to
PBPs from gram-positive bacteria, including those with de-
creased �-lactam sensitivity, such as PBP2a in MRSA and
PBP2x in a penicillin-resistant S. pneumoniae strain, in contrast
to ceftriaxone. In E. coli, ceftobiprole exhibited strong binding
to the essential PBPs PBP2 and PBP3. Ceftobiprole exhibited
a binding profile similar to those of cefepime and ceftazidime
in P. aeruginosa but with enhanced binding to PBP2. These
binding profiles explain the broad-spectrum activity for
ceftobiprole that includes gram-negative bacteria and many
�-lactam-resistant gram-positive cocci, including MRSA.

This work was supported by Johnson & Johnson Pharmaceutical
Research and Development, LLC, and Basilea Pharmaceutica AG.
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