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Abstract
Introduction Radionuclide therapy has distinct similarities
to, but also profound differences from external radiotherapy.
Review This review discusses techniques and results of
previously developed dosimetry methods in thyroid carci-
noma, neuro-endocrine tumours, solid tumours and lympho-
ma. In each case, emphasis is placed on the level of evidence
and practical applicability. Although dosimetry has been of
enormous value in the preclinical phase of radiopharmaceu-
tical development, its clinical use to optimise administered
activity on an individual patient basis has been less evident.
In phase I and II trials, dosimetry may be considered an
inherent part of therapy to establish the maximum tolerated

dose and dose–response relationship. To prove that dosim-
etry-based radionuclide therapy is of additional benefit over
fixed dosing or dosing per kilogram body weight, prospec-
tive randomised phase III trials with appropriate end points
have to be undertaken. Data in the literature which
underscore the potential of dosimetry to avoid under- and
overdosing and to standardise radionuclide therapy methods
internationally are very scarce.
Developments In each section, particular developments and
insights into these therapies are related to opportunities for
dosimetry. The recent developments in PET and PET/CT
imaging, including micro-devices for animal research, and
molecular medicine provide major challenges for innova-
tive therapy and dosimetry techniques. Furthermore, the
increasing scientific interest in the radiobiological features
specific to radionuclide therapy will advance our ability to
administer this treatment modality optimally.
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Introduction

Radionuclide therapy (or “targeted”, “metabolic” or “mo-
lecular” radiotherapy) may be defined as a radiation therapy
that uses local, loco-regional or generally administered
open (i.e. “unsealed”) radionuclides to achieve a transfer of
radiation energy to a pathological target tissue and by this
means to exert a destructive tissue effect. This “internal”
radiation therapy has distinct similarities to, but also
profound differences from the more commonly used
external radiotherapy (EBRT).
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The tissue effect is expressed as the absorbed radiation
dose in grays (Gy), i.e. the amount of transferred energy in
joules per unit mass of target tissue. The fundamental use of
this unit is similar to that in EBRT, and there is a similar
relationship between radiation dose and response in terms
of cell killing/survival. Therefore, calculation of the
radiation absorbed dose to a targeted tissue makes sense
at any point in treatment. In this respect, radionuclide
therapy dosimetry may be considered an inherent part of
radionuclide therapy in principle, as in EBRT.

In the literature, there is considerable confusion over the
proper use of the term “dose”, which actually refers to the
“radiation dose” in the SI unit “grays”. However, dose in
the context of radionuclide therapy is frequently used when
actually the “administered activity” in GBq or mCi is
meant. To avoid confusion, the terms “radiation dose” and
“absorbed dose” are used when indicating Gy and the term
“activity dose” when indicating GBq.

Individual patient dosimetry has the following goals [1]:

– To establish individual minimum effective and maxi-
mum tolerated absorbed doses

– To establish a dose–response relation to predict tumour
response and normal organ toxicity on the basis of pre-
therapy dosimetry

– To objectively compare the dose–response results of
different radionuclide therapies, either between differ-
ent patients or between different radiopharmaceuticals,
as well as to perform comparisons with the results
routinely obtained with external radiotherapy

– To increase the knowledge of clinical radionuclide
radiobiology, in part with the aim of developing new
approaches and regimens

In EBRT, the absorbed dose can be calculated relatively
straightforwardly from the energy loss in the body from the
point where the radiation enters the body to the target.
Radiation in radionuclide therapy is directed to its target by
a vehicle (hence “radiopharmaceutical”), which exhibits
more or less specific binding to the target tissue. This is a
highly dynamic metabolic process, both biochemically and
physically, within the time interval of the decaying isotope,
and entails a much more complex spatial and temporal
radiation distribution than that in EBRT. Pharmacokinetics
such as circulation, metabolisation, target expression
heterogeneity and cellular uptake and release, as well as
radiobiological phenomena such as biological or physical
(“cross-fire”) bystander effects [2], play a determining role
in the final radiation dose to the target. EBRT is typically a
fractionated high dose rate radiotherapy in which episodes
of radiation, aimed to cause as much lethal damage as
possible, are interspersed with episodes of non-treatment,
during which repair and repopulation occur. Radionuclide
therapy is radiotherapy with a low and continuously

decreasing dose rate, which requires a unique radiobiolog-
ical approach [3, 4].

Integral activities can be determined numerically or by
compartmental models [5] and presently rely heavily on the
detection of the activity distribution by gamma cameras.
Because the electron range is inferior to the spatial
resolution of most molecular imaging devices, the “perfect”
dosimetric study cannot be achieved, and calculations are
always an approximation. Using the temporal and spatial
radionuclide distribution data, radiation doses to target
organs have generally been calculated using the MIRD
formalism, formerly used for calculation of the biodistribu-
tion of diagnostic radiopharmaceuticals. Commercially
available software such as MIRDOSE3 or the newer
OLINDA/EXM [6, 7] is available for calculation of internal
absorbed doses in organs and tumours. Although these
models make important assumptions about anatomy (stan-
dard man and woman) and radiopharmaceutical distribution
(uniformity of uptake in source and target) that are not
necessarily valid in individual patients, they do provide a
practical and standardised model for clinical end-users.

Nevertheless, to date the need for dosimetry to individ-
ually optimise the therapeutic activity to be administered
has been far from self-evident. Radionuclide therapy
dosimetry has not gained wide acceptance as a clinical tool
among the (nuclear) medical community because of an
imbalance between the accuracy and the complexity of the
procedure. A number of studies have even completely
discarded dosimetry, instead using fixed activities for all
patients or activities based on kg or m2 body dimensions.
[8–10]. To underline that this is unjustified, this review will
describe the significant progress that has been achieved
over recent years, especially in the fields of instrumentation
(with provision of clinically useful instruments), physical
modelling and radiobiology. Furthermore, the EURATOM
Council Directive 97/43 stipulated that in medical expo-
sures for radiotherapeutic purposes, including nuclear
medicine, “exposures of target volumes shall be individu-
ally planned”. In this context, the nuclear medicine
physician is at present confronted with a “dosimetric
dilemma”, because official guidelines and recommenda-
tions for most treatments do not include advanced dosimet-
ric calculations. Therefore, this review primarily aims to
provide the nuclear medicine practitioner with an up-to-date
overview of clinically applied dosimetry techniques in
radionuclide therapy. For those working at a more basic
level of dosimetry, information is provided on the clinical
application of methods and areas of further development.
Given the large size of the field of radionuclide therapy, this
review is limited to those oncology indications for which
there is substantial literature concerning dose calculations,
with in-depth discussion thereof. As it would be impossible
to cover all areas of the complex subject of dosimetry,
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appropriate references will be provided where necessary,
e.g. regarding basic physics, (radio)biology, radiopharma-
ceuticals and preclinical aspects.

Radioiodine therapy in differentiated thyroid carcinoma

Radioiodine therapy has proven to be a safe and effective
method in the treatment of patients with differentiated
thyroid carcinoma (DTC) after total or near-total thyroid-
ectomy [11, 12]. It has been shown to be useful not only for
ablation of benign remnant thyroid tissue, facilitating
subsequent diagnostic testing, but also for treatment of
any remaining cancerous cells either in the thyroid bed or at
metastatic sites. Dosimetry plays an important role in
answering questions concerning biodistribution since the
biological half-time of radioactive iodine differs substan-
tially between individual patients and even within distinct
lesions of the same patient. It has proven exceptionally
helpful in clinical trials of new drugs, for example retinoids,
and in assessment of the use of recombinant TSH [13], as
well as in the study of other questions such as the
phenomenon of “stunning”. However, its possible role in
extending therapy doses to the level of individual maximum
effectiveness is currently less obvious.

There is at present no consensus on the activity dose of
131I to be administered in various settings according to
recent European and American guidelines [14, 15], largely
because of the lack of prospective, randomised data. In the
majority of cases, 1.1–3.7 GBq (30–100 mCi) is prescribed
empirically for the first radioiodine therapy after thyroid-
ectomy in newly diagnosed DTC, to ablate the remaining
glandular tissue. Activity doses as low as 1 GBq are used
when the size of the thyroid remnant is small, as measured
by the postoperative radioiodine uptake in the neck, and/or
to reduce local complications that could arise from radiation
thyroiditis/oedema, which has been reported in 10–20% of
cases, although usually mild. The effectiveness of this
ablative approach based on standard activities is reported to
be about 80%. For the treatment of residual tumour,
relapses or lymph node metastases, generally higher
activities of 3.7–7.4 GBq (100–200 mCi) are used.

Approaches in which quantitative dosimetry is per-
formed to estimate the activity dose needed to deliver an
effective radiation dose are scarce in the literature. Maxon
and co-workers, using sequential planar scintigraphy,
established in the early 1980s that an effective mean
radiation dose of at least 300 Gy is required for successful
remnant ablation [16]. The validity of this recommendation
remains unclear as it conflicts somewhat with clinical
experience. It also neglects microdosimetry of radioiodine
and dose heterogeneity, which may well determine the
overall response. As far as metastases are concerned, these

authors concluded in the same study that a radiation dose of
at least 80 Gy is associated with a significant increase in
response, while a dose of less than 35 Gy offers little
chance of success. In a later study [17], they found that
when metastatic disease was present only in lymph nodes, a
target radiation dose of at least 140 Gy was successful in
86% of patients and 90% of involved nodes. When nodal
metastases were associated with either residual thyroid
tissue or other metastatic foci, a single treatment calculated
to deliver at least 85 Gy to the metastases proved successful
in 74% of patients and 81% of nodes. The aforementioned
doses were mean absorbed doses for the whole remnant or
tumour; no data were provided on the dose distribution in
smaller tumour parts. It is also unclear what causes the large
difference between radiation dose values for remnants and
metastases. This method requires sequential measurements
with a scintillation camera 24, 48 and 72 h after
administration of 74 MBq (2 mCi) of 131I. De Keizer et
al. [18] recently calculated thyroid tumour doses with a
similar methodology but with the use of recombinant TSH.
A tumour dose of >80 Gy was found in only 20% of
metastases visible on post-therapy 131I scanning. In 55% of
patients, progressive disease was evident after 3 months and
none of these patients had radiation doses to the tumour in
excess of 30 Gy, confirming the existence of a clinical
dose–response relation.

In cases of distant metastases, higher amounts of 131I are
given in single doses and subsequent cumulative therapies.
Most centres use a fixed dose of 7.4 GBq (200 mCi), but
some use (much) higher activity doses. In order to avoid
serious complications (bone marrow suppression, lung
fibrosis), the commonly used “maximum safe” adminis-
tered dose concept published by Benua et al. [19] restricts
the blood absorbed dose to less than 2 Gy (200 rad) and
the whole-body retention to 4.4 GBq (120 mCi) at 48 h
in the absence of diffuse lung metastases. According to the
protocol, activity concentration in the whole body as
measured by 131I should not exceed 2,960 MBq (80 mCi)
after 48 h when diffuse, functioning lung metastases are
present. These measurements can be camera based without
blood sampling. More recently, the blood dose formula
derivation proposed by Hänscheid et al. [13] has provided a
new tool for patient-specific blood dose assessment
representing marrow dosimetry in DTC therapy. For more
precise dosimetry, e.g. in dosimetric studies or for higher
targeted blood absorbed doses, sequential blood sampling is
recommended [20, 21]. The calculated radiation dose serves
as a surrogate parameter for the organ at risk, the bone
marrow, since to date direct determination of the bone
marrow absorbed dose is not feasible. This method has
been applied successfully in clinical practice. Dorn et al.
[22] used a dosimetric study prior to therapy with 150–
400 MBq 131I and obtained daily images up to 4–5 days.
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They maximised the administered activity to an absorbed
dose of 3 Gy to the bone marrow or 30 Gy to the lungs,
corresponding to the LD5/5 in EBRT, while aiming at
>100 Gy to all known metastases. This resulted in a mean
of 22.1 GBq (597 mCi) and a range of 7.4–38.5 GBq (200–
1,040 mCi) activity administered per treatment. Many
institutions will find it difficult to deliver these amounts
owing to radioprotection restrictions, limiting the applica-
bility of this method. To date, bone marrow depression has
rarely been reported, while the rate of dose-related
leukaemia has been estimated to be approximately 1% after
5–10 years. Lung fibrosis as a consequence of micro-
nodular iodine-avid metastases has been reported in 1% of
patients suffering from pulmonary metastases. The down-
side of these high-dose strategies may be an increase in the
occurrence of these side-effects. On the other hand,
assuming this “maximum safe dose” to be an optimal
dosing strategy, extrapolation to a “fixed activity dose”
strategy of 7.4 GBq (200 mCi), as is widely applied, would
“under-treat” 54% and “over-treat” 3% of patients [23]. To
date, there are no randomised and prospective trials that
directly compare a low- and high-activity dose strategy in
patients with metastases.

The treatment of DTC in childhood varies substantially
from the standard approach in adults mainly owing to the
different tumour biology in this age group. Usually
activities of 50–100 MBq/kg are given, treatment data on
children being scarce and non-systematic.

There are a number of potential drawbacks of dosimetry
that may preclude its use in many centres. One problem is
the uncertainty of volume determinations by neck ultra-
sound shortly after thyroid surgery since the differentiation
between scar tissue, haematoma and thyroid remnant is
often difficult. The same holds true for the use of computed
tomography (CT), magnetic resonance imaging (MRI) and
positron emission tomography (PET) in the evaluation of
distant metastatic lesions, especially in the case of diffuse
lung metastases. Also, it is difficult to predict radioiodine
kinetics during therapy from prior diagnostic studies owing
to the large difference in administered and measured
activity and potential subsequent biological effects. PET
studies using the cyclotron product 124I-NaI, if possible in
combination with PET/CT tomography, may prove to be
particularly valuable in improving treatment planning and
patient-specific dosimetry. Compared with conventional
methods, including CT and 131I scanning, this technique
was found to be superior in terms of lesion detection and
functional assessment [24]. Using three-dimensional 124I-
PET voxel-based dosimetry, Sgouros et al. [25] showed a
wide range of mean absorbed dose values for individual
tumours, from 1.2 to 540 Gy. Unfortunately, no correlation
with response was reported in that study. However, this
wide variation certainly implies that the assessment of

meaningful dose–effect relationships and clinical dosimetry
should include further development of a quantitative
approach.

131I-mIBG therapy in neuroblastoma
and phaeochromocytoma

For more than two decades, mIBG labelled with the γ/β
emitter iodine-131 (131I-mIBG) has been used to treat
neural crest-derived tumours, essentially neuroblastoma and
phaeochromocytoma, both in relapsed and in newly
diagnosed patients. In high-stage neuroblastoma, the treat-
ment may represent (a) palliative therapy [26], (b) first-line
therapy, as a single agent or combined with chemotherapy
[27], (c) consolidation therapy after induction of a “good
partial remission” [28] and, more recently, (d) second-line
therapy after failed induction chemotherapy, combined with
topotecan and stem cell rescue in children with metastatic
neuroblastoma [29] or with myeloablative chemotherapy
and autologous stem cell transplantation in refractory
neuroblastoma [9]. In neuroblastoma, important efforts
have been made to develop clinically useful dosimetry
methods to predict the radiation dose to the red marrow as
the critical organ for bone marrow toxicity, in order to
apply optimal and individual dose maximisation in children
with highly aggressive tumours. Three different methods of
activity administration have evolved from the experience of
treating such patients.

The first approach, developed in Amsterdam, the Nether-
lands, is to give fixed activity dose “fractions” of 7.4–
11.1 GBq (200–300 mCi), more recently combined with
hyperbaric oxygen or topotecan. This approach has been
proven to have a synergistic effect on cell killing in vitro
when used in combination with 131I-mIBG [30]. Intervals
between fractions are determined by blood count recovery
and the treatment is continued to maximum response [31].
An advantage of this method is its simplicity, which may be
viewed as important in very sick children and in those who
require prompt treatment, especially when receiving first-
line therapy. Another important advantage of lower activity
doses is the shorter isolation and hospitalisation period
required for reasons of radioprotection, which may be
regarded as highly significant in these usually very sick
children with a grave prognosis. As whole-body and
tumour radiation doses are never calculated, any kind of
dose–response assessment and optimisation on the basis of
absorbed radiation dose is, however, impossible. Further-
more, the relatively low dose rate of radiation compared
with (ultra-)high doses may be viewed as radiobiologically
suboptimal. The clinical results of this approach need to be
verified in a multicentre phase III trial that should include a
dosimetric assessment of the whole-body dose.
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The second approach originates from the United King-
dom, where there has been a long tradition of using pre-
therapy dosimetry. In a phase I/II study on advanced,
chemo-refractory stage III/IV patients, Lashford et al.
observed that 80% of patients developed grade 3 or 4
haematotoxicity at a whole-body absorbed dose of 2.5 Gy
established from a pre-therapy 131I-mIBG scan [32].
Monsieurs et al. used 123I-mIBG prior to therapy to the
same effect [33]. Previously, Tristam et al. had shown a
highly skewed distribution of tumour radiation doses after a
fixed, diagnostic activity [34]. Matthay et al. found a good
correlation between whole-body and tumour dose [35]. As
radiation dose is principally related to response, this
approach may lead to a more standardised whole-body
and tumour absorbed dose [36] and may offer more
possibilities of dose escalation, especially in the presence
of an altered biodistribution, e.g. due to partial kidney
failure or high tumour load. Recently, an ESIOP experi-
mental mIBG protocol has been proposed in which the aim
is to deliver a total whole-body absorbed dose of 4.0 Gy in
two fractions, in combination with topotecan, after failure
of induction chemotherapy. Post-therapy dosimetry is
performed after a first fixed fraction of 440 MBq/kg
(12 mCi/kg), with calculation of the activity dose to be
administered with the subsequent second fraction in order
to arrive at the desired total whole-body absorbed dose of
4 Gy. The importance of this protocol is that whole-body
and tumour absorbed dose can be estimated and the relation
to both toxicity and response can be established, unlike
with the non-dosimetry protocols. The schedule of intensi-
fication of mIBG therapy by dose escalation and radio-
sensitisation with topotecan with a haematopoietic autograft
has been shown to be safe and practicable [29]. The next
step will be to prove that this approach will also lead to a
better outcome in neuroblastoma patients.

The third approach can be derived from recent publica-
tions from the United States, in which patients received high
activity doses of mIBG on the basis of an activity dose of
550–660 MBq per kilogram body weight (15–18 mCi/kg),
with stem cell support if necessary. In an early study, Sisson
and co-workers examined predictors of toxicity and found
the best correlation to be between whole-body absorbed dose
and platelet ratio; however, comparable and statistically
significant correlations were found with GBq/kg body
weight and GBq/m2 body surface [37]. This observation
was supported by Matthay and colleagues [35], who found
the amount of 131I (GBq/kg) and whole-body dose (Gy),
but not administered activity dose (GBq), to be significantly
correlated with platelet and neutrophil nadir. In a recent
study by Dubois et al. [38], substantial haematotoxicity was
seen at 660 MBq/kg (18 mCi/kg) in a group of patients with
advanced, heavily pre-treated neuroblastoma, including
myeloablative chemotherapy in 81%. Of these patients,

36% required autologous haematopoietic stem cell trans-
plantation. The resulting median whole-body absorbed dose
was 2.92 Gy with a median administered activity dose of
13.5 GBq (366 mCi, range 198–895 mCi). Interestingly,
whole-body radiation dose was shown to correlate with
failure to engraft platelets or red cells in those patients
receiving autologous stem cell transplantation. An encour-
aging response rate of 27% was reported, however. The
same authors recently established a maximum tolerated
dose (MTD) of 440 MBq/kg (12 mCi/kg) with myelo-
ablative chemotherapy and autologous stem cell transplan-
tation [9]. The advantage is that there is no need for
planning/simulation in this high-dose protocol, which may
increase in importance if multiple centres participate.

Malignant, metastatic phaeochromocytoma is a very rare
disease but can be excellently treated by 131I-mIBG in both a
palliative and a curative setting. Literature data on dosimetry
are scarce and casuistic. In 1997, Loh et al. reviewed the
literature concerning 116 previously treated cases [39]. They
found a cumulative activity dose of 3.6–85.9 GBq (96–
2,322 mCi, mean 490±350 mCi) in 1–11 (mean 3.3±2.2)
therapies, with a mean single activity dose of 5.8 GBq
(158 mCi). Dose prescriptions were as a fixed activity dose
of 3.7–11.1 GBq (100–300 mCi or 3–9 mCi/kg). A recent
study was performed in order to evaluate the performance of
mIBG therapy with high activities after debulking surgery
[40]. The median individual cumulative activity dose was
37.6 GBq (1,015 mCi), with a range of 14.3–62.5 GBq
(386–1,690 mCi), in one to three consecutive therapies.
Grade 3 platelet toxicity was observed after 79% of
therapies, and grade 3 and 4 neutrophil toxicity after 53%
and 19% of therapies, respectively. All patients had stem
cells harvested before therapy, but 11 patients showed
spontaneous reconstitution and only one required stem cell
return. Response rate was 10/12 patients (83%).

Radiopeptide therapy for neuro-endocrine tumours

Several clinical trials have investigated the use of peptide
receptor radionuclide therapy (PRRT) with a radiolabelled
somatostatin analogue as one of the newly developed
targeted tools for neuro-endocrine tumours [41–44]. Indi-
vidual pre-therapeutic dosimetry is necessary for patient
selection and therapy planning because there are huge inter-
patient differences in radiopeptide uptake in normal organs
and tumour tissues. This may be related to varying
somatostatin receptor densities on tumour cells, as well as
to factors such as tumour volume, interstitial pressure and
viability. The dosimetric studies that have been performed
in this treatment have been the most sophisticated in the
field and exemplory for other types of treatment. Initial
studies were performed with the radiopeptide used in
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diagnostics, [111In-DTPA0]-octreotide, given in high activ-
ities. Results were encouraging, with symptomatic and
biochemical responses in a large percentage of patients,
although objective responses were rare [42]. The analogue
[90Y-DOTA0,Tyr3]-octreotide has been investigated in var-
ious phase I–II trials [41, 43]. 90Y-labelled lanreotide has
also been investigated (in the MAURITIUS trial) [45]. For
dosimetry of 90Y from post-therapeutic bremsstrahlung,
images that substantially lack quality must be quantified.
Therefore, two alternative approaches have been developed
as a surrogate for the original radiopeptide, namely therapy
simulation with either the 111In-labelled peptide or the 86Y-
labelled peptide [46, 47]. These methods are intended to
provide pre-therapy assessment of the optimal activity
administration [48–51] (Table 1). The variation that can be
appreciated among the various combinations in the table may
be primarily technical/methodological in origin but also
biological, based on differences in somatostatin receptors
and isotope/chelator affinity. The reader is referred to the
respective papers for more detailed information.

Although [90Y-DOTA0,Tyr3]-octreotide (or -lanreotide)
and its imageable counterpart [111In-DOTA0,Tyr3]-octreotide
(or -lanreotide) are not chemically identical, the latter has
been used for dosimetric simulation, based on the hypothesis
that the similar physical and biological half-lives yield a
comparable in vivo pharmacokinetics and biodistribution,
especially concerning the renal uptake, which depends on
aspecific phenomena. A drawback of this method is that the
small structural modification may affect the somatostatin
receptor binding affinity [52]. Regarding biodistribution, the
organs receiving the highest predicted absorbed doses, in a
first series of 18 patients, included the spleen (7.6±6.3 mGy/
MBq), the kidneys (3.3±2.2 mGy/MBq) and the tumour
(1.4–31 mGy/MBq, mean 10). When the series was enlarged
to 30 patients, a slightly higher kidney absorbed dose (3.9±
1.9 mGy/MBq) was observed [43]. Shortcut approaches

involving use of the commercially available molecule [111In-
DTPA0]-octreotide or OctreoScan® have been proposed [53].
Nonetheless, probably as a result of the quite different
biokinetics and receptor affinity of [90Y-DOTA0,Tyr3]-
octreotide and [111In-DTPA0]-octreotide, which are indeed
chemically different, comparative data obtained appear not to
be sufficiently overlapping for this tracer.

A thorough dosimetric study using PET with [86Y-
DOTA0,Tyr3]-octreotide, biochemically identical to the
therapeutic molecule, was carried out in 24 patients [54].
This offers substantial advantages in terms of spatial
resolution and quantification, but the short half-life of the
radionuclide leaves later phases of the biokinetics to
estimates based on extrapolation.

The newest radiopeptide, [177Lu-DOTA0,Tyr3]-octreo-
tate, offers further advantages. 177Lu has a lower energy
(Emax 0.49 MeV) and penetration range (Rmax 2 mm)
emission, but a longer half-life (6.7 days). The low
abundance gamma emissions (113 and 208 keV) allow for
dosimetry and imaging prior to as well as post therapy.
Moreover, octreotate has a six- to ninefold higher affinity
for somatostatin receptor 2, the somatostatin receptor most
frequently expressed in neuro-endocrine tumours. Unfortu-
nately, to date a thorough dosimetric analysis is lacking, but
data deriving from a study comparing [177Lu-DOTA0,Tyr3]-
octreotate with [111In-DTPA0]-octreotide indicate that,
compared with [90Y-DOTA0,Tyr3]-octreotide, [177Lu-
DOTA0,Tyr3]-octreotate delivers a lower burden to organs,
with absorbed doses of 1.8–2.7 mGy/MBq to the spleen,
1.0–2.2 mGy/MBq to the kidneys (lowered to 0.7–
1.1 mGy/MBq with protection) and 0.1–0.3 mGy/MBq to
the liver. Red marrow absorbed dose, derived by the blood
approach, ranged from 0.05 to 0.08 mGy/MBq [44].

Due to their marked radiosensitivity, the kidneys
undoubtedly represent the critical organ, particularly after
[90Y-DOTA0,Tyr3]-octreotide. Renal irradiation arises from

Table 1 Absorbed doses to principal organs and to tumour (Gy/GBq ±SD), deriving from different radiopeptides

Stabin 1997 [109],
Kwekkeboom 2001 [50]

Kwekkeboom
2001 [50]

Cremonesi 1999
[47]

Forster 2001
[110]

Helisch 2004
[111]

Forrer 2004
[112]

Therapy [111In-DTPA0, Tyr3]-
octreotide

[177Lu-DOTA0,
Tyr3]-octreotate

[90Y-DOTA0,
Tyr3]-octreotide

[90Y-DOTA0,
Tyr3]-octreotide

[90Y-DOTA0,
Tyr3]-octreotide

[90Y-DOTA0,
Tyr3]-octreotide

Dosimetry [111In-DTPA0, Tyr3]-
octreotide

[177Lu-DOTA0,
Tyr3]-octreotate

[111In-DOTA0,
Tyr3]-octreotide

[86Y-DOTA0,
Tyr3]-octreotide

[86Y-DOTA0,
Tyr3]-octreotide

[111In-DOTA0,
Tyr3]-octreotide

Patients 16 5 30 3 8 5
Kidneys 0.52±0.24 1.65±0.47 3.9±1.9b 2.73±1.41 2.84±0.64
Kidneys + protection 0.88±0.19 1.71±0.89
Liver 0.065±0.01 0.21±0.07 0.72±0.57 0.66±0.15 0.72±0.40 0.92±0.35
Spleen 0.34±0.16 2.15±0.39 7.62±6.30 2.32±1.97 2.19±1.11 6.57±5.25
Red marrow 0.03±0.01 0.07±0.004 0.03±0.01 0.49±0.002 0.06±0.02 0.17±0.02
Tumour (range) 0.72–6.8a 3.9–37.9 1.4–31 3.21–19.58 2.1–29.5 2.4–41.7

a From reference [50]
b Series enlarged from the original one, as in Bodei et al. [44]
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the proximal tubular re-absorption of the radiopeptide and
the resulting retention in the interstitium. According to
EBRT studies, the renal maximum tolerated absorbed dose
is conventionally considered to be in the range of 23–
25 Gy. According to the National Council on Radiation
Protection and Measurements (NCRPM) an absorbed dose
of 23 Gy to the kidneys causes detrimental deterministic
effects in 5% of patients within 5 years [55]. Sporadic cases
of delayed renal failure, in some cases end-stage disease
requiring dialysis, have been observed, especially in
patients who have received an activity dose of more than
7.4 GBq/m2 [56]. Nephrotoxicity is accelerated by other
risk factors, such as pre-existing hypertension or diabetes.
Given the high kidney retention of radiopeptides, positively
charged molecules, such as L-lysine and L-arginine, are
used to competitively inhibit the proximal tubular re-
absorption of the radiopeptide. This results in a reduction
in the renal absorbed dose of between 9% and 53% [57].
Doses are further reduced by up to 39% by prolonging
infusion over 10 h and by up to 65% by prolonging it over
2 days after radiopeptide administration, thus covering
more extensively the elimination phase through the kidneys
[43]. Despite kidney protection, renal function loss may
become clinically evident years after PRRT. A median
decline in creatinine clearance of 7.3% per year was
reported in patients treated with [90Y-DOTA0,Tyr3]-octreo-
tide and of 3.8% per year in patients treated with [177Lu-
DOTA0,Tyr3]-octreotate. Cumulative and per cycle renal
absorbed dose, age, hypertension and diabetes are consid-
ered factors contributing to the decline of renal function
after PRRT [58]. Clinical experience and dosimetric studies
clearly indicate that the renal absorbed dose estimated by
conventional dosimetry does not accurately correlate with
the renal toxicity observed in patients treated with [90Y-
DOTA0,Tyr3]-octreotide. Consideration of additional
parameters, such as patient-specific kidney volume and
distribution of the radionuclide, appears to give a better
correlation with the clinical effects [59]. Assessment of
individual kidney volume by CT scan yields a wide
variability when compared with the standardised phantom.
Moreover, autoradiographic studies, performed on human
kidney after in vivo injection of 111In-peptides, have
demonstrated that the majority of radioactivity is deposited
within the renal cortex, mainly in the juxtamedullary
region. This leads to a higher deposition of energy per unit
mass, compared with conventional dosimetry. Hence,
calculation of the kidney absorbed dose assuming a
homogeneous renal distribution of radioactivity is inade-
quate. New techniques accounting for the difference in
radioactivity placement in the kidneys, on the basis of a CT-
based volumetric analysis, appear more realistic [60].

Even if predicted absorbed doses are much lower than
the threshold for toxicity, the other target organ that gives

rise to concerns about acute and permanent toxicity after
PRRT is the bone marrow, particularly in repeated admin-
istrations [41–43]. Acute haematological grade 3 or 4
toxicity is not uncommon, especially after [90Y-DOTA0,
Tyr3]-octreotide, and sporadic cases of myelodysplastic
syndromes or even overt acute myeloid leukaemia have
been reported with all three therapeutic radio-compounds.
Bone marrow dosimetry is usually modelled through a
blood-based method, in which an equivalent distribution of
the radioactivity from blood throughout the bone marrow is
conservatively considered [61, 62]. Currently, the potential
risk of kidney and red marrow limits the amount of
radioactivity that may be administered. Indeed, when
tumour masses are irradiated with suitable doses, volume
reduction may be observed (Fig. 1) [63]. Tumour remission
is positively correlated with high uptake during [111In-
DTPA0] octreotide scintigraphy. Nevertheless, tumour
radiation dose depends not only directly on the adminis-
tered activity and the uptake versus time, but also on the
tumour load. This is confirmed by clinical data regarding
the response characteristics: patients with a limited number
of liver metastases respond to PRRT, whilst patients with a
high tumour load do not [45]. Mathematical models have
shown that 177Lu is better in small tumours (optimal
diameter 2 mm), whilst 90Y is better in larger ones (optimal

Fig. 1 Tumour dose–response relationship in 13 patients treated with
90Y-DOTATOC. Tumour volumes were assessed by CT before and
after treatment. Tumour dose estimates were derived from CT scan
volume measurements and quantitative 86Y-DOTATOC imaging
performed before treatment. Data were further computed using the
MIRDOSE spherical model. Reprinted by permission of the Society of
Nuclear Medicine from [63]
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diameter 34 mm): very small masses are likely not to
absorb all the β-energy released in the tumour cells by 90Y,
while larger tumours will suffer from lack of uniformity of
activity distribution of 177Lu. Finally, differences in dose
rate must be taken into account: the longer physical half-life
of 177Lu means a longer period is needed to deliver the
same radiation dose than when using 90Y. This may allow
more time for tumour re-population [64]. Therefore,
combination therapy with 90Y and 177Lu, either simulta-
neously or in distinct settings, has been suggested to
overcome the difficulties of real clinical situations involv-
ing different sized lesions.

Treatment of solid tumours by radiolabelled antibodies

Most clinical radioimmunotherapy (RIT) studies have been
performed in colorectal cancer, using antibodies against
CEA, TAG-72, A33 and KSA. Other tumours studied have
included ovarian cancer (anti-MX35, anti-folate receptor
Mov18, anti-HMFG1), prostate cancer (anti-PMSA), breast
cancer (anti-mucin BrE3, NR-LU-10), glioma (anti-tenas-
cin) and renal cancer (anti-G250) [65].

Although at later time points after injection of radio-
labelled monoclonal antibodies, adequate to high uptake
may serve to delineate deposits of solid tumours, the
relatively unfavourable therapeutic window between the
anti-tumour effect and toxicity hampers the introduction of
these agents in the clinic. Solid tumours are generally more
radioresistant than, for example, malignant lymphoma. The
absorbed doses required to achieve a response of tumour
deposits are higher than those needed to obtain a response
in malignant lymphoma. Activity doses leading to adequate
absorbed doses in tumour deposits therefore result in
significant radiation-induced toxicity, primarily of the bone
marrow, as the most radiation-sensitive organ; myeloabla-
tion may be the goal as well as the result of this.

Most studies aim at administration of the MTD that
results in acceptable toxicity to the bone marrow, as the
organ responsible for dose-limiting toxicity. Several meth-
ods have been reported for calculation of the absorbed dose
to the bone marrow, e.g. region of interest analysis of
scintigraphic data or a model based on radioactivity in the
blood. When radiolabelled antibodies bind to blood, bone
and bone marrow components or when the radionuclide
accumulates in bone or bone marrow upon metabolisation
of the radionuclide–antibody complex, calculation of the
red marrow dose is more complex than when using
radiolabelled antibodies that lack these characteristics [66,
67]. The use of a model for bone marrow dosimetry using
blood activity may result in better reproducibility of the
bone marrow dosimetry. Wessels et al. [68] observed that
historical variations as high as 200–700% between different

institutions performing marrow absorbed dose calculations
could be dramatically reduced to −29% to +20% by a
central computing facility and the use of similar method-
ology, based on the standard American Association of
Physicists in Medicine (AAPM)/Sgouros blood model [66].

In a study using 131I-labelled murine monoclonal
antibody G250 in patients with metastatic renal cell cancer,
haematological toxicity correlated with whole-body
absorbed radiation dose [69]. In a retrospective analysis of
114 patients who underwent 131I-labelled antibody therapy,
absorbed dose-based definitions of MTD and escalation
variables proved to be better than activity-based methods
[70]. In a study in which therapeutic doses of 131I-cG250
(the chimeric variant of G250) were administered, no
correlation was found between haematological toxicity
and either the radiation absorbed dose to the whole body
or bone marrow or the administered activity [71]. Juweid et
al. observed that besides red marrow dose, baseline blood
counts, multiple bone and/or marrow metastases and recent
chemotherapy are important factors related to haematolog-
ical toxicity after radio-immunotherapy [72], making a
dosimetric approach to identify the optimal radionuclide
dose more complicated.

One way to overcome the unfavourable therapeutic
index of tumour response and normal organ toxicity is to
focus on treatment of patients with minimal residual
disease. For example, patients with ovarian cancer in
complete remission after debulking and chemotherapy have
an approximately 50% chance of relapse. Compared with
results in matched controls, Nicholson et al. observed an
increase in 5-year survival from 55% to 80% following
intraperitoneal administration of 90Y-labelled HMFG1 in
patients with ovarian cancer in complete remission after
chemotherapy [73]. However, a more recent randomised
clinical trial in patients with ovarian cancer in complete
remission after debulking and chemotherapy did not reveal
a benefit in disease-free and overall survival after treatment
with 90Y-labelled murine HMFG1 [74]. Introduction of 90Y-
muHMFG1 did not delay the time to relapse and did not
result in prolonged survival as compared with the control
group. One can argue that 90Y is far from ideal for
treatment of minimal residual disease owing to its high β-
energy, and that radionuclides with lower range emissions,
such as 177Lu, have more favourable characteristics for this
purpose. Furthermore, relatively large antibody doses were
used, which may have resulted in saturation of the epitopes
on cancer cells and subsequently in low tumour-to-non-
tumour ratios of radioactivity uptake. Obviously, clinical
dosimetry could play an important role in explaining these
differences in therapy results.

A very significant advance that promises to increase the
radiation dose to the tumour while reducing that to the bone
marrow is the development of pre-targeting strategies. In
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pre-targeting, the tumour is first targeted with a specific
non-radioactive monoclonal antibody construct. The anti-
body construct is allowed to accumulate in the tumour and
to clear from the blood and non-target tissues. Subsequent-
ly, a small radioactive hapten is injected which has high
affinity for the antibody construct. The radioactive hapten
targets the antibody construct, while demonstrating rapid
renal excretion. Examples of these approaches are the use
of bispecific monoclonal antibodies and the biotin–avidin
system [75, 76]. As pre-targeting increases the tumour/
normal organ uptake ratio [77], these approaches hold great
promise for enhanced therapeutic efficacy. However, the
use of multiple drugs poses the problem of fine-tuning
dosing and timing of the interval between injections.
Optimisation of the dosing and timing schedule is needed
for optimal targeting of the tumour by the radioactive
compound, while assuring low normal organ uptake.
Robust dosimetric analysis of tumour and normal organ
uptake of the radioactive small molecule is a requirement
for the successful development and implementation of pre-
targeting strategies [78, 79].

Radioimmunotherapy of B-cell lymphoma

Research in RIT in lymphoma has resulted in two FDA-
approved radiopharmaceuticals, 90Y-ibritumomab or
Zevalin® (IDEC Pharmaceuticals and Schering AG) and
131I-tositumomab or Bexxar® (Glaxo Smith Kline), for the
treatment of B-cell lymphoma [80, 81]. Both are directed
against CD20, albeit not against the same epitope. They are
both approved for the treatment of relapsed or refractory
follicular/low-grade or transformed B-cell lymphoma in-
cluding rituximab-refractory follicular B-cell lymphoma in
the US, but only Zevalin is approved in the EU and only for
follicular lymphoma. Pre-treatment with unlabelled mono-
clonal antibody (=preload) as part of the treatment with
Zevalin and Bexxar is current practice, as it leads to a more
favourable biodistribution. This has been studied in animal
models, as well as in the setting of myeloablative RIT [82–
84]. The preload may clear peripheral B cells from the
circulation, improving tumour targeting of subsequently
administered radiolabelled monoclonal antibodies. This
optimisation has been accomplished by diagnostic and
dosimetric 111In or 131I tracer studies. On the other hand,
the intrinsic therapeutic efficacy of the antibody is a
confounding factor, making evaluation of the relation
between absorbed dose and treatment response more
difficult than for other radiopharmaceuticals [85, 86].

Bexxar has been developed using the whole-body
absorbed dose as a substitute for bone marrow dosimetry
by administering a trace amount of 131I-labelled CD20
antibody and determining the total body clearance prior to

therapy in order to calculate the patient-specific injected
activity dose that should deliver the specified absorbed dose
to the whole body. The method has been further simplified
to an estimation based on three points [87]. In a dose
escalation study with absorbed doses to the whole body
ranging in 0.1-Gy increments from 0.25 to 0.85 Gy, the
MTD was found to be 0.75 Gy in patients who had not
received prior high-dose chemotherapy with stem cell
support and who had platelet counts of ≥150×109/litre. A
comparison between the therapeutic activity calculated on
the basis of the diagnostic pre-therapy tracer study and the
amount calculated per kilogram body weight showed that,
using the latter method, 50% of the patients would have
been either over- or underdosed by 10% or more, and 16%
of the patients by 25% or more. Interestingly, a correlation
between the duration of complete remission (CR) and the
absorbed dose to the whole body was found. Patients
receiving a whole-body absorbed dose between 0.65 and
0.85 Gy showed longer CR than patients receiving between
0.25 and 0.55 Gy [88]. In contrast, Zevalin has been
developed with the notion that dosimetry may be dispens-
able. In a randomised study comparing Zevalin with
rituximab alone, a secondary objective was to determine
whether dosimetry was required [10]. A tracer dose of
185 MBq (5 mCi) 111In was administered for dosimetric
purposes with the first infusion, followed by a therapeutic
activity dose of 0.4 mCi/kg (15 MBq/kg) Zevalin 7 days
later. The absorbed doses to normal organs and the marrow
were found to be within the specified limits of 20 Gy for
solid organs and 3 Gy for red marrow in 72 patients. The
median estimated absorbed dose to the tumour was 15 Gy
(range 0.6–24 Gy). There was no significant correlation
between dosimetric and pharmacokinetic parameters and
haematological toxicity, although the correlation between
nadir of the neutrophil count and the whole blood half-life
of 90Y exhibited borderline statistical significance. It was
concluded that dosimetry may be excluded for populations
of Zevalin patients who meet certain criteria for pre-
treatment platelet count and percentage of marrow involve-
ment by tumour.

A possible explanation for this discrepancy may be
found in the photon energy emitted by 131I; this may
account for a large part of the cross-absorbed dose to the
bone marrow, which is almost independent of the amount of
bone marrow involvement. It has been reported that the
self-absorbed dose accounts for 64% of the whole absorbed
dose to the red marrow [89], leaving 36% as the cross-
absorbed dose. Scintigraphic assessment of absorbed dose
to the bone marrow has its shortcomings owing to over- and
underlying tissues as well as to the local variability in bone
marrow involvement by the disease targeted. It is especially
difficult to use pharmacokinetic data for calculation of the
absorbed bone marrow dose, since bone marrow involve-
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ment is a strong confounder. Other important issues are the
bone to bone marrow ratio and variable values for the
activity concentration in the blood and red marrow [90, 91].
A fixed ratio between blood and bone marrow has been
used in bone marrow dosimetry based on blood radioactiv-
ity levels [10, 64]. However, it has been suggested that the
red marrow to blood ratio is not fixed, but increases
continuously up to 72 h post injection in both patients and
rats [92]. Furthermore, haematological toxicity, like tumour
response, is a deterministic effect of radiation, characterised
by a sigmoid rather than by a linear dose relationship [93].
A sigmoid relationship may be discernible in a reasonably
homogeneous population, but is likely to be more difficult
to identify if the population is heterogeneous. The bone
marrow reserve may be more relevant to the magnitude of
toxicity than is the absorbed dose. Another particular
challenge to haematology RIT dosimetry may be tumour
regression during energy deposition, as is frequently the
case in rapidly responding lymphoma. This may lead to
underestimation of absorbed dose, since dose is per
definition energy per unit mass [94]. The opposite will be
the case if the tumour grows during energy deposition. To
avoid this pitfall, repeated volume assessments during
therapy would be necessary, or alternatively one could use
voxel-based dosimetry, which is likely to be less sensitive
to changes in mass.

Myeloablative RIT at the MTD for normal organs is by
definition dependent on dosimetry. Dose-limiting organs may
be the lungs, kidneys or liver. In high-dose RIT using the 131I-
labelled mouse antibody tositumomab, the lungs were found
to be the dose-limiting organ in 28 of 29 patients and the
kidneys in the remaining patient [95]. The opposite was
found when the pharmacokinetics of the chimeric 131I-
labelled rituximab were studied, i.e. the kidneys were found
to be the critical organ [96]. These differences may be due to
the significant difference in half-life between the antibodies,
the chimeric and murine antibodies having half-lives of 88 h
and 56 h, respectively. The MTD for myeloablative 131I-
tositumomab was established to be 25 Gy to the lungs.
Studies of myeloablative RIT using 90Y are ongoing and
encouraging results have been reported [97].

In several experimental studies, Auger emitters have
been therapeutically superior to β emitters when taken
to the MTD [98, 99]. This is likely to be due primarily to
lower bone marrow toxicity but is perhaps also attribut-
able to the deposition of more energy in single cells or
small tumour cell clusters. Auger emitters would thus be
advantageous in an adjuvant setting, in leukaemia, but
they may also be superior where there is tumour bulk. The
challenge is how to estimate absorbed dose in single cells,
but one may begin in patients with a significant amount of
circulating tumour cells that can be studied ex vivo [100].
Interestingly, Kaminski reported that in a number of

patients who relapsed following RIT the relapse occurred
only at sites previously not known to be involved with
tumour [101]; this indicates a possibility that small tumour
manifestations receive lower absorbed doses than
expected on the basis of antigen density and tumour
diameter [102].

Discussion

As stated by DeNardo [103], “claims for specific dosimetry
have to demonstrate that the frequency of excess toxicity
and/or tumour underdosing significantly decreases”. Do-
simetry should provide a quantification procedure that is
primarily of additional benefit over empirical, fixed dosing
with or without visual scintigraphic assessment. In standard
oncology practice, a new therapeutic agent undergoes phase
I, II and III testing before becoming a standard treatment. In
a phase I study, the maximum tolerated dose is established
and side-effects recorded. Dosimetry should play an
essential role in this phase and establish a threshold dose
above which clinically significant side-effects occur. In
phase II, the new radionuclide therapy is evaluated in terms
of effect on tumour response and survival. Here, dosimetry
should enable the determination of a clinical dose–response
relationship. In phase III, the new therapy is compared with
the standard one. At this stage, dosimetry helps to elucidate
the clinical effects in a larger patient group, e.g. it may be
observed that some subgroups have a better or worse result.
Moreover, multicentre trials offer the opportunity to
compare results in different institutions and countries, as
well as provide the opportunity to standardise the dosimetry
procedure in a larger context. Evidence-based medicine
entails randomised and prospective trials. However, after
60 years of treating thyroid cancer patients, international
guidelines still cannot provide a consensus on the amount
of radioiodine that should be given. Undoubtedly, the need
for randomised trials will increase in the coming years, as
in other areas. This underlines the importance of stepping
up scientific efforts to include optimal dosimetry not only
as an inherent part of radionuclide therapy, but also as an
inherent part of these studies. In this context, there was a
remarkable recent editorial in the Journal of Clinical
Oncology [104], discussing the limitations of the body
surface principle that forms the basis for chemotherapy
dosing. Indeed, the bioavailability of chemotherapy, and
hence the dose to the target, suffers from a similar
metabolic variability as is observed for radionuclides, and
this variability seems to be more important than can be
accounted for by the body surface in square metres as the
sole parameter. Interesting parallels may be drawn for
translational research, for example in pharmacokinetic
modelling and molecular imaging.
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Many modern gamma cameras are optimised for photons
below 200 keV and are less suitable for radionuclide
therapy dosimetry if higher energy photons are involved.
SPECT overcomes the problem of superimposition of target
and other activity, but spatial resolution at depth is always
worse than in planar imaging, so quantification has to rely
on more or less representative phantom models [105]. PET
has a 30–40 times higher sensitivity for a given spatial
resolution that is typically 5×5 mm. This is a major
advantage over SPECT in pharmacokinetic dynamic mod-
elling. Correction for attenuation has become relatively
easy with the new PET/CT and SPECT/CT cameras, but
other correction factors, e.g. for scatter, linearity and
calibration, are also critical. Partial volume effects are a
major issue in the quantification of small tumours and occur
at below about twice the spatial resolution. This is thus
more of a problem for SPECT (spatial resolution for 131I,
25–30 mm) than for PET (spatial resolution 6–8 mm).
Finally, as discussed in the radiopeptide section, the
radionuclides used for dosimetry must show similar
biochemical and physical behaviour to those used for
therapy. As previously highlighted, the use of 124I PET
and 86Y-DOTATOC PET dosimetry [25, 59] has been a
landmark development. PET/CT and SPECT/CT and
“molecular” radiopharmaceutical developments offer major
opportunities for radionuclide therapy dosimetry [1].
Further improvements in the performance of these cameras,
and hence dosimetry, can be foreseen. Also, the prolifera-
tion of microsystems such as micro-PET/SPECT/CT/MRI
is allowing dynamic in vivo animal research, increasing our
knowledge of radiopharmaceutical biodistribution, improv-
ing quantitation and permitting early selection of therapeu-
tic radiopharmaceuticals. Table 2 lists some of the most
important methodological issues involved in performing
accurate dosimetry today.

Radiobiology is a science in itself. Nevertheless, up to
now very little consideration has been given to the effects

of radionuclide therapy at the cellular and molecular level
[106]. Rather, extrapolations have been made from EBRT,
despite the fundamental differences in radiation kinetics.
The majority of observations in EBRT have been made
under the condition of a high dose rate, while clinical
radionuclide therapy entails a decreasing, low dose rate.
The effect of fractionated EBRT is primarily influenced by
the 4 R’s of radiobiology: repair of DNA damage,
repopulation of tissues, re-oxygenation of tumour and
redistribution in the cell cycle. In radionuclide therapy,
with its decreasing dose rate, tumour DNA repair takes
place simultaneously with sublethal damage. Bystander
effects, i.e. radiation-like effects in unhit cells, may be of
significance in low-dose, low dose rate radiotherapy [2].
Furthermore, it is becoming increasingly apparent that the
physical paradigm of direct cell killing by double-strand
DNA breaks is insufficient. Non-DNA targets, such as cell
membrane or RNA, may also be critical to target cell death
or dysfunction. Moreover, new molecular-targeted oncolo-
gy treatments may not produce direct cell death, but rather
alter biochemical pathways or cellular homeostasis, that
may interact with classical radiation targets or produce
new radiation targets [107]. In this paradigm, the concept of
radiation dose may need re-definition and the future
radiation dose may be determined in terms of the biological
and functional changes produced and observed, such as by
blood markers and by PET, SPECT and/or MRI. Biologi-
cally effective dose (BED) is a concept which has been
successfully applied to radionuclide therapy through the
landmarking studies of Barone et al. [59] using 86Y-labelled
DOTATOC and kidney toxicity. BED is the product of the
total physical dose multiplied by the “relative effective-
ness”, which takes into account radiobiological parameters
such as dose rate, radionuclide decay and tumour cell repair
time, and allows direct quantitative comparison with EBRT.
It should be noted that late-responding normal tissues and
slow-growing tumours allow easier modelling than early-
responding normal tissues and fast-growing tumours be-
cause of repopulation during treatment in the latter.
Nevertheless, this may be regarded as a major development,
stimulating further research [108] aimed towards the
creation of a firm fundamental basis for radionuclide
radiotoxicity and radiodosimetry. In future, it looks as if
we shall no longer be looking at a “Holy Gray”, but rather
at the worldly “BEGray”.

In conclusion, recent developments in molecular medi-
cine, PET/CT and SPECT/CT cameras and radiobiology
offer major scientific and clinical opportunities in radionu-
clide therapy dosimetry. However, only prospective, rand-
omised trials with adequate methodology can provide the
evidence that applied clinical dosimetry results in better
patient outcome than is achieved with fixed activity dosing
methods.

Table 2 Methodological issues in performing clinical dosimetry

List of some of the most important methodological issues

- Diagnostic tracer and/or therapeutic activity study
- Planar and/or tomographic (SPECT and/or PET) quantification
- Dynamic and/or multiple time point activity sampling
- Linearity of detector response in low and/or high activity
- Correction factors for attenuation, scatter and/or partial volume effects
- Nuclear medicine and/or radiological volume and response
- Standard (MIRD,...) and/or simulative (Monte Carlo,...) modelling
- Tissue heterogeneity and/or spatial resolution limits
- Treatment of minimal residual disease and/or partial volume effects
- Disease-induced and/or therapy-induced changes in parameters
- Macro- and/or microdosimetry techniques
- Animal and/or human dosimetry data
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