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The lutein-5,6-epoxide (Lx) cycle operates in some plants between lutein (L) and its monoepoxide, Lx. Whereas recent studies
have established the photoprotective roles of the analogous violaxanthin cycle, physiological functions of the Lx cycle are still
unknown. In this article, we investigated the operation of the Lx cycle in light-harvesting antenna complexes (Lhcs) of Inga
sapindoides Willd, a tropical tree legume accumulating substantial Lx in shade leaves, to identify the xanthophyll-binding sites
involved in short- and long-term responses of the Lx cycle and to analyze the effects on light-harvesting efficiency. In shade
leaves, Lx was converted into L upon light exposure, which then replaced Lx in the peripheral V1 site in trimeric Lhcs and the
internal L2 site in both monomeric and trimeric Lhcs, leading to xanthophyll composition resembling sun-type Lhcs. Similar to
the violaxanthin cycle, the Lx cycle was operating in both photosystems, yet the light-induced Lx / L conversion was not
reversible overnight. Interestingly, the experiments using recombinant Lhcb5 reconstituted with different Lx and/or L levels
showed that reconstitution with Lx results in a significantly higher fluorescence yield due to higher energy transfer efficiencies
among chlorophyll (Chl) a molecules, as well as from xanthophylls to Chl a. Furthermore, the spectroscopic analyses of
photosystem I-LHCI from I. sapindoides revealed prominent red-most Chl forms, having the lowest energy level thus far
reported for higher plants, along with reduced energy transfer efficiency from antenna pigments to Chl a. These results are
discussed in the context of photoacclimation and shade adaptation.

Plants must cope with contrasting light environ-
ments throughout their life. Variations in light inten-
sity, spectral composition, and spatiotemporal patterns
of fluctuations induce a variety of responses in plants,
from the level of the photosynthetic apparatus to
whole-plant architecture (Schurr et al., 2006). Species
are sometimes classified into sun and shade plants
according to the typical light conditions in their hab-
itats. However, many species are in fact able to accli-
mate and both sun- and shade-plant phenotypes often
appear in different individuals of a species or geno-
type, depending on growth light environments. Fur-
thermore, it is well known that such sun-shade
acclimation can be observed in different leaves of a
single plant (Björkman, 1981) or even in chloroplasts of
different mesophyll cells within a single leaf (Bassi,

1986; Terashima et al., 1986; Vogelmann and Evans,
2002). This remarkable photoacclimatory plasticity sup-
posedly provides a competitive advantage under het-
erogeneous or fluctuating environments that occur in
nature (Walters, 2005).

Photosynthetic performance under strong light is
largely determined by the capacity for photosynthetic
electron transport, photophosphorylation, CO2 conduc-
tance, and CO2 fixation, whereas success under weak
light is associated with respiratory down-regulation
and augmentation of light capture efficiency (Björkman,
1981; Anderson, 1986). Sun acclimation, for example,
leads to increased activity of PSII, ATPase, and Rubisco,
whereas shade acclimation enhances accumulation of
the major light-harvesting antenna complex (Lhc) of
PSII (LHCII) containing chlorophyll (Chl) a, Chl b, and
xanthophylls (Anderson et al., 1988; Bailey et al., 2001;
Ballottari et al., 2007). Photoacclimation thus engages
coordinated resource allocation between the compo-
nents of these processes (Osmond et al., 1999), which
become rate-limiting factors under the corresponding
light environments, to achieve a proper balance be-
tween energy input and output.

The complement of this photosynthetic adjustment
is the operation of photoprotection and damage repair
(Osmond et al., 1999), whose importance is most
evident in plants exposed to unfavorable conditions.
The regulatory mechanisms involved in this side of
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photosynthesis have also been a focus of thorough
investigation (Demmig-Adams and Adams, 1992a;
Niyogi, 1999; Osmond et al., 1999; Chow and Aro,
2005). Profound knowledge has been gained about the
mechanisms of thermal energy dissipation through
physiological, biochemical, biophysical, and genetic
approaches (Demmig-Adams and Adams, 1992a;
Formaggio et al., 2001; Gilmore, 2001; Morosinotto
et al., 2003; Holt et al., 2004, 2005; Horton et al., 2005),
as well as recent progress in crystallography of the
Lhcs (Liu et al., 2004; Pascal et al., 2005).

One of the constituents of the regulatory mechanism
for energy dissipation in Lhcs is the violaxanthin (V)
cycle in which V deepoxidase (VDE) and zeaxanthin
(Z) epoxidase (ZE) catalyze the interconversions be-
tween V, antheraxanthin (A), and Z in a light-dependent
manner (Demmig-Adams and Adams, 1992a). Un-
der illumination, V molecules released from Lhcs into
the lipid phase of thylakoid membrane are converted
to A and Z by the activity of VDE (Yamamoto and
Higashi, 1978; Yamamoto, 2006), which reverses the
flux direction in the b,b-carotenoid biosynthetic path-
way downstream of b-carotene (b-Car). Some of these
deepoxidized xanthophylls (Z in particular) then re-
place V in the peripheral xanthophyll-binding site (V1
site; Caffarri et al., 2001) and one of the two internal
binding sites (L2 site) of Lhcs (V / Z exchange; Färber
et al., 1997; Verhoeven et al., 1999; Jahns et al., 2001;
Morosinotto et al., 2002a; Wehner et al., 2004, 2006).
Binding of Z to the site L2 brings about energy dissi-
pation (Wentworth et al., 2000; Frank et al., 2001;
Dall’Osto et al., 2005), which is associated with confor-
mational changes in Lhcs (Horton et al., 1991, 1996,
2005; Moya et al., 2001; Morosinotto et al., 2003;
Dall’Osto et al., 2005). Alternatively or additionally, it
has been suggested that a few Z molecules may bind to
PsbS protein, an essential component for energy dissi-
pation in higher plants (Li et al., 2000), and thereby
induce strong dissipation (Aspinall-O’Dea et al., 2002;
Hieber et al., 2004; Holt et al., 2004). Besides, accumu-
lation of Z in thylakoid membranes can also mitigate
lipid peroxidation caused by formation of reactive
oxygen species (Havaux and Niyogi, 1999; Havaux
et al., 2004). Although the physiological role of the V
cycle for PSI is still unknown (Thayer and Björkman,
1992; Lee and Thornber, 1995; Färber et al., 1997;
Verhoeven et al., 1999), pronounced increase in the
pool size of the V-cycle pigments often found in sun
plants or sun leaves indicates the up-regulation of
V-cycle-dependent photoprotection in both PSII and
PSI during sun acclimation (e.g. Thayer and Björkman,
1990; Demmig-Adams and Adams, 1992b; Verhoeven
et al., 1999).

Analogous to the V cycle in the b,b-carotenoid
biosynthetic pathway, some species possess another
xanthophyll cycle operating in the b,e-carotenoid bio-
synthetic pathway downstream of a-Car (Bungard
et al., 1999; Matsubara et al., 2001, 2003, 2005; Garcı́a-
Plazaola et al., 2002, 2004). This xanthophyll cycle in-
volves part of the pool of lutein (L), the most abundant

xanthophyll bound in higher plant Lhcs (Kühlbrandt
et al., 1994; Liu et al., 2004), and its monoepoxidized
form lutein-5,6-epoxide (Lx). The conversions between
L and Lx are presumably catalyzed by the same
enzymes as in the V cycle, VDE and ZE. However,
the fact that many plants do not contain more than a
trace of Lx (Young, 1993) suggests altered substrate
specificity or affinity of ZE to L in plants having the Lx
cycle (Matsubara et al., 2003). In fact, the two xantho-
phyll cycles differ in the epoxidation kinetics in the
dark, with recovery of Lx being much slower than that
of V, whereas light-induced deepoxidation of Lx and V
proceeds in much the same way (Matsubara et al.,
2001, 2005; Garcı́a-Plazaola et al., 2002; Snyder et al.,
2005). This slow epoxidation in the Lx cycle seems to
result in pronounced sun-shade characteristics in Lx
concentration (Matsubara et al., 2001, 2002), with a
striking example reported for a tropical tree legume
Inga sapindoides Willd (Matsubara et al., 2005). In
marked contrast to extremely high Lx content in
deeply shaded leaves, sun leaves of I. sapindoides typ-
ically contain low levels of Lx. Based on the resem-
blance in chemical structures of these xanthophylls,
the parallel deepoxidation kinetics in the two cycles
(Matsubara et al., 2001, 2003; Garcı́a-Plazaola et al.,
2002, 2003), as well as the similar distribution patterns
of Lx and V within the thylakoids (Matsubara et al.,
2003, 2005), a distinctive role of the Lx cycle in photo-
acclimation has been proposed. It has been suggested
that the light-harvesting centers (containing Lx, the
dominant form in deeply shaded leaves) are converted
into photoprotective centers (containing L, dominant
form in sun-exposed leaves) via slowly reversible
Lx / L exchange in the internal L2 site (‘‘lock in’’)
upon illumination (Matsubara et al., 2005). If so, this
slowly reversible Lx / L conversion may represent
short-term, early steps in the long-term process of
shade-to-sun acclimation. However, neither the occur-
rence of such Lx / L exchange in Lhcs nor its effect on
light energy transfer has been demonstrated yet.

In this study, we therefore examined whether slowly
reversible Lx / L exchange occurs in Lhcs upon light-
induced rapid deepoxidation in shade leaves and
whether the relative levels of these xanthophylls shift
in a similar manner in Lhcs during shade-to-sun accli-
mation. As our results clearly showed both short-term
Lx / L exchange and long-term Lx / L shift in vivo,
we further investigated the effects on the excitation
energy transfer in an in vitro system by using mono-
meric recombinant Lhcs (Lhcb1 and Lhcb5) and native
trimeric LHCIIs. Here, we report an indication that the
Lx / L exchange can induce protein conformational
changes to modulate the light-harvesting efficiency in
some antenna complexes. Furthermore, spectroscopic
analyses of PSI-LHCI holocomplexes from I. sapin-
doides revealed conspicuous red Chl forms that have
the lowest energy levels so far found in higher plants.
The ability of I. sapindoides to accumulate large
amounts of Lx in the light-harvesting antennae and
the presence of prominent red Chl forms in PSI-LHCI
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are discussed in the context of photoacclimation and
shade adaptation.

RESULTS

Pigment Composition and Distribution in Sun and

Shade Thylakoids

Dark-adapted sun and shade leaves of I. sapindoides
were collected for thylakoid isolation. Some of the shade
leaves were exposed to a light intensity of approxi-
mately 200 mmol m22 s21 for 30 min prior to dark adapta-
tion (shadeL). The effective PSII efficiency measured at
the end of this light treatment was 0.18 (60.06 SD, n 5 8).
The maximal PSII efficiency (Fv/Fm) of these preillumi-
nated shadeL leaves did not fully recover during the
subsequent 24-h dark adaptation and remained slightly,
but not significantly, lower than the Fv/Fm values of
other dark-adapted leaves (Table I), suggesting that the
light treatment caused little photoinhibition.

Higher Chl a-to-Chl b ratios (Chl a/b), indicative of a
smaller PSII light-harvesting antenna size, were found
in the pigment extracts of thylakoids isolated from sun
leaves (Table I). As previously reported (Matsubara
et al., 2005), pronounced Lx accumulation was to be
seen in thylakoids from shade leaves, whereas the
levels of Lx were much lower in sun leaves (67.9
versus 25.3 mmol mol21 Chl a 1 b). Although total
carotenoids declined from shade to shadeL, due pre-
sumably to photooxidation, the decrease in Lx was
accompanied by a marked increase in L, the only
carotenoid that exhibited an increase after the light
treatment, manifesting the light-induced deepoxida-
tion of Lx to L and the slow epoxidation of L back to Lx
during the subsequent dark adaptation (Matsubara
et al., 2005). The fact that neither Z nor A was detected
in these dark-adapted samples, including shadeL,
indicates that ZE was active during the dark adapta-
tion. As for the carotenes, sun leaves had much higher
levels of b-Car with lower levels of a-Car compared to
shade leaves. Accordingly, the balance between these
two carotenes (a/b-Car) was .1 in shade and shadeL
compared to ,1 in sun (Table I).

It has been shown that the distribution pattern of Lx
within the thylakoid membrane resembles that of V,
indicating similar binding sites for these two xantho-

phylls in Lhcs (Matsubara et al., 2003, 2005). Then,
deepoxidation of Lx to L could induce Lx / L
exchange in Lhcs in much the same way as has been
demonstrated for V / Z exchange (Bassi et al., 1993;
Färber et al., 1997; Jahns et al., 2001; Morosinotto et al.,
2002a; Wehner et al., 2004, 2006). To pinpoint the
xanthophyll-binding sites for Lx / L exchange and
to identify the effects of short- and long-term light
exposure on the carotenoid distribution within the
thylakoid membrane of Lx-accumulating plants, dif-
ferent pigment-protein complexes were isolated from
shade, shadeL, and sun thylakoids by solubilization
with 0.6% dodecyl-a-D-maltoside (a-DM) followed by
a Suc density gradient.

Seven fractions were isolated from each sample.
Distribution patterns of Chl a and Chl b among these
seven bands are illustrated in Figure 1, A and B,
respectively. The bands were identified with the SDS-
PAGE profiles (Fig. 1C), as well as absorption spectra
(see below). Whereas the mild detergent treatment
with 0.6% a-DM allowed isolation of Lhc monomers
(band 2) and LHCII trimers (band 3), it did not allow
the complete separation of the PSII core and the PSI-
LHCI of I. sapindoides (Fig. 1C). The thylakoids of I.
sapindoides are further characterized by the prominent
band 7, containing large supercomplexes, which also
appeared in the native green gel (Fig. 1D). This super-
complex fraction was also observed in our previous
study with this species, although it was then regarded
as an unsolubilized fraction and hence not included in
the analysis (Matsubara et al., 2005). As can be seen in
Figure 1D, the same mild treatment allows isolation of
the PSII core and PSI-LHCI and yields fewer super-
complexes in Arabidopsis (Arabidopsis thaliana). Here,
thylakoids from Arabidopsis and I. sapindoides were
solubilized and fractionated under the very same
condition and yet the levels of complexes with large
Mrs were far greater in the latter.

Generally, only small amounts of free Chls (0.2%–
1.7%, band 1) were found in the thylakoid samples of I.
sapindoides (Fig. 1, A and B). The carotenoid composi-
tion in band 1 (Supplemental Table S1) reflected that of
the thylakoids (Table I), although with much higher
proportions of Lx, L, and V. More than 60% of Chl
a was distributed in the three fractions containing
PSII and PSI core complexes (Fig. 1A, bands 5–7). In

Table I. Pigment composition of thylakoid membranes isolated from dark-adapted sun and shade leaves of I. sapindoides

The maximal PSII efficiency (Fv/Fm) was measured in dark-adapted leaves (n 5 8–11, 6SD). Some of the shade leaves were exposed to a light intensity
of approximately 200 mmol m22 s21 for 30 min to induce xanthophyll deepoxidation (shadeL) before dark adaptation. Concentrations of carotenoid
pigments are given on a Chl basis (mmol mol21 Chl a 1 b). None of the samples contained detectable levels of Z or A. For pigments, n 5 3 (6SD).

Fv/Fm Chl a/b N V Lx L Lx 1 L Lx/L a-Car b-Car a 1 b-Car a/b-Car Total

Shade 0.79 2.6 58.0 25.1 67.9 82.1 150.0 0.83 58.5 37.0 95.4 1.58 328.6
(0.01) (0.1) (0.9) (0.4) (1.2) (4.9) (5.1) (0.05) (0.9) (5.1) (5.2) (0.22) (7.3)

ShadeL 0.68 2.7 53.5 20.9 26.0 106.5 132.5 0.24 53.0 38.5 91.5 1.38 298.3
(0.09) (0.1) (0.6) (0.8) (2.6) (2.9) (3.9) (0.03) (1.1) (1.1) (1.6) (0.05) (4.3)

Sun 0.78 3.2 49.2 32.7 25.3 87.1 112.4 0.29 48.6 53.0 101.6 0.92 295.9
(0.01) (0.1) (0.9) (1.6) (0.9) (3.1) (3.3) (0.01) (4.3) (2.5) (5.0) (0.09) (6.3)
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contrast, more than one-half of Chl b was recovered in
the three fractions with high concentrations of Lhcs
(Fig. 1B, bands 2–4). The two dominant fractions in
shade leaves were bands 3 and 7, both containing
LHCIIs. The relative contribution of these two bands
was lower in sun leaves, in which other fractions,
especially band 6, comprised a greater portion than in
shade. These features in the relative abundance of
pigment-protein complexes in sun and shade thyla-
koids are consistent with acclimatory modification of
PSII antenna size (Anderson, 1986; Anderson et al.,
1988), which is also evident in the Chl a/b ratios (Table
I). The distribution patterns of total xanthophylls
resembled those of Chl b in all samples (data not
shown). Conversely, a large part of carotenes (.95%
and .90% for b-Car and a-Car, respectively) were

found in bands 5 to 7 containing most of the PSI-LHCI
and PSII core complexes.

Short- and Long-Term Effects of Light on the
Carotenoid Composition of Lhcs

Concentrations of the major carotenoid species were
determined in each Suc gradient band obtained from
dark-adapted shade, shadeL, and sun leaves. The
carotenoid concentrations of the two Lhc-only bands
(bands 2 and 3) are summarized in Table II. For
comparison, pigment composition of band 3 from
Arabidopsis is also shown. Short-term light exposure
caused a decrease in Lx with a simultaneous, and
nearly stoichiometric, increase in L in both monomeric

Figure 1. Suc density gradient profiles
of thylakoids from dark-adapted sun
and shade leaves of I. sapindoides.
Some of the shade leaves were exposed
to approximately 200 mmol m22 s21 for
30 min prior to the dark adaptation
(shadeL). Distribution profiles of Chl a
(A) and Chl b (B) among the seven
fractions obtained (bands 1–7, from the
lowest to the highest density) are
shown. Concentrations of the pigments
are given relative to the total (5100%).
Polypeptide compositions of the seven
bands were then analyzed by denatur-
ing SDS-PAGE (C) and identified by
western blotting using specific anti-
bodies (data not shown). Solubilized
thylakoids of I. sapindoides were also
separated by nondenaturing Deriphat-
PAGE and compared with thylakoids
from Arabidopsis under the same con-
dition (D).
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and trimeric Lhcs of shadeL. Consequently, the levels
of these xanthophylls in shadeL approached those of
sun. Still, the number of L molecules found in trimeric
LHCIIs of sun was lower than that of Arabidopsis, a
non-Lx species. In addition to the light-induced
changes in Lx and L, trimeric LHCIIs contained higher
levels of V in sun than in shade or shadeL, whereas
monomeric Lhcs did not exhibit such a sun-shade
difference in V content.

Thus, illumination seems to convert Lhc proteins
from the Lx-rich type (shade) into the L-rich type
(shadeL) via light-dependent deepoxidation and con-
comitant Lx / L exchange. Unlike the V cycle, the
conversion and exchange of Lx / L was not fully
reversible during 24-h dark adaptation. We note that
the occurrence of Lx / L exchange was also con-
firmed in other Suc-gradient bands containing Lhcs of
PSII and PSI (see below), suggesting that the Lx / L
exchange happens in both PSII and PSI, as has been
shown for the V / Z exchange (Thayer and Björkman,
1992; Lee and Thornber, 1995; Färber et al., 1997;
Verhoeven et al., 1999). During long-term sun accli-
mation and down-sizing of LHCIIs (Table I), V seems
to replace some of the Lx and L molecules in these
complexes.

Sites of the Lx ! L Exchange in Trimeric LHCII

The major Lhc, trimeric LHCII, has four xantho-
phyll-binding sites: three internal sites, termed L1, L2,
and N1, and a peripheral site, termed V1 (Kühlbrandt
et al., 1994; Croce et al., 1999; Liu et al., 2004). Because
the data in Table II indicated Lx / L exchange in both
monomeric and trimeric Lhcs upon deepoxidation,
analogous to V / Z exchange during the operation of
the V cycle, we examined the xanthophyll-binding
sites involved in Lx / L exchange by isolating band 3
with a mild (0.6% a-DM) and a more stringent (1.0%
b-DM) detergent. Because loosely bound xanthophylls
in V1 are removed by harsh treatments (Ruban et al.,
1999; Verhoeven et al., 1999; Caffarri et al., 2001), the
difference in xanthophyll composition found between

the samples isolated with a- and b-DM should reflect
the xanthophyll species in the V1 site.

Assuming 14 and 12 Chl molecules per monomer for
trimeric LHCIIs isolated with a- and b-DM, respec-
tively (Dainese and Bassi, 1991; Liu et al., 2004), we
estimated the number of xanthophyll pigments per
monomer (Fig. 2). In accordance with the assumption,
four xanthophylls were found in the a-DM samples,
whereas only three were recovered in the b-DM sam-
ples. One molecule of neoxanthin (N) was present in
all samples regardless of the detergent used or the
light conditions of the leaves. Given the high specific-
ity of the N1 site to N (Croce et al., 1999; Ruban et al.,
1999; Caffarri et al., 2001), the recovery of almost
exactly one N molecule in all samples verifies our
assumption of Chl-binding stoichiometries. At least
one L molecule per monomer was always present,
very likely L in the site L1, which is conserved among
all Lhcs and essential for protein folding and stability
(Bassi et al., 1999; Formaggio et al., 2001). These two
xanthophyll molecules, N in N1 and L in L1, seemed to
be conserved in most LHCIIs of I. sapindoides, as is also
the case in other higher plant species.

The difference between the samples solubilized with
a- and b-DM (a2b) was largely attributable to Lx in
shade (Fig. 2A), suggesting that Lx occupies more than
one-half of the V1 sites in trimeric LHCIIs of shade
leaves. The light treatment altered the dominant pig-
ment species in V1 sites, from Lx in shade to L in
shadeL (Fig. 2B). On the other hand, LHCIIs from sun
leaves contained similar levels of V, Lx, and L in V1
(Fig. 2C). We note that the xanthophyll composition in
the peripheral V1 sites is in line with the relative
abundance of these pigments in the free pigment
fraction (Supplemental Table S1). The composition of
the third pigment in the b-DM samples, in addition to
the common N in N1 and L in L1, likely represents the
different xanthophyll species in the site L2. The main
xanthophyll in the third pigment fraction was Lx in
shade (Fig. 2A), whereas it was mostly replaced by L in
shadeL and sun (Fig. 2, B and C). Hence, Lx / L
exchange seems to take place in V1 as well as L2 in
LHCIIs of I. sapindoides.

Table II. Pigment composition of the Suc gradient bands containing Lhcs

Carotenoid concentrations are normalized to 100 Chl molecules to facilitate comparison of different
samples. Carotenes were not detected in these bands (nd). Pigment composition of band 3 from Arabidopsis
is also shown for comparison. SD , 610%.

Chl a/b
Carotenoid per 100 Chls

N V Lx L a-Car b-Car

Band 2 (monomeric Lhcs)
Shade 1.8 6.1 3.7 7.8 10.5 nd nd
ShadeL 1.9 8.0 2.2 2.5 14.1 nd nd
Sun 2.2 6.8 3.8 2.5 12.0 nd nd

Band 3 (trimeric LHCIIs)
Shade 1.3 9.1 1.4 7.4 10.5 nd nd
ShadeL 1.3 9.0 1.0 2.6 15.3 nd nd
Sun 1.5 8.2 3.1 3.3 13.8 nd nd
Arabidopsis 1.4 9.2 2.5 nd 16.8 nd nd
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Carotenoid Composition and Spectroscopic

Characteristics of the PSII Core and PSI-LHCI

Carotenoid composition was also analyzed in the
Suc gradient bands containing PSII and PSI core
complexes (Table III). Because solubilization with
0.6% a-DM did not allow complete separation of the
PSII core and PSI-LHCI for I. sapindoides (Fig. 1), band
5 was reloaded onto another Suc gradient after pellet-
ing and resuspending in 0.6% a-DM to obtain a PSII-

enriched fraction (band 5b). Likewise, a second Suc
gradient was run for band 6 to improve the purity of
PSI-LHCI (band 6b), here albeit by resuspending in a
stronger detergent (0.8% b-DM) because of the higher
stability of PSI-LHCI (Ballottari et al., 2004).

The low Chl a/b and the presence of all major
xanthophylls (Table III) indicate that band 5b still
contained Lhcs together with PSII core complexes. Yet,
it is clear that the pigment compositions of shade and
shadeL were more similar to each other than to sun,
which was characterized by higher Chl a/b. The re-
semblance of band 5b from shade and shadeL was
further corroborated by the similarity in their absorp-
tion and fluorescence excitation spectra (Supplemental
Fig. S1). In agreement with its higher Chl a/b, the PSII
samples from sun leaves exhibited weaker absorption
and fluorescence excitation than shade and shadeL in
the spectral region of antenna pigments (.450 nm).

The second solubilization by using 0.8% b-DM
allowed isolation of PSI-LHCI largely depleted of
PSII particles (band 6b), as confirmed by the absence
of N, which is specifically bound in the antenna
complexes of PSII, but not in PSI-LHCI. Similar Chl
a/b and the total carotenoid concentrations found in
all band 6b samples (Table III) suggest that short- or
long-term light exposure did not affect the antenna
size of PSI in I. sapindoides. The illumination increased
the L content in band 6b at the expense of Lx to bring
the Lx:L ratio of shadeL close to sun, indicating the
slowly reversible Lx / L exchange in the antenna
complexes of PSI. However, these changes in carot-
enoid composition had little influence on the fluores-
cence excitation spectra of PSI-LHCI (Fig. 3A).
Although small differences were found in the Soret
region .440 nm, all Inga samples exhibited much
lower fluorescence excitation in this region compared
with Arabidopsis. The diminished fluorescence exci-
tation in I. sapindoides was not due to lower light
absorption because the absorption spectra of the two
species were very similar in this spectral region (Fig.
3B). Importantly, measurements of low-temperature
fluorescence emission spectra revealed that the prom-
inent peak emanating from LHCI was red-shifted by
about 10 nm in I. sapindoides compared to the corre-
sponding peak in Arabidopsis (Fig. 3C), despite the
fact that the two species did not show large differences
in absorption in the red region at room temperature
(Fig. 3B, inset) or low temperature (data not shown).
These spectroscopic characteristics of PSI-LHCI were
common to all Inga samples (data not shown) and thus
seem to be species specific rather than an acclimatory
response.

Comparison of Recombinant Lhc Proteins

with Different Lx and L Content

Having found the Lx / L exchange in V1 and L2
sites of LHCII (Fig. 2), we then probed its effects on
excitation energy transfer within individual Lhcs. It
has been shown that binding of Z in L2 induces

Figure 2. Estimated number of xanthophylls in native LHCII complexes
isolated from shade (A), shadeL (B), and sun leaves (C) of I. sapindoides.
Band 3 from the Suc density gradient was isolated by a mild (0.6%
a-DM) and a more stringent (1.0% b-DM) detergent treatment to iden-
tify the loosely bound xanthophylls in the peripheral V1 site, which are
represented by the difference between the samples isolated with a- and
b-DM (a2b). Xanthophyll levels are given per monomer assuming 14
and 12 Chl molecules per monomer of the trimeric LHCII complex
isolated with a- and b-DM, respectively.
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protein conformational changes to bring about energy
dissipation (Moya et al., 2001). The observed Lx / L
exchange in L2 raises an intriguing question about its
physiological function. To address this question, we
analyzed the spectroscopic characteristics of recombi-
nant Lhcs containing different levels of Lx and/or L.
Two proteins were used for this experiment as a model
for the major and minor antenna complexes of PSII:
Lhcb1, the most abundant LHCII polypeptide, and
Lhcb5 (also called CP26) in which efficient V / Z
exchange in L2 (Morosinotto et al., 2002a; Wehner
et al., 2006) and strong fluorescence quenching upon Z
binding (Wentworth et al., 2000; Frank et al., 2001;
Dall’Osto et al., 2005) have been documented. The
recombinant Lhcb1 (from Hordeum vulgare) and Lhcb5
(from Arabidopsis) were reconstituted with a pigment
mix containing L and/or Lx in addition to Chl a and
Chl b. For reconstitution of Lhcb1, which specifically
binds one molecule of N in N1 (Fig. 2; Croce et al.,
1999; Ruban et al., 1999; Caffarri et al., 2001), N was
also added to the pigment mix. We note that the
pigment sample of Lx used for the protein re consti-
tution contained approximately 10% A. Accordingly, a
small amount of A was found in all samples recon-
stituted with a pigment mix containing Lx, especially
in Lhcb5, which has a relatively high affinity for A
(Table IV).

Regardless of the xanthophyll compositions added,
Chl a/b of about 1.6 to 1.7 was obtained for Lhcb1 (Table
IV), which is comparable with the values found in
other studies (Croce et al., 1999; Jahns et al., 2001;
Morosinotto et al., 2002a). The Chl a/b for Lhcb5 was
about 2.5 to 2.7, being somewhat higher than the values
reported for recombinant Lhcb5 from Zea mays (Frank
et al., 2001; Croce et al., 2002; Morosinotto et al., 2002a).
Based on the previous studies (Croce et al., 1999, 2002),
we assumed binding of 12 and 9 Chls for a monomeric

apoprotein of Lhcb1 and Lhcb5, respectively. Three
xanthophyll molecules were found to be tightly incor-
porated into Lhcb1, whereas Lhcb5 had slightly more
than two. Assuming that the site V1 is absent in
monomers and N1 is either largely empty (Lhcb5) or
occupied by N (Lhcb1), L1 and L2 are the two major
binding sites to which L and Lx could bind in this
experiment. Similar yields of refolded proteins were
obtained for both Lhcb1 and Lhcb5 with and without L,
suggesting that Lx bound in L1 can support efficient
protein folding. When L and Lx were competing for
binding sites, the binding affinity of L was twice as high
as that of Lx for Lhcb1, whereas the difference was
smaller for Lhcb5 (Table IV).

Spectroscopic analyses were performed with these
recombinant proteins to characterize the effects of Lx
and/or L binding. The absorption spectra of the three
recombinant Lhcb5 samples revealed small, but con-
spicuous, differences in the Soret region (Fig. 4A,
inset), as well as the Qy region. The difference spec-
tra are shown for LLx 2 Lx (the difference between
the samples reconstituted with L 1 Lx and Lx) and
L 2 LLx. The sum of these two difference spectra
corresponds to L 2 Lx (data not shown). To verify the
consistency of these differences in the absorption
spectra, circular dichroism spectra, which are sensitive
to changes in organization and interactions of pig-
ments in the protein matrix, were also examined in the
same samples (Fig. 4B). The three samples were clearly
distinguishable by the amplitudes and minima of the
negative signals in the xanthophyll red-most transition
(493, 494, and 496 nm for L, LLx, and Lx, respectively),
as has been shown for recombinant Lhcb5 having
different xanthophyll species (Croce et al., 2002). The
two samples with Lx differed from the sample without
Lx at 443 (1) and 630 (2) nm. Between the two Lx-
containing samples, the one with L 1 Lx exhibited

Table III. Pigment composition of the four Suc gradient bands containing core and antenna complexes

Bands 5 and 6 from the first Suc gradient were pelleted, resuspended in 0.6% a-DM or 0.8% b-DM, respectively, and loaded onto a second Suc
gradient ultracentrifugation (bands 5b and 6b). Carotenoid concentrations are normalized to 100 or 180 (band 6b) Chls. N was not detected in band
6b (nd). SD was ,610%.

Chl a/b N V Lx L a-Car b-Car a/b-Car

Band 4 Carotenoid per 100 Chls
Shade 1.6 6.8 2.3 6.9 9.4 1.8 0.7 2.6
ShadeL 1.7 6.9 1.8 2.4 12.9 1.7 1.1 1.6
Sun 1.6 7.0 3.3 2.7 12.1 0.8 0.8 1.0

Band 5b (enriched in PSII core complexes) Carotenoid per 100 Chls
Shade 6.8 2.0 0.4 1.7 2.8 7.9 4.2 1.9
ShadeL 5.5 2.1 0.6 1.0 3.9 8.3 6.4 1.3
Sun 10.4 1.3 0.4 1.0 2.8 5.8 6.7 0.9

Band 6b (PSI-LHCI complexes) Carotenoid per 180 Chls
Shade 10.2 nd 1.8 4.9 2.9 15.8 12.9 1.2
ShadeL 9.0 nd 1.9 2.6 4.1 14.3 13.3 1.1
Sun 9.5 nd 2.4 2.0 5.2 12.1 14.7 0.8

Band 7 (enriched in PSII supercomplexes) Carotenoid per 100 Chls
Shade 3.2 3.0 0.9 4.3 5.4 6.2 3.7 1.7
ShadeL 3.2 2.0 1.9 1.9 9.6 7.6 6.4 1.2
Sun 4.6 2.7 0.8 1.4 4.9 4.9 6.8 0.7
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greater amplitude of the major signal at 673 (2) nm
than the one with Lx only. Together with Figure 4A,
these data indicate that Lx and L exert distinct effects
on the environment of some Chl molecules in recom-
binant Lhcb5.

Xanthophylls are known to modulate light-harvesting
efficiency and energy dissipation in the antenna com-
plexes. The changes in the Chl environment induced
by binding of Lx and/or L (Fig. 4, A and B) may
modify excitation energy transfer within Lhcb5. Thus,
we analyzed energy transfer efficiency in the recom-
binant Lhcb5 samples by measuring fluorescence emis-
sion and excitation spectra (Fig. 4, C and D). Although
the shape of the fluorescence emission spectra did not
differ between the samples (Fig. 4C), direct excitation
of Chl a at Qx transition (625 nm) gave rise to a
significantly higher fluorescence yield in the sample
with Lx (113.6% compared with L and 110.6% com-
pared with L 1 Lx; P , 0.015). There was no signif-
icant difference between the fluorescence yield of the
samples with L and with L 1 Lx. Comparison of the
fluorescence excitation spectra (Fig. 4D) and the ab-
sorption spectra (Fig. 4A) indicated the highest and the
lowest energy transfer efficiency from the antenna
pigments to Chl a in the sample with Lx and with L,
respectively. The former had the highest fluorescence
excitation in 460 to 510 nm, whereas absorption in this
spectral region was higher in the latter.

For a more quantitative analysis of energy transfer
efficiency from the antenna pigments to Chl a, both the
absorption (Fig. 5A) and fluorescence excitation spec-
tra (Fig. 5B) were deconvoluted in terms of the spectra
of individual pigments in the protein matrix (Croce
et al., 2000) by using the constraints described in
‘‘Materials and Methods.’’ With the energy transfer
efficiency among Chl a molecules (Chl a / Chl a)
being fixed to be 100%, energy transfer efficiency of
Chl b / Chl a and xanthophyll / Chl a was calcu-
lated from the deconvoluted models of the absorption
and fluorescence excitation spectra (Fig. 5C). The
highest increase in xanthophyll / Chl a energy trans-
fer efficiency was found in the sample reconstituted
with Lx (112% compared with L). In contrast to the
variations in xanthophyll / Chl a efficiency, different
Lx and L levels had little effect on Chl b / Chl a
energy transfer efficiency in Lhcb5.

A contrasting picture was obtained for the recom-
binant Lhcb1 (Fig. 6, A–C). Unlike in Lhcb5, the
differential effects of Lx and L on the absorption
spectra of Lhcb1 were mainly restricted to the spectral
region associated with these xanthophylls (Fig. 6A).
There was no significant change in fluorescence yield
(,5%; Fig. 6B) between the samples having different
Lx:L ratios and the fluorescence excitation spectra
largely reflected the differences in the absorption spec-
tra (Fig. 6C). These findings in recombinant Lhcb1
were confirmed by the experiment with native trimeric
LHCIIs (band 3) isolated from shade, shadeL, and sun
(Fig. 6, D–F). Whereas sun and shade samples, having
slightly different Chl a/b (Table II), varied in both Soret
and Qy regions of the absorption spectra (shade-sun),
the difference between shade and shadeL, for which
the Lx / L exchange in L2 and V1 represented the
only distinction (Table II; Fig. 2), indicated a small
effect in the Soret region with hardly any difference in

Figure 3. Spectral characteristics of the PSI-LHCI fractions (band 6b). A,
Comparison of the room-temperature fluorescence excitation spectra of
shade (solid line), shadeL (dashed line), and sun (dash-dotted line) for I.
sapindoides as well as Arabidopsis (dotted line). Fluorescence was
detected at 685 nm. Data were normalized to the maximum. B, Room-
temperature absorption spectra of I. sapindoides (solid line, only the data
from shade are shown) and Arabidopsis (dotted line). The inset shows a
closeup of the spectral region between 690 and 730 nm. Data were
normalized to the maximum in the Qy region. C, Low-temperature
fluorescence emission spectra of I. sapindoides (solid line) and Arabi-
dopsis (dotted line). Spectra were measured with an excitation wave-
length of 475 nm. Data were normalized to the maximum. Pigment
composition of these samples (except for Arabidopsis) is given in Table III.
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the Qy region (Fig. 6D). The fluorescence yields of these
native LHCII samples varied only marginally (,5%;
Fig. 6E), suggesting a minor role of Lx / L exchange (in
shadeL) or substitution of these pigments with V (in
sun) for energy transfer efficiency within isolated
LHCII complexes. Furthermore, we measured compa-
rable fluorescence yields in LHCII trimers of I. sapin-
doides and Arabidopsis (Fig. 6E), despite their different
pigment-binding affinities and the absence of Lx in the
latter, which also supports the notion that Lx, L, and V
are equivalent in terms of energy transfer efficiency
within isolated LHCII. Removal of xanthophylls from
V1 by the b-DM treatment (Fig. 2) did not significantly
alter fluorescence yield in trimeric LHCIIs (Fig. 6E,
inset), confirming the previous demonstration that the
xanthophylls in V1 are not involved in light harvesting
(Caffarri et al., 2001). Hence, the Lx / L exchange in L2
seems to modify the environment of some Chls to affect

Chl a / Chl a as well as xanthophyll / Chl a energy
transfer efficiency within Lhcb5 (Figs. 4 and 5), but not
within Lhcb1 and LHCII (Fig. 6).

DISCUSSION

Lx ! L Exchange Occurs in V1 and L2 Sites

It is widely accepted that V molecules in the periph-
eral site V1 of trimeric LHCIIs represent the major
substrate pool for rapid deepoxidation in the V cycle
(Caffarri et al., 2001). Upon deepoxidation to Z, these
molecules are thought to be redistributed within the
thylakoid membranes (Verhoeven et al., 1999) to re-
place not only the pigments in V1, but also those in the
internal L2 sites of different Lhcs (Bassi et al., 1999;
Morosinotto et al., 2003). Indeed, occurrence of such

Table IV. Pigment composition of the recombinant Lhcb1 and Lhcb5

Recombinant Lhcb1 (420 mg of apoprotein) was reconstituted with 25 mg N, 65 mg L, Lx, or L:Lx (1:1),
and 240 mg Chls (Chl a/b 5 2.3). The same amount of recombinant Lhcb5 was reconstituted with 60 mg L,
Lx, or L:Lx (1:1), and 240 mg Chls (Chl a/b 5 3.0). The Lx pigment used for the reconstitution contained
approximately 10% A. Samples were then separated from free pigments by Suc density gradient.
Xanthophyll concentrations are normalized to 12 or nine Chl molecules for Lhcb1 and Lhcb5, respectively,
according to the previous studies (see text). SD , 60.1.

Chl a/b N Lx L A Total

Lhcb1 Xanthophyll per monomer (12 Chls)
NL 1.6 1.0 – 2.0 – 3.0
NLx 1.7 1.0 1.7 – 0.2 2.9
NLLx 1.6 0.9 0.7 1.4 0.1 3.1

Lhcb5 (CP26) Xanthophyll per monomer (9 Chls)
L 2.5 – – 2.1 – 2.1
Lx 2.7 – 1.9 – 0.4 2.3
LLx 2.7 – 0.9 1.2 0.2 2.3

Figure 4. Spectral properties of the recombi-
nant Lhcb5 reconstituted with Lx (solid line), L
(dashed line), or L 1 Lx (dash-dotted line). A,
Room-temperature absorption spectra. Mag-
nified difference spectra (33) are also shown
for the difference between the samples recon-
stituted with L 1 Lx and Lx (LLx 2 Lx, solid
bold line) and with L and L 1 Lx (L 2 LLx,
dashed bold line). Details of the spectral re-
gion between 450 and 500 nm can be seen in
the inset. Data were normalized to Chl con-
tent. B, Circular dichroism spectra normalized
to the Chl content. C, Comparison of fluores-
cence yield at room temperature. The error
bar at the emission peak indicates SD (n 5 3).
Fluorescence emission was recorded with an
excitation wavelength of 625 nm. D, Room-
temperature fluorescence excitation spectra.
Fluorescence was detected at 682 nm and
data were normalized to the maximum. Pig-
ment composition of these samples is given in
Table IV.
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V / Z exchange in internal binding sites has been dem-
onstrated by using recombinant Lhcs of both PSII
and PSI (Jahns et al., 2001; Morosinotto et al., 2002a;
Wehner et al., 2004, 2006). Analogously, V1 has been sug-
gested to be a possible binding site for Lx (Matsubara
et al., 2005) based on the similar distribution patterns
of Lx and V among different pigment-protein com-
plexes (Matsubara et al., 2003, 2005) and their parallel
deepoxidation kinetics during light exposure (Bungard
et al., 1999; Matsubara et al., 2001, 2005; Garcı́a-Plazaola
et al., 2002, 2003). In the case of I. sapindoides, retention
of high levels of photoconverted L in sun leaves has
been attributed in part to the slowly reversible binding
(‘‘lock in‘‘) of L in the L2 site (Matsubara et al., 2005).

In this study, we examined the localization of Lx and
photoconverted L in the antenna complexes to identify
the xanthophyll-binding sites for the Lx / L ex-

change. Our data in Figure 2 clearly show that Lx is the
dominant xanthophyll species in V1 and L2 of LHCIIs
in shade leaves. The short light treatment resulted in
the replacement of Lx with L in both V1 and L2,
whereas long-term sun acclimation led to accumula-
tion of L in L2 and, to a lesser extent, in V1. These
short- and long-term responses of Lx and L were
similar in monomeric and trimeric Lhcs (Table II) as
well as PSI-LHCI (Table III). Thus, we conclude that
the Lx / L exchange occurs in the same binding sites
as the V / Z exchange, namely, V1 and L2 sites of the
antenna complexes of PSII and PSI, regulated presum-
ably by the same mechanism. It is worth noting that a
major difference between I. sapindoides and previously
analyzed plants is the extent of xanthophyll exchange
in LHCII. In fact, the activity of Lx / L exchange in
Inga LHCII is very high (Table II; Fig. 2) compared with
the activity of V / Z exchange reported in LHCII of
other plants (Färber et al., 1997; Verhoeven et al., 1999;
Caffarri et al., 2001; Jahns et al., 2001). Currently, it is
not possible to attribute this enhanced Lx / L ex-
change in LHCII of I. sapindoides to different protein
structure and/or different affinity of Lx / L exchange
with respect to V / Z exchange. Additional work is
needed to elucidate this point.

What could be the causes of the retention of high L,
but not Z and A, after short-term light exposure (Table
I)? Slower postillumination recovery of Lx compared
with V seems to be a common feature of the Lx-
accumulating plants studied thus far (Matsubara et al.,
2001, 2005; Garcı́a-Plazaola et al., 2002; Snyder et al.,
2005), which raised the question as to whether the
conversions between Lx and L function as a true cycle
(Matsubara et al., 2005; Snyder et al., 2005). One
possible explanation for the delayed Lx recovery is
slower release of locked-in L from L2, resulting in
slower epoxidation of L than Z (Matsubara et al., 2005).
Although such apoprotein steric hindrance could ex-
plain dark retention of L in L2, the finding of L in the
peripheral V1 site in shadeL (Fig. 2) and in the free
pigment fraction (Supplemental Table S1; Matsubara
et al., 2003, 2005) demands an additional or alternative
explanation. For instance, lower catalytic activity of
the epoxidase enzyme for L compared with Z may
underlie the delayed recovery of Lx. Epoxidation of L
to Lx has been regarded as the key step for the
occurrence of the Lx cycle (Matsubara et al., 2003),
but the enzyme responsible for this reaction has not
been identified yet. The most likely candidate is ZE,
which catalyzes epoxidation reactions in the b-ring of
the deepoxidized b,b-xanthophylls Z and A in the V
cycle. So far, however, there has been only one study in
which the activity of ZE was tested for L (Bouvier
et al., 1996). Although the experiment by Bouvier et al.
(1996) using ZE from a non-Lx plant (Capsicum an-
nuum) indicated little ZE activity for L, the affinity
of this enzyme to L may have been increased in Lx
plants, presumably by mutation following gene du-
plication (Matsubara et al., 2003), to bring about sub-
stantial accumulation of Lx in shade. Identification

Figure 5. Fitting of the room-temperature absorption (A) and fluores-
cence excitation spectra (B) of recombinant Lhcb5 with the spectra of
individual pigments in the protein matrix. Only the data from the
sample reconstituted with Lx are shown. C, Energy transfer efficiency
calculated for the transfer from Chl b to Chl a (Chl b / Chl a) and from
xanthophylls to Chl a (Xanth / Chl a) based on the deconvoluted
models of the absorption and the fluorescence excitation spectra. The
energy transfer efficiency among Chl a molecules (Chl a / Chl a) was
fixed to be 100%.
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and characterization of putative ZE enzymes from Lx
plants could verify this hypothesis.

Physiological Role of the Lx Cycle

The operation of the V cycle has been associated
with the regulation of thermal energy dissipation in
the PSII Lhcs (Demmig-Adams and Adams, 1992a;
Horton et al., 1996, 2005; Gilmore, 2001; Morosinotto
et al., 2003; Holt et al., 2004; Dall’Osto et al., 2005).
Based on the similar chemical structures of the pig-
ments, as well as the parallel deepoxidation kinetics of
the two xanthophyll cycles, an analogy has been
drawn with the V cycle when speculating about the
functions of the Lx cycle. Hence, a possible role of the
Lx cycle in energy dissipation has been suggested
(Matsubara et al., 2001, 2003; Garcı́a-Plazaola et al.,
2002, 2003) and the effect of photoconverted L on
energy dissipation has been examined (Garcı́a-Plazaola
et al., 2003; Matsubara et al., 2005). Whereas the in-
volvement of L in energy dissipation, direct or indi-
rect, has been demonstrated in mutant and transgenic
plants with altered L levels (Niyogi et al., 1997; Pogson
et al., 1998; Pogson and Rissler, 2000; Lokstein et al.,

2002), unequivocal evidence of energy dissipation by
photoconverted L in the Lx cycle has not been pre-
sented yet due mainly to the difficulty in separating
the effects of the two xanthophyll cycles operating in
parallel.

On the other hand, pronounced accumulation of Lx
in shade and its quick conversion to L upon short
illumination or substitution by L and V during long-
term acclimation to high irradiance (Tables I and II;
Fig. 2) may imply a unique function for Lx under
shade conditions. Consistent with this notion, we
found a high fluorescence yield in Lhcb5 reconstituted
with Lx (Fig. 4C). As the absorbed light energy can
either be reemitted as fluorescence or dissipated as
heat in isolated antenna complexes, the high fluores-
cence yield of Lhcb5 with Lx indicates that less energy
was lost via thermal dissipation. It should be noted
that this high fluorescence yield was measured in the
sample despite the presence of a small amount of A
(Table IV), which may have exerted an opposite,
dissipative effect (Gilmore et al., 1998; Wentworth
et al., 2000). Hence, the fluorescence yield of the
recombinant Lhcb5 should have been even higher if
it had been reconstituted with 100% Lx. According to

Figure 6. Spectral properties of the recombi-
nant Lhcb1 (A–C) reconstituted with N 1 Lx
(solid line), N 1 L (dashed line), or N 1 L 1 Lx
(dash-dotted line) and the native trimeric
LHCIIs obtained with 0.6% a-DM (D–F) from
shade (solid line), shadeL (dashed line), and
sun (dash-dotted line) leaves of I. sapindoides
and Arabidopsis (dotted line). A and D, Room-
temperature absorption spectra. Magnified dif-
ference spectra (33) are also shown for the
difference between the samples reconstituted
with N 1 L 1 Lx and N 1 Lx (NLLx 2 NLx,
solid bold line) and with N 1 L and N 1 L 1 Lx
(NL 2 NLLx, dashed bold line) for the recom-
binant Lhcb1 and between shade and shadeL
(shade 2 shadeL, solid bold line) and between
shade and sun (shade 2 sun, dashed bold line)
for the native trimeric LHCIIs. Details of the
spectral region between 450 and 500 nm can
be seen in the insets. All spectra were normal-
ized to Chl content. B and E, Comparison of
fluorescence yield at room temperature. The
error bar at the emission peak indicates SD (n 5

3). Fluorescence emission was recorded with
an excitation wavelength of 625 nm. For the
native LHCIIs, data from the samples obtained
by solubilization with 1.0% b-DM (having the
V1 site empty) are also shown in the inset. C
and F, Room-temperature fluorescence excita-
tion spectra. Fluorescence was detected at
682 nm and spectra were normalized to the
maximum. Pigment composition of the recom-
binant Lhcb1 samples is given in Table IV and
that of the native trimeric LHCIIs in Table II.
Xanthophyll composition of the native trimeric
LHCIIs of I. sapindoides isolated with a- or
b-DM is illustrated in Figure 2.
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the previous observation that fluorescence yields vary
little between the Lhcb5 samples reconstituted with L
alone, V alone, or a mixture of L, N, and V (Frank et al.,
2001), the fluorescence yield we found in Lhcb5 with
Lx would exceed not only those of the samples with L
and L 1 Lx, but also with V and L 1 N 1 V, suggesting
a peculiar effect of Lx (i.e. increasing light-harvesting
efficiency) in Lhcb5.

Whereas L is most likely the major xanthophyll
species in L1 of LHCII in I. sapindoides (Fig. 2), as is the
case in many other species, the occurrence of Lx in the
L1 site cannot be ruled out. The small pool of Lx found
in the internal binding sites of trimeric LHCIIs from
shadeL and sun (Fig. 2, B and C) could represent such
Lx molecules bound in L1, analogous to the noncon-
vertible pool of V in the V cycle (Jahns et al., 2001).
Furthermore, the Lx-binding affinity seems to differ
among Lhcs, as is exemplified by the higher Lx:L ratio
of Lhcb5 with L 1 Lx compared with Lhcb1 with N 1
L 1 Lx (Table IV). Thus, we propose that Lx could
occupy both L1 and L2 (and also V1 for trimeric
LHCII) in some of the antenna complexes and the
light-induced Lx / L exchange in L2 may modify
excitation energy transfer (Fig. 4). In this scenario, Lx
slowly accumulates under prolonged shade condi-
tions to increase light-harvesting efficiency, but is
quickly converted into L by VDE upon light exposure,
which results in lower energy transfer efficiency (Fig.
4C) and probably also higher photoprotective effi-
ciency (Matsubara et al., 2005). Although Z formation
in the V cycle is needed for strong energy dissipation
(Demmig-Adams and Adams, 1992a; Gilmore, 2001;
Morosinotto et al., 2003; Holt et al., 2004, 2005; Horton
et al., 2005), for mitigation of photooxidative damage
(Havaux and Niyogi, 1999; Havaux et al., 2004), and
thus the pool size of the V cycle increases in sun leaves
(Table I), Lx may play an important role in acclimation
to shade environments. In addition to large antenna
size conferring an increased absorption cross section
upon PSII (Anderson, 1986; Anderson et al., 1988),
substantial accumulation of Lx may facilitate efficient
excitation energy transfer within the extended antenna
complexes under deeply shaded conditions in which
light severely limits photosynthesis.

There are a few points in this hypothesis that need to
be addressed in the future. First, the effect of Lx may
not be confined within the intrasubunit energy trans-
fer analyzed in this study. Although our data in Figure
6 showed that Lx binding does not significantly alter
energy transfer within isolated Lhcb1 or trimeric
LHCII, Lx / L exchange in the peripheral V1 site
(Fig. 2) may modify the macroorganization of antenna
complexes, similar to the proposed role of V / Z
exchange in V1 in the allosteric model of energy
dissipation (Horton et al., 1991, 2005). In this context,
it is also worth mentioning that PSII-LHCII super-
complexes show higher stability in I. sapindoides than
in Arabidopsis (Fig. 1), although its relevance to Lx is
not clear. Effects of the Lx cycle on the protein macro-
organization are yet to be investigated in more detail.

Second, photoprotective functions of the Lx cycle need to
be examined. It has been suggested that the locked-in
L molecules in the internal binding sites may contribute
to quenching of Chl triplets (Matsubara et al., 2005).
Engagement of L in energy dissipation (Niyogi et al.,
1997; Pogson et al., 1998; Pogson and Rissler, 2000;
Lokstein et al., 2002) also awaits demonstration in Lx
plants. Notably, we found that binding of Lx or L did
not significantly alter the susceptibility of the recombi-
nant Lhcb5 and Lhcb1 to photobleaching (Supplemental
Fig. S2). Future experiments could clarify photoprotec-
tive properties of these b,e-xanthophylls.

a- and b-Car in Photoacclimation

The comparison between sun and shade leaves
points to a photoacclimatory shift between b,e-carot-
enoids and b,b-carotenoids (Table I). Accumulation of
a-Car in addition to b-Car has been reported in leaves of
shade-tolerant species or shade-grown plants (Thayer
and Björkman, 1990; Demmig-Adams and Adams,
1992b; Siefermann-Harms, 1994; Demmig-Adams,
1998). The levels of these two carotenes change in
tropical tree species during acclimation to high light
intensities, with a-Car decreasing and b-Car increasing
by sun exposure (Tables I and III; Krause et al., 2001,
2004). In I. sapindoides, shade leaves were characterized
by higher a/b-Car and a larger pool of the Lx-cycle
pigments, whereas sun leaves had lower a/b-Car and
a larger pool of the V-cycle pigments, suggesting gen-
eral up-regulation of the carotenoid biosynthesis in
the b,e-branch in shade and the b,b-branch in sun.
Although accumulation of Lx does not always ac-
company accumulation of a-Car and vice versa (e.g.
Matsubara et al., 2003), the occurrence of Lx and a-Car
under shade environments and the replacement of
these b,e-carotenoids by the b,b-carotenoids under
sun-exposed environments strongly support the no-
tion that the carotenoids function as allosteric modula-
tors of photosystem activity (Formaggio et al., 2001;
Morosinotto et al., 2003; Horton et al., 2005).

The contribution of a-Car to better light harvesting,
similar to the role of Lx in shade acclimation proposed
above, has been suggested previously (Krause et al.,
2001). On the other hand, b-Car is considered an
important photoprotectant, scavenging reactive oxy-
gen species (Telfer, 2002) and mediating PSII cyclic
electron transport via cytochrome b559 (Hanley et al.,
1999; Telfer, 2002). Whereas the high-light-sensitive
phenotype of Arabidopsis lut5 plants (Kim and Della-
Penna, 2006), accumulating a-Car at the expense of
b,b-carotenoids, is consistent with the functions of
b-Car and/or the V-cycle pigments under light stress,
no obvious phenotype indicative of an increased light-
harvesting efficiency under low light has been ob-
served in lut5 plants (S. Matsubara, G. Giuliano, R.
Bassi, unpublished data). In this study, the difficulty in
obtaining pure PSII core complexes from thylakoids of
I. sapindoides did not allow us to study functions of
a- and b-Car in PSII. Although the band 5b samples
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(enriched in PSII core complexes) from shade and
shadeL exhibited higher absorption and fluorescence
excitation in the spectral region .450 nm compared
with sun (Supplemental Fig. S1), these spectroscopic
features are probably attributable to the amounts of
antenna proteins still attached to the PSII core com-
plexes (Table III) rather than the levels of a- and b-Car.
Isolation of Lhc-free PSII core complexes from plants
accumulating a-Car, such as Inga or lut5, could facil-
itate elucidation of the role of a-Car in the PSII core.

Function of Red-Shifted Chl Forms in PSI-LHCI

A striking difference in photoacclimation of PSII and
PSI is the capacity to modify the antenna size. In
contrast to the marked down-sizing of the PSII anten-
nae in sun leaves, PSI exhibited no noticeable alteration
in the antenna size under sun and shade environments
(Table III). The situation is contradictory for Arabidop-
sis in which both unchanged (Ballottari et al., 2007) and
increasing (Bailey et al., 2001) PSI antenna size have
been reported under strong illumination. The apparent
inflexibility of the PSI antenna size in I. sapindoides
could be explained by stable association of the PSI-
LHCI holocomplex, embracing gap and linker pig-
ments at the interface of the pigment-protein complexes
(Ben Shem et al., 2003; Ballottari et al., 2004; Klimmek
et al., 2005; Morosinotto et al., 2005a). The biochemical
data presented here do not provide any information
about the involvement of gap carotenoids (L, V, and
b-Car in the case of Arabidopsis; Ballottari et al., 2004;
Morosinotto et al., 2005a) in the light-dependent carot-
enoid variations in PSI-LHCI of I. sapindoides. However,
the observed changes in the carotenoid composition,
no matter where these pigments were, did not substan-
tially affect the spectroscopic characteristics of PSI-LHCI
(Fig. 3A).

An important discovery for PSI-LHCI was the con-
spicuous spectral feature of the red-most Chl forms.
The major band in the low-temperature fluorescence
emission spectra of PSI-LHCI, which is ascribed to
low-energy Chls in LHCI, was strongly red-shifted in
I. sapindoides compared with the corresponding band
of Arabidopsis (Fig. 3C). To our knowledge, these red
Chl forms of I. sapindoides have the lowest energy level
so far documented for higher plants. Given the pre-
sumed role of Lx in light harvesting, it is tempting to
associate these peculiar red Chl forms with PSI light
harvesting under shade environments. In fact, it has
been suggested that red Chl forms may significantly
contribute to PSI light absorption under shade envi-
ronments in which light is strongly enriched in the red
spectral region (Rivadossi et al., 1999). However, PSI-
LHCI from I. sapindoides did not show higher absorp-
tion of red light compared with Arabidopsis at room
temperature or at low temperature (Fig. 3B). The ob-
served difference in fluorescence emission spectra is
therefore very likely due to a larger bandwidth of the
red band rather than a shift of its absorption maxi-
mum. In any case, because there is little difference in

the absorption spectra, it is unlikely that these pro-
nounced red Chl forms in PSI lead to a large increase in
red-light absorption under physiological conditions.

Rather, it is worth mentioning that the presence of
these red Chl forms was accompanied by diminished
efficiency of excitation energy transfer from the an-
tenna pigments to the PSI core in both sun and shade
leaves (Fig. 3A), suggesting that the relative importance
of carotenoids as light-harvesting pigments may be
lower in PSI of I. sapindoides compared to Arabidopsis.
Instead, these carotenoids could serve as effective
quenchers of triplet-state red Chl forms, another im-
portant function of carotenoids, as has been recently
shown in LHCI of Arabidopsis (Carbonera et al., 2005;
Croce et al., 2007). In the work by Carbonera et al.
(2005), it was demonstrated in Lhca4 that lack of red
Chls leads to a reduced efficiency of triplet quenching
by carotenoids. Hence, we hypothesize that the pro-
nounced red Chl forms, which draw excitation energy
to themselves and whose triplets can be effectively
quenched by nearby carotenoids, may augment photo-
protective efficiency of PSI-LHCI in I. sapindoides. It has
been shown in Arabidopsis that the formation of red
Chl forms involves excitonic interaction between two
Chl a molecules A5 and B5 (Morosinotto et al., 2002b,
2005b), as well as some of the gap Chls and intersubunit
interactions (Morosinotto et al., 2005a). The strong red
Chl forms in I. sapindoides invite further exploration of
their origin and physiological significance.

CONCLUSION

To operate linear electron transport efficiently un-
der diverse light environments, higher plants have
evolved multifaceted mechanisms to adjust the bal-
ance of light energy absorption between the two
photosystems. During shade acclimation, I. sapindoides
slowly accumulates Lx in Lhcs, which, along with an
increase in the antenna size, enables efficient light
harvesting by PSII. When shade leaves are suddenly
exposed to strong light (e.g. by canopy gap formation),
Lx / L exchange takes place in L2 and V1 sites of Lhcs
in parallel with V / Z exchange that induces strong
dissipation. The rapid, but slowly reversible, Lx / L
conversion may represent one of the earliest steps in
long-term sun acclimation, converting efficient light-
harvesting centers to efficient photoprotective centers.
During the later steps of sun acclimation, the V-cycle
pool size increases in the antenna complexes and the
relative abundance of carotenes shifts from a- to b-Car
in the core complexes. These dynamic changes in the
carotenoid composition may reflect the roles of these
pigments in modulating the photosystem activities.
Furthermore, strong red Chl forms in PSI-LHCI may
enhance photoprotection via triplet quenching by ca-
rotenoids, which could play an important role, espe-
cially under shade environments enriched in .700
nm. Together, Lx accumulation in Lhcs and pro-
nounced red Chl forms in PSI-LHCI may confer an
advantage upon I. sapindoides for seedling survival in
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deep shade of the forest floor, as well as for shade
acclimation and maintenance of mature leaves inside a
dense canopy or after canopy gap closure.

MATERIALS AND METHODS

Plant Material

Sun and shade leaves of Inga sapindoides Willd were collected from outer

and inner canopy branches of a tree growing in the Humid Tropics Biome at

Eden Project (Cornwall, UK). For light treatment of shade leaves, some inner

canopy branches were cut, the stems were immediately put in water, and the

adaxial surface of the leaves was illuminated for 30 min with a halogen lamp

that gave a light intensity of approximately 200 mmol m22 s21 (measured on

leaves). These light-exposed shade leaves (shadeL) were then wrapped with

moist tissues and kept in a plastic bag in the dark for approximately 24 h

before freezing in liquid N2. Nontreated sun and shade leaves were also

subjected to the same dark adaptation of 24 h before freezing. The measure-

ments of the maximal PSII efficiency (Fv/Fm), calculated as (Fm 2 F0)/Fm,

where Fm and F0 are the maximal and minimal fluorescence intensity in a

dark-adapted state (van Kooten and Snel, 1990), were performed by using a

PAM-2100 (Walz) at the end of the dark treatment.

For some experiments, thylakoids from Arabidopsis (Arabidopsis thaliana)

L. Heynh Columbia ecotype grown under a controlled condition (100 mmol

m22 s21, 19�C, 8-h light/16-h dark) were also used for comparison.

Thylakoid Purification and Isolation of Native
Pigment-Protein Complexes

Thylakoid membranes were isolated from leaves and solubilized as

described in Caffarri et al. (2001). Thylakoid samples containing 0.5 mg

Chl/mL were solubilized with 0.6% a-DM and separated by Suc gradient

ultracentrifugation. Two Suc gradient fractions (bands 5 and 6), containing

PSII core and PSI-LHCI, respectively, were further purified by another

solubilization with 0.6% a-DM (band 5) or 0.8% b-DM (band 6) followed by

a second Suc gradient ultracentrifugation. For identification of xanthophyll

species in the V1 site, trimeric LHCIIs (band 3) were also isolated with 1.0%

b-DM.

In Vitro Reconstitution of Lhcb1 and Lhcb5

Monomeric Complexes

Lhcb1 from Hordeum vulgare and Lhcb5 from Arabidopsis were expressed

in the SG13009 strain of Escherichia coli and isolated following a protocol

described previously (Nagai and Thøgersen, 1987). In vitro reconstitution of

the recombinant proteins with purified pigments was performed according to

Croce et al. (2002). Pure Chl a and Chl b were purchased from Sigma-Aldrich,

whereas Lx was obtained from CaroteNature. L and N were purified from

spinach (Spinacia oleracea) thylakoids by using a HPLC. Lhcb1 (420 mg

apoprotein) was reconstituted with 240 mg Chl (Chl a/b 5 2.3), 25 mg N,

and 65 mg L, Lx, or L:Lx (1:1). Lhcb5 (420 mg apoprotein) was reconstituted

with 240 mg Chl (Chl a/b 5 3.0) and 60 mg L, Lx, or L:Lx (1:1).

Electrophoresis and Immunoblotting Analyses

Nondenaturing Deriphat-PAGE was performed according to the method

developed by Peter and Thornber (1991) with the following modifications: The

stacking gel had 3.5% (w/v) acrylamide (38:1 acrylamide/bis-acrylamide)

and the resolving gel had an acrylamide concentration gradient from 4.5% to

11.5% (w/v) stabilized by a glycerol gradient from 8% to 16% (w/v). Both gels

contained 12 mM Tris and 48 mM Gly (pH 8.5). For the nondenaturing gel,

thylakoid samples (0.5 mg Chl/mL) were solubilized with 0.6% a-DM,

vortexed for 1 min, kept on ice for 10 min, and centrifuged at 13,000 rpm

for 15 min to remove unsolubilized material. Samples containing 30 mg Chl

were then loaded in each lane of the gel.

SDS-PAGE analysis was preformed as described in Ballottari et al. (2004).

After SDS-PAGE, polypeptides were transferred to a nitrocellulose membrane

(Sartorius) using a blot system from Bio-Rad. The polypeptides were then

identified with specific antibodies.

Pigment Analyses

Pigments were extracted with 80% acetone and assayed by the HPLC

method developed by Gilmore and Yamamoto (1991). The data from the

HPLC analysis were then verified by fitting the absorption spectra of the

acetone extracts with the spectra of individual pure pigments (Croce et al.,

2002). Absorption spectra were recorded as described below.

Spectroscopic Analyses

Spectroscopic analyses were performed for the isolated native complexes

and the recombinant proteins in 10 mM HEPES (pH 7.5), 0.2 M Suc, and 0.06%

a-DM (or b-DM). Room temperature absorption spectra were recorded by

using a spectrophotometer SLM-Aminco DK2000 (Aminco). Fluorescence

excitation and emission spectra were measured at room temperature and/or

low temperature with a Jasco FP-777 spectrofluorimeter (Jasco). Circular

dichroism spectra were obtained at 10�C with a Jasco 600 spectropolarimeter.

Deconvolution and Fitting of Spectra

Absorption and fluorescence excitation spectra of reconstituted Lhcb5 and

Lhcb1 samples were fitted with the spectra of individual pigments in the

protein matrix (Croce et al., 2000). As multiple solutions are possible for such a

deconvolution analysis, two constraints were employed for the fitting based

on the biochemical data: (1) Pigment-binding ratios (Chl a/b and Chl/

xanthophylls) were fixed to the values determined by the biochemical analysis

and (2) the carotenoid-binding stoichiometry was kept constant. For example,

binding in the internal xanthophyll-binding sites L1 and L2 of Lhcb5 gives rise

to two different spectroscopic forms of L (or Lx) for the samples reconstituted

with L (or Lx) as the single xanthophyll species (Croce et al., 2000). Thus, only

the deconvolution solutions with two xanthophyll spectral forms with 1:1

ratio were considered for the sample reconstituted with L or Lx alone. For the

sample reconstituted with L 1 Lx, up to four spectral forms of xanthophylls

(two L forms found in the sample with L and two Lx forms found in the

sample with Lx) were allowed for the deconvolution.

Supplemental Data

The following materials are available in the online version of this article.

Supplemental Figure S1. Spectral characteristics of the PSII-enriched

fractions (band 5b).

Supplemental Figure S2. Photobleaching kinetics of the recombinant

Lhcb5 and Lhcb1 reconstituted with Lx or L.

Supplemental Table S1. Carotenoid composition of free-pigment frac-

tions (band 1).
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