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Sequence–structure relationships in proteins are highly asymmet-
ric because many sequences fold into relatively few structures.
What is the number of sequences that fold into a particular protein
structure? Is it possible to switch between stable protein folds by
point mutations? To address these questions, we compute a
directed graph of sequences and structures of proteins, which is
based on 2,060 experimentally determined protein shapes from the
Protein Data Bank. The directed graph is highly connected at native
energies with ‘‘sinks’’ that attract many sequences from other
folds. The sinks are rich in �-sheets. The number of sequences that
transition between folds is significantly smaller than the number of
sequences retained by their fold. The sequence flow into a partic-
ular protein shape from other proteins correlates with the number
of sequences that matches this shape in empirically determined
genomes. Properties of strongly connected components of the
graph are correlated with protein length and secondary structure.

protein designability � sequence capacity � structure stability �
transitional sequences

As data on protein sequences and their variations become
more accessible (following the abundance of large-scale

sequencing and gene expression projects), it is clear that protein
structures serve as evolutionary templates. Similar protein back-
bones are used again and again to create proteins with adjusted
functions in response to environmental variations or at random.
This asymmetric relationship is of considerable interest in the
study of protein evolution and design and has received consid-
erable attention. How many sequences fold to a common struc-
ture, or equivalently, what is the sequence capacity (or design-
ability) of a known fold? Past theoretical and computational
studies primarily are focused on the thermal stability of the
proteins. The stability is estimated by an energy calculation of
threaded sequences in a known structure. The theory and
calculations can be divided (roughly) into two categories: (i)
general theories (1–6) and exhaustive simulations of simple
model systems (7–11) and (ii) accurate and detailed modeling of
a few proteins (12–16). The studies of class i provide a universal
view of sequence–structure matches and their variations. Inves-
tigations of class ii made specific predictions on protein folds that
are straightforward to test experimentally. The function of
interest, protein designability or sequence capacity, was esti-
mated theoretically and by computations. However, neither of
these calculations consider explicitly all structures of the Protein
Data Bank (PDB) (17). Quantitative extrapolations from ap-
proximate theories, lattice models, or detailed simulations of a
few proteins to other folds may not be obvious. Furthermore,
collective behavior of the evolutionary process, not restricted to
a single or a few proteins, may go unnoticed.

Explicit calculation of sequence capacity of all protein folds is
of particular interest because genomic-scale experiments are
emerging, making it possible to determine sequence selection
mechanisms (18–20). The experiments assess the contribution of
sequence capacity, estimated from theory or simulation, and
compare it to natural mutation rates. We have developed a
computational model in which the sequence capacity was com-
puted directly for a representative set of structures from the PDB

(3,660 folds) (21). In the calculation, only the energy function is
approximate whereas the PDB structures and their correspond-
ing sequences are sampled significantly. The sampling allowed
for statistical convergence of the capacity. In addition to se-
quence capacities of all folds, we computed an intriguing tem-
perature relationship between the folds.

We sampled only experimentally determined structures from
the PDB, so an obvious question is the completion of the set.
Arguments were made that the PDB is indeed complete (22, 23)
with the current thousands of distinct folds. This argument
further supports the creation of a comprehensive model of
protein structure space and their sequence capacities and the
progressive refinement of this model. In ref. 21 we did not
consider the possibility that mutated sequences of a particular
structure will fold to different shapes (sequence migration; we
use ‘‘migration’’ to denote sequences that evolve in one fold and
end up in another structure). This analysis of sequence migration
is particularly timely with the growing experimental evidence for
pairs of proteins with a high percentage of sequence identity and
alternate structures. These ‘‘interface’’ sequences were illus-
trated experimentally on model systems (24–26) and on proteins
(26–30). What is the impact of the interfaces on protein evolu-
tion and design? Interesting analyses of existing structures and
identification of continuous evolutionary changes are presented
in refs. 31 and 32, suggesting the mixing of folds during the
evolutionary processes. The major goal of the present article is
the development of a complete computational model for protein
space as a network, with the nodes of the graph representing the
protein folds and directed edges accounting for the flow of
sequences in and out of the folds. The ‘‘in-degree’’ of a fold is the
number of edges that point to it or the number of other folds that
lose sequences to that structure as a result of point mutations.
Similarly the ‘‘out-degree’’ of a fold is the number of edges that
carry sequences from that fold to other proteins shapes. An edge
indicates loss of sequences that are energetically compatible with
one structure to another fold. Although other interesting net-
work models for protein space have been proposed in the past
(33–36), they were not based on explicit modeling of the kinetics
of evolution (i.e., sequence mutations and migration between
structures), which is done here.

Computational Model
We first summarize the basic components of the computational
model. We directly compute the absolute number of sequences
that fold to each member of a comprehensive sample of protein
structures. We also calculate the number of transitional se-
quences between folds. A transitional sequence allows, with a
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single point mutation, to flip between alternative stable struc-
tures. The computation is based on a stochastic sampling of
sequences with provable polynomial convergence in the se-
quence length. The sampling is done one structure at a time. A
sequence evolves in one particular structure, and the number of
sequences (sequence capacity) below a particular energy is
estimated as well as the number of sequences that were lost to
other folds. Our selection criterion is based on a threading
energy function that makes it possible to estimate microcanoni-
cal partition functions of sequence space in the neighborhood of
each stable basin (a protein structure) and the entropy of the
transition state between pairs of folds. The numbers of se-
quences of a fold and of the transitional sequences between pairs
of folds form the network of sequence flow, which is the prime
result of the present article.

To estimate the sequence capacity of a representative set of
structures, we selected chains from the PDB covering over 90%
of the protein families in the Structural Classification of Proteins
(SCOP) database classes a–e (37) (representing single and
multidomain �- and �-proteins). We started with a large subset
of 14,000 chains from the PDB, chosen so that no two chains have
�70% sequence identity. We compared this subset against the
families in SCOP and eliminated chains that yielded redundant
representations while making sure that our coverage of SCOP
families remained as high as possible. Afterward, we compared
the remaining chains by using the TM-Align algorithm (38). The
range of the TM-score is between 0 and 1, where 1 is identity.
Of every pair of proteins with TM-Score �0.8, we removed one,
thereby eliminating structural redundancies. The resulting data
set used in this work contains 2,060 protein chains.

In our earlier study (21), we considered the sequence capacity
Ni(E), which is the number of sequences with energy lower than
E of fold i. To characterize the properties of the new set, we
define the sequence capacity with competition, Ci(E) as follows:
it is the number of sequences for which the energy Ei in fold i is
lower than E and also lower than the energy Ej in any of the
competing folds j. In the present study, we are using a model
close to gapless threading (39) to check for competing folds. We
do not allow general alignments with deletions and insertions
when we fit sequences into structures. The shorter sequence of
two matched proteins is continuous and considered in full.
Deletions and insertions at the beginning and the end of
sequences score zero, which is a penalty because the THOM2
energy function (see below) is negative on the average. Hence,
gaps do not make energetic contributions in our model.

The energy used in the present study is THOM2 (40). It was
used in an earlier study of Ni(E), which is extended here to the
study of Ci(E) and the stability network. It also is an integral part
of our structure prediction program LOOPP (http://cbsuapps.tc.
cornell.edu/loopp.aspx) and provides a useful signal to detect
similarities between folds of proteins. THOM2 captures the
environment of each structural site by assigning a score, u(�, m),
for each contact to a structural site. A contact is assumed if the
distance between the geometric centers of two amino acid side
chains is �6.4 angstrom. The score is determined from a lookup
table by using the type of amino acid, �, at the site of interest and
the number of neighbors m to the contact site. The total energy
of a protein is a sum of the site contributions:

E � �
l�1, . . . L

�
k

ulk��l, mkl� [1]

where the index l is running over the structural sites and the
index k over the contacts of the site l. THOM2 performs quite
well on the set of folds we considered. It recognizes in 1,885 of
the 2,060 proteins the native structure as the best fold of the
native sequence. The remaining 175 structures are not compet-
itive for sequences within the network and therefore do not

influence its behavior significantly. The 175 folds have fewer
than 10 sequences with better energy than the native sequence.
From a bioinformatic perspective, the THOM2 energy is par-
ticularly useful because an efficient alignment algorithm [dy-
namic programming (41)] is known. From the perspective of
estimating N(E) and C(E), this energy function also is of
significant value. It was shown (42) that the Markov chain of the
algorithm described below that relies on THOM2 is well mixed
(approaching the desired distribution) after a polynomial num-
ber of steps in the sequence length. It therefore is expected that
an efficient calculation of the sequence capacity can be made
with THOM2. In contrast, we cannot demonstrate that the
Markov chain for pairwise potentials is ergodic.

Consider a protein sequence At of length L, a fold Xi, and
energy function Et � E(At, Xi). We set two upper energy
boundaries for an intermediate estimate of the number of
sequences, Es and Es�1, (Es � Es�1). Both boundaries are chosen
empirically, such that Et � Es�1 and the ratio N(Es�1)/N(Es) is
of order one (between 1 and 20). Note that typically N(E) grows
exponentially with the protein length L, and its maximum is 20L,
which can make the choices of the energies a little tricky. The
determination of the ratios of N(Es�1)/N(Es) for different en-
ergies Es and Es�1 is the target of the current calculation. Each
individual ratio is estimated with a randomized algorithm (21,
42) as described below. Starting from At, we modify at random
one of its amino acids. If the energy of the new sequence is larger
than Es�1, the new sequence is rejected, and a new trial is made
based on At. If the new energy is lower or equal Es�1, the step
is accepted, and we add one to the counter ls�1. In this way, we
performed a random sampling on the space of sequences with
energy below Es�1. We keep track of the number of steps that this
walk spends below energy Es in a second counter ls; the ratio
ls�1/ls then can be shown to give a polynomial-time approxima-
tion to N(Es�1)/N(Es).

In a previous study, we approximated N(En), the number of
sequences with energy lower than the energy of the native
sequence, An, by a successive ratio

N�En� � N�Eref�
N�E1�N�E2�

N�E ref�N�E1�
�

N�ES�N�En�

N�ES�1�N�ES�
, [2]

where N(Eref) is the number of sequences at a reference energy
that we can estimate directly. For example, the average energy,
Emean, and N(Emean) can be determined by direct random
sampling of sequences. The capacity N(Emean) is quite close to
1/2�20L (although we compute it for every fold in the set).
Because the difference between N(Eref)and N(En) can be expo-
nential in the protein length, we establish S intermediate ratios
to satisfy the above requirement that each individual ratio is
O(1). For each intermediate ratio, we typically generate a sample
of a few million sequences. We repeat this calculation for every
fold in the set.

In the calculations of Ci(E), the number of sequences that fit
a fold Xi with competition, we adjust the counting as follows. As
before, we generate a Markov chain in sequence space such that
Et � Es�1, and we compute the ratio ls�1/ls. In addition to
previous calculation (21, 42), we check for each sequence
whether one of the alternative folds Xj has energy Ej � Et. We
define cs�1 as the number of sequences sampled below Es�1 that
do not have better energies in other folds, and rs�1 as the total
number of sequences sampled below the energy Es�1. We
compute the estimate C(Es�1) 	 N(Es�1)cs�1/rs�1, and estimate
C(Es) in the same manner. We also compute ms(i 3 j), the
number of sequences that migrate from structure i to structure
j. This information is sufficient to describe the directed graph we
are after.

The above procedure can increase the computational cost by
several orders of magnitude compared with counting without
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competition (instead of a single energy evaluation per sequence,
we may need thousands of evaluations). However, we can employ
additional heuristics to significantly reduce the running time of
our algorithm. For instance, we observe that a structure j that
cannot compete with structure i in the energy interval Es is highly
unlikely to be competitive at any interval Es
 such that Es
 � Es.
Therefore, whenever a structure j has been noncompetitive for
three successive energy intervals, we will remove it from the list
of competitors for the next two intervals (rounds). After ‘‘sitting
out’’ for two rounds, the structure j will reenter the competition;
however, if it remains noncompetitive, it will be eliminated again
for four rounds, then for eight rounds, etc. Empirically, we
observe that reentering structures almost are always eliminated
outright and never have any significant effect on the competition
(e.g., ms(i3 j) is close to zero for all s
 � s). The heuristic allows
us to significantly cut down on the number of structures we need
to consider at any given time and generally increases the
efficiency of our algorithm.

Results
In Fig. 1 we show a schematic view of the two largest strongly
connected components of the graph (a strongly connected
component of a directed graph is a maximal set inside which
every node has a path to every node). A directed edge is drawn
from protein i to j if at least a fraction c of the sequences with
energy below the native energy of i migrate to j. The minimal
fraction c to establish an edge in Fig. 1 (0.00375) was chosen for
clearer visualization. The size of the largest component is 320
structures, and the second largest is 90 (the third is 39). For

clarity in this image, at most five outgoing edges with the largest
weights were kept for each node.

Examining the properties of the components, we realize that
the largest of the two includes proteins that are unusually long.
The average length of proteins of the largest component is 516
aa, whereas the average length of the whole set is 260 aa.
However, the average length of proteins in the second compo-
nent is only 200 aa. This length is shorter than the average length
of the set, which suggests that the length is not the only factor
leading to the strong connectivity. We define the secondary
structure content as the fractions of residues in an �-helix or a
�-sheet configuration according to the DSSP program (43). The
largest component is slightly richer with helical content com-
pared with the second-largest component (0.276 versus 0.252)
and slightly poorer with sheets (0.232 versus 0.276). The con-
tribution of the secondary structure to in-degrees is clearer when
correlations are examined. We emphasize that no correlation is
observed between secondary structure and protein length (� �
�0.002 and P � 0.1). The Spearman correlation coefficient of
�-sheet content and in-degree is � � 0.215 with P � 10�12.
Another piece of evidence for the importance of protein length
and �-sheet content for in-degree are the ‘‘sinks.’’ The graph
clearly shows the existence of structures that attract sequences
from many other folds. The potential existence of sinks was
noted in the past based on 3 � 3 � 3 lattice simulations (6, 33).
All of the top attractors are in the largest component. The PDB
identifiers of the proteins with at least 100 in-degrees are: 1TYV
(272 in-degrees, length of 542 aa, and high �-sheet content),
1IDK, which is similar in its characteristics (152 in-degrees,
length of 359 aa, and high �-sheet content), and 1OFL:A, the

Fig. 1. The two largest strongly connected components of the network of sequence flow between protein folds. Protein space is presented as a directed graph
in which a node is a protein shape and the directed edge denotes a flow of sequences from one fold to another. Sequence flow is created when a sequence that
is energetically compatible with one structure becomes more compatible with another structure as the result of a single point mutation.
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next in line (100 in-degrees, 481 aa, and a �-protein). Yet another
example is 1RWR, which is the fifth-strongest attractor with 64
in-degrees and moderate length (301 aa and a �-protein). A
useful property that strongly correlates with the graph in-degree
is the contact density (the total number of contacts of a protein
divided by the sequence length). It is higher for the largest
component (1.626 versus 1.531), which is not surprising because
higher contact density is expected for longer proteins with
smaller surface–volume ratios. Indeed, the contact density is
highly correlated with the protein length. One may expect that
the in-degree of a structure will strongly correlate with the
sequence capacity. The correlation, however, is not so strong
once the length effect is factored out. The correlation coefficient
of log[C(E)/20L] with the in-degree is 0.468 and of log[N(E)/20L]
is �0.169.

The above analysis focused on a particular definition of an
edge that was useful for graphical purposes. Another definition
that we examined in detail is based on the size of the network.
Two nodes i and j are connected by a directed edge if the fraction
of sequences that migrate from i to j is larger or equal to 1/K (K
is the total number of folds in our set). In Fig. 2 we show the
distribution of the number of ‘‘in’’ edges.

The total number of in-edges is 785,182, suggesting that the
connectivity of the graph is dense. Besides the dominant feature
at zero, the distribution also shows a long tail to much higher
values (up to 2,002 in edges). The proteins that feature in this
high number of in-degree class (e.g., 1K32:A) are (again)
enriched with �-sheet structures compared with the rest of the
proteins. This observation suggests that the properties of the
sinks are not sensitive to the edge cutoff value. The Spearman
correlation coefficient of length and in-degrees is highly signif-

icant � � 0.623 with P value significantly �10�12. It is interesting
to note that the distribution of the number of out-edges is
considerably more focused, and no long tails are observed. It is
peaked at a value of 	470 for the degree and is not correlated
with the number of in edges of a particular fold.

Because the in-degrees show such a striking behavior, we exam-
ined whether there are correlations between the distribution of
in-degrees and the number of sequences for each fold family that
are observed experimentally. For every native sequence in our
database, we identify all related sequences in the NR database (44).
The matching was done with BLAST (45) with an E value of 0.001
and the BLOSUM 60 substitution matrix (46) (no significant
changes in the results reported below were found for an E value of
0.01). Because longer proteins may have more than one domain
(and therefore may have independent BLAST hit to different
domains), we divided the number of sequence hits by the number
of domains. The sampling of sequences is significant, and on the
average we assigned 	340 sequences to one fold. We have found
that the number of sequences that match a particular fold correlates
with the number of in-edges with Spearman’s correlation coeffi-
cient of 0.223. Although this correlation suggests that many other
factors are involved in evolutionary processes (besides stability) in
accord with observations of others (19), it nevertheless is highly
significant (P � 10�12).

For every fold we also can determine an ideal energy E* where
the fraction of retained sequences [i.e., the quantity C(E*)/
N(E*)] is maximized. This energy always is lower than the energy

Fig. 3. Sequence retention at the energy E* as a function of the contact
density. For every fold, E* is the energy at which the fraction of sequences
retained by that fold is maximal. In our model, some proteins retain all
sequences at E* and all energy levels below. For other proteins, the fraction of
retained sequences reaches a maximum at their E* and then falls again as
energy is lowered. Some protein folds even have zero sequence retention rate
throughout the energy landscape, meaning that they are almost entirely
energetically dominated by other folds.

Fig. 2. The log of the number of proteins (the number of nodes in the
directed graph) as a function of in-degree (the total number of edges directed
into a fold). The in-degree is an indicator of the stability of a particular shape
and its ability to ‘‘steal’’ sequences from other structures.

11630 � www.pnas.org�cgi�doi�10.1073�pnas.0701393104 Meyerguz et al.



of the native sequence and for a large number of proteins
C(E*)/N(E*) � 1. Hence, some proteins are able to retain all
their sequences at the ideal energy. In a sharp contrast, the other
folds retain only a small fraction of their sequences as demon-
strated in Fig. 3, dividing the fold family into two broad classes.
The proteins with high retention factors also are with high
contact density.

From the discussion above, it is clear that the edges of the
graph are a function of an ad hoc cutoff value of the transmission
probability between nodes and the energy of the calculation (at
E* the number of edges is likely to be minimal). It therefore is
useful to explore different values of cutoff and of sequence-
counting energy (between E* and Enat). In Fig. 4 we plot the
number of components of the graph computed as we varied these
parameters

In Fig. 5 we show the functions log[N(En)/20L] and log[C(En)/
20L] for all proteins in the set plotted as a function of the contact
density (the total number of contacts of a protein molecule
divided by the protein length L). We call these functions ‘‘the
density of capacity’’ (with or without competition).

We observe that log[N(En)/20L] is a nonincreasing function
(on the average) of the contact density. This finding is easy to
explain because structural sites of amino acids with higher
contact density are more selective, and a smaller fraction of
sequences is found below the native energy. The function
C(En)/20L behaves differently and shows a maximum as a
function of the contact density. The deviation of C(En)/20L from
N(En)/20L is the clearest for low contact density, whereas at high

values both functions are more similar. At low contact density
the native structure is only marginally stable, making N(En)/20L

large (it is easy to find sequences with better or comparable
energy to the native energy for this particular fold). However, the
marginal stability of structures with low contact density suggests
that it is easy to find alternative folds with lower energies for the
probe sequence. The availability of alternative folds in the
calculation of C(En) significantly reduces the number of se-
quences for marginally stable proteins compared with the results
of N(En). On the other hand, when the contact density is large,
the fraction of sequences acceptable to that fold is smaller, and
their energies are lower making it more difficult to find alter-
native folds for a particular sequence. Hence, for large contact
density the two densities of capacity are more similar. The more
accurate function for estimating sequence capacity, C(E), has an
intriguing maximum at 	1.5 for the contact density, which is the
largest value observed for the density of sequence capacity or
protein designability.

Finally, we discuss potential sources of errors in our calcula-
tions. Although the convergence of our sampling procedure is
mathematically sound, two other components of the model may
have significant errors. First, our set of alternative structures is
incomplete even if the PDB is, because in our studies we use only
gapless alignments. The presence of gaps will significantly in-
crease the number of alternate structures (47). Second, our
energy function, which is a one-body potential, is less accurate
than more sophisticated energy models that are available. The
first point will tend to make the network more dense, whereas
the second point probably more diluted. Both of these choices
were made to facilitate the construction of the network. We
examine tens to hundreds of millions of sequences for each

Fig. 4. A contour plot of the number of strongly connected components in
the graph as a function of the log of the cutoff value for establishing an edge
(y axis) and as a function of the energy in the range E* and Enat (x axis). An edge
is established when the fraction of sequences that flow between one protein
to the next exceed a cutoff value. (A strongly connected component of a
directed graph is a maximal set inside which every node has a path to every
node).

Fig. 5. The density of sequence capacity (without and with competition
log[N(En)/20L] and log[C(En)/20L]) as a function of the contact density (the total
number of contacts divided by the number of amino acids).
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particular fold. It would not be practical for us to create a
network at the same level of sampling accuracy and a compre-
hensive view of the PDB with significantly more complex models.

Discussion
Perhaps the most striking observation of the present article is the
high connectivity between protein folds induced by sequence
migration. Both the usual notion of a unique and stable protein
fold and the success of homology modeling (many sequences fold
into one particular shape) are in conflict with the picture of a
densely connected space of protein structures by sequence
evolution. This conflict is easily resolved. The number of se-
quences that migrates between folds is significantly smaller than
the total number of sequences available to a particular fold. For
longer proteins the probability of structural f lip is particularly
small. Given that the number of homologous proteins known
today to a particular fold is in the hundreds to thousands,
experimental detection of a transition would be hard to come by.
Nevertheless, a number of intriguing sequence migration and
structural shifts already were observed (26–30). Further
searches for such transitions can benefit from interactions
between experiment and simulations; the simulations might be
able to guide the search for these rare events.

The high connectivity that we observed is for energies that are
below the native energies of these proteins. These transitions

therefore are direct with a single point mutation. They are
possible, within our energy model, without causing unfolding.
Obviously, additional possibilities for these exchanges will be
open once more complex moves are considered (such as domain
swap). However, even with the highly restricted move set, the
connectivity is quite significant and may serve a purpose. It is
well known that proteins have native sequences that are far from
optimal in their correct folds. A number of speculations were
suggested to explain this observation, such as making sure that
the protein folds even after a potentially damaging point muta-
tion (large sequence capacity), retaining flexibility necessary for
function, etc. Here we are adding one more speculation. The
native sequences of experimental folds are far from optimal to
retain the possibility of structural f lexibility, adjusting protein
shapes by local mutations in response to environmental pressure.
These transitions will be obviously rare but still possible accord-
ing to our calculations and to a few experimental examples listed
above. Hence, the present article opens the way for speculation
on structural evolution that results from point mutations. The
observed structural f lips are not necessarily restricted to pro-
teins, and it is possible that molecules like RNA will show similar
behavior.
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cluster purchased with National Institutes of Health Grant RR020889.
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