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Abstract
Aims/hypothesis Type 2 diabetes mellitus has been associ-
ated with brain atrophy and cognitive decline, but the
association with ischaemic white matter lesions is unclear.
Previous neuroimaging studies have mainly used semi-
quantitative rating scales to measure atrophy and white
matter lesions (WMLs). In this study we used an automated
segmentation technique to investigate the association of
type 2 diabetes, several diabetes-related risk factors and
cognition with cerebral tissue and WML volumes.
Subjects and methods Magnetic resonance images of 99
patients with type 2 diabetes and 46 control participants from
a population-based sample were segmented using a k-nearest
neighbour classifier trained on ten manually segmented data
sets. White matter, grey matter, lateral ventricles, cerebro-
spinal fluid not including lateral ventricles, and WML
volumes were assessed. Analyses were adjusted for age,
sex, level of education and intracranial volume.

Results Type 2 diabetes was associated with a smaller
volume of grey matter (−21.8 ml; 95% CI −34.2, −9.4) and
with larger lateral ventricle volume (7.1 ml; 95% CI 2.3,
12.0) and with larger white matter lesion volume (56.5%;
95% CI 4.0, 135.8), whereas white matter volume was not
affected. In separate analyses for men and women, the
effects of diabetes were only significant in women.
Conclusions/interpretation The combination of atrophy
with larger WML volume indicates that type 2 diabetes is
associated with mixed pathology in the brain. The observed
sex differences were unexpected and need to be addressed
in further studies.

Keywords Brain . Diabetesmellitus type 2 . Image analysis .

Computer-assisted . Leukoaraiosis . Magnetic
resonance imaging .White matter lesion

Abbreviations
CSF cerebrospinal fluid not including the lateral

ventricles
FLAIR fluid attenuated inversion recovery
IR inversion recovery
KNN k-nearest neighbour
MR magnetic resonance
PD proton density
WML white matter lesion

Introduction

Diabetes mellitus type 2 is associated with accelerated
cognitive impairment and an increased incidence of
dementia [1]. Recently, we have demonstrated that cogni-
tive impairments in patients with type 2 diabetes are
accompanied by brain atrophy and ischaemic white matter
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lesions (WMLs) [2]. Other neuroimaging studies have also
demonstrated that type 2 diabetes is associated with a
moderate degree of cerebral atrophy [3–5] and with an
increased occurrence of cerebral infarcts [6]. These studies
have used either semiquantitative rating scales [3, 4] or
cerebrospinal fluid to brain ratios [2, 4] to assess atrophy.
Quantitative assessment of volumes of grey matter, white
matter, lateral ventricle, and cerebrospinal fluid in patients
with type 2 diabetes has not been performed.

The association between WMLs and type 2 diabetes is
debated. Although several studies found an association
between type 2 diabetes and WML severity or progression
[2, 7–13], others did not [4, 5, 14–18]. These inconsisten-
cies are probably due to the use of different, mostly
semiquantitative, WML grading methods, and differences
in study design and population selection. Furthermore, even
within the population of healthy elderly the variance in
WML severity is large [19].

The present study aimed to determine quantitatively the
effects of type 2 diabetes on cerebral tissue volumes and
WML severity by using an accurate magnetic resonance
(MR) imaging-based automated segmentation algorithm
[20] in a large, representative, cross-sectional, population-
based sample of patients with type 2 diabetes and control
participants. A second aim was to study the association of
several diabetes-related variables and cognition with cere-
bral tissue volumes and WML severity.

Subjects and methods

Participants Participants were recruited between Septem-
ber 2002 and November 2004 as part of the Utrecht
Diabetic Encephalopathy Study (UDES), a cross-sectional,
population-based study on determinants of impaired cogni-
tion in type 2 diabetes [2]. The UDES study aimed to
identify potential risk factors for cognitive impairment in
type 2 diabetes. Therefore, patients were not selected for
the presence or absence of diabetic complications, comor-
bid conditions (e.g. hypertension) or exposure to other risk
factors (e.g. smoking). For inclusion in the present study,
participants had to be 55–80 years of age, functionally
independent, and Dutch-speaking. Type 2 diabetes patients
(n=122; 56–80 years of age) were recruited through their
general practitioner and had a diabetes duration of at least
1 year. Controls (n=57, 55–78 years of age) were recruited
among the spouses and acquaintances of the patients.
Exclusion criteria for all participants were a psychiatric or
neurological disorder unrelated to diabetes that could
influence cognitive functioning, a history of alcohol or
substance abuse, and dementia. Controls with a fasting
blood glucose ≥7.0 mol/l were also excluded. Twice as
many patients as controls were included to increase the

statistical power of within-group analyses in the type 2
diabetes group. The study was approved by the medical
ethics committee of the University Medical Center Utrecht
and each participant signed an informed consent form.

In a standardised interview, participants were questioned
about diabetes duration, height and weight, history of
hypertension and smoking, level of education (seven
categories, corresponding to years of education: <6, 6–7,
8, 9, 10–11, 12–18 and >18, respectively [21]), medication
use and history of vascular disease. Furthermore, all
participants measured their blood pressure at home at nine
different time points during the day. These measurements
were used to calculate the mean arterial pressure. Hyper-
tension was defined as an average systolic blood pressure
≥160 mmHg and/or diastolic blood pressure ≥95 mmHg
and/or self-reported use of blood pressure-lowering drugs.
BMI, fasting glucose and HbA1c were also determined.
Hypercholesterolaemia was defined as a cholesterol:HDL-
cholesterol ratio greater than 5 [22] or the use of
cholesterol-lowering drugs. All subjects underwent a
neuropsychological evaluation, including 11 different tests
addressing the cognitive domains of visuo-construction,
attention and executive function, information processing
speed, memory and abstract reasoning [2]. For further
analysis, the raw scores of the different tests were stan-
dardised into z-scores per domain. For the present study,
these z-scores were averaged into one composite cognitive
z-score.

Brain MR images were acquired as part of the study. In
23 participants with type 2 diabetes and 11 control
participants no MR images were available for automated
analysis: in 14 cases (five controls, nine diabetic patients)
an MR image had not been performed because of MR
contraindications and in 20 cases (six controls, 14 diabetic
patients) the scan could not be analysed automatically
because of technical problems, such as failure to retrieve
the digital MR images or incompleteness of the series of
images, or because image quality did not allow automated
processing. Data for 99 patients with type 2 diabetes and 46
controls were analysed. Age, sex and duration of diabetes
for the excluded subjects were similar to those for the
included subjects (control subjects, average age 64.6 years,
five men and six women; diabetic subjects, average age
66.5 years, 13 men, ten women, average diabetes duration
8.7 years).

MR imaging Brain MR images were acquired on a Philips
Gyroscan ACS-NT 15 whole-body system operating at
1.5 T (Philips Medical Systems, Best, The Netherlands)
with a standardised MR protocol (slice thickness 4 mm, 38
contiguous slices, 230×230 mm field of view, 256×256
scan matrix). Axial T1, inversion recovery (IR), T2, proton
density (PD) and fluid attenuated inversion recovery
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(FLAIR) scans were made: T1, 234/2 ms (repetition/echo
time); IR, 2919/410/22 ms (repetition/inversion/echo time);
T2, 2200/100 ms (repetition/echo time); PD, 2200/11 ms
(repetition/echo time); FLAIR, 6000/2000/100 ms (repeti-
tion/inversion/echo time).

Image processing Preprocessing consisted of intrasubject
registration of the five MR sequences and extraction of a
brain mask. Registration was performed using an affine
nine-parameter mutual information-based algorithm [23]
with the FLAIR image as reference.

Brain masks were constructed to exclude the skull, skin
and background during classification. The masks were
extracted by k-means clustering of the T1, IR, T2, PD and
FLAIR images using eight clusters. The clusters containing
cerebrospinal fluid and brain were combined. Holes in the
mask were filled and appending structures, such as eyes,
were removed using morphological operators. Dilation of
the brain mask by three voxels ensured the inclusion of all
cerebrospinal fluid. One mask had to be edited manually
because appending structures were included. The final brain
masks contained the whole brain including the cerebellum
and brainstem.

Segmentation of the MR IR and FLAIR images into
white matter, cortical and subcortical grey matter, lateral
ventricles, cerebrospinal fluid not including the lateral
ventricles (CSF) and WML was executed fully automati-
cally by means of a probabilistic k-nearest neighbour
(KNN)-based classification algorithm [20]. The algorithm
was trained on expert manual segmentations of ten subjects
who had varying degrees of WML, who were similar in age
to the participants of this study and scanned using the same
protocol, but who did not participate in this study. Manual
segmentation of grey matter and white matter was
performed on MR IR images, because these provide

optimal tissue contrast for the assessment of the grey
matter–white matter boundary, and manual segmentation of
lateral ventricles, CSF and WML was performed on MR
FLAIR images. All MR images were available to the expert
for reference. Performance of the classification algorithm
was validated previously using a leave-one-out procedure
and resulted in similarity indexes of at least 0.808,
indicating excellent agreement [20]. For each participant,
classification produces five separate images of white matter,
grey matter, lateral ventricles, CSF and WML probability
per voxel. As an example, the result of the classification of
the MR FLAIR and inversion recovery images of a diabetes
patient is shown in Fig. 1. White matter, grey matter, CSF
and lateral ventricle volumes were calculated by summing
over the probability image and multiplying with the voxel
dimensions. WML volume calculation deviated slightly. A
threshold of 0.5 was applied on the WML probability
image and all unconnected voxels were removed. Then,
WML volume was calculated by summation over the image
and multiplication with the voxel dimensions. The intra-
cranial volume was calculated as the sum of white matter,
grey matter, lateral ventricles, CSF and WML volumes;
total brain as white matter plus grey matter volume; and
total CSF as CSF plus lateral ventricle volume. Volumes of
automatically segmented tissues for the male control
participants of the present study did not differ from the
tissue volumes found for the manually segmented men
(manually segmented men, n=8; women, n=2 [not com-
pared with female controls]). Furthermore, all segmenta-
tions were carefully reviewed by one of the authors
(C. Jongen). During this process, the author was blinded
to the diabetes mellitus status of the participants. Twelve
WML segmentations were manually edited to be sure that
infarcted tissue was excluded and ten were edited because
of artefacts in the FLAIR image.

Fig. 1 MR FLAIR (a) and inversion recovery image (b) of a diabetes
patient with relatively severe WMLs. On the MR FLAIR image, the
WMLs are clearly visible as white areas, whereas on the inversion
recovery image the boundary between grey and white matter is much

better defined. (c) The result of segmentation using the automated
KNN-based algorithm. The colours indicate the different tissue
classes: grey matter (yellow), white matter (dark blue), lateral
ventricles (green), CSF (red) and WML (light blue)
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Statistical analysis Differences in demographic data and
risk factors between control participants and those with
type 2 diabetes were analysed using a univariate general
linear model or logistic regression adjusting for age and
sex. A univariate general linear model was used to analyse
differences in tissue volume between type 2 diabetes and
control participants adjusting for age, sex, intracranial
volume and level of education. Additionally, separate
analyses for men and women were performed, because
cerebral tissue volumes are different among men and
women. Kolmogorov–Smirnov tests showed that WML
volume was not normally distributed. Therefore, we used a
natural log transformation of WML volumes in the

analyses. Lateral ventricle volume distribution was slightly
non-normal. Using natural log-transformed volumes gave
similar results to using untransformed volumes. For ease of
interpretation, results for untransformed volumes are
reported. Additionally, the associations of age with tissue
volumes were analysed. Furthermore, associations between
the tissue volumes with the composite cognitive perfor-
mance were analysed for type 2 diabetes and control
participants separately, adjusting for age, sex, intracranial
volume and level of education. Within the group of type 2
diabetes patients associations between MR volume mea-
sures and diabetes duration, HbA1c, hypertension, mean
arterial pressure, history of macrovascular disease, and

Table 2 Volumes of cerebral compartments (ml) unadjusted for age or intracranial volume

Control participants Type 2 diabetes patients

Men Women Men Women

White matter 688.0 (49.3) 621.8 (46.9) 687.2 (56.5) 601.0 (56.5)
Grey matter 401.7 (47.8) 404.4 (40.8) 388.3 (48.8) 360.1 (35.6)
Total brain 1,090 (81.0) 1,026 (72.9) 1,076 (91.0) 961.1 (71.0)
Lateral ventricle 33.9 (18.7) 22.1 (8.66) 36.9 (17.4) 29.8 (13.9)
Lateral ventriclea 30.1 (23.9–36.6) 20.3 (16.6–28.0) 33.8 (24.9–42.6) 26.7 (20.6–35.3)
CSF excluding lateral ventricles 273.3 (27.1) 222.1 (25.1) 279.7 (37.8) 229.4 (35.9)
Total CSF 307.2 (32.3) 244.2 (26.3) 316.5 (42.4) 259.2 (41.2)
WML 3.89 (5.76) 2.98 (4.70) 3.66 (5.37) 6.19 (14.2)
WMLa 1.81 (0.47–3.48) 1.00 (0.48–3.20) 2.16 (0.91–3.86) 2.56 (0.86–4.46)
Intracranial volume 1,403 (90.7) 1,275 (82.2) 1,398 (104.2) 1,228 (93.7)

a Lateral ventricle and WML volumes are median (interquartile range); other data are mean (SD)
Between-group comparisons and statistical analyses are presented in Table 3

Table 1 Demographics of participants and risk factors

Control participants Type 2 diabetes patients Mean difference (95% CI)a Odds ratio (95% CI)a

Men/women 20/26 49/50 – 1.3 (0.6, 2.6)
Age (years)
Men 66.4 (6.3) 65.9 (6.0) −0.5 (−2.8, 3.7) –
Women 63.8 (5.0) 65.9 (5.2) 2.1 (−0.4, 4.5) –

Level of educationb 4 (3–5) 4 (3–5) – –
Diabetes duration (years) – 8.7 (6.1) – –
HbA1c (%) 5.5 (0.3) 6.8 (1.2) 1.4 (1.0, 1.7)*** –
Use of insulin (%) – 29.3 – –
Hypertension (%)c 28.3 70.7 6.2 (2.8, 13.5)***
Mean arterial pressure (mmHg) 97.5 (10.6) 102.6 (11.5) 4.8 (0.9, 8.8)* –
History of macrovascular disease (%) 4.3 27.3 – 8.3 (1.8, 37.0)**
Hypercholesterolaemia (%) 42.2 69.4 – 3.7 (1.7, 8.1)**
Smoking ever (%) 47.8 66.3 – 2.2 (1.0, 4.7)*
BMI (kg/m2) 27.2 (4.4) 28.0 (4.4) 0.8 (−0.8, 2.4) –
Cognition (composite z-score) 0.13 (0.45) −0.10 (0.63) −0.22 (−0.40, −0.05)*d –

Data in first two columns are mean (SD) except for level of education, which is given as median (interquartile range)
*p<0.05; **p<0.01; ***p<0.001
a Adjusted for age and sex
b Seven categories, corresponding to years of education: <6, 6–7, 8, 9, 10–11, 12–18 and >18, respectively
c All controls with hypertension and 96% of diabetic patients with hypertension used antihypertensive drugs
d Adjusted for age, sex and level of education
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hypercholesterolaemia were determined, adjusting for age,
sex, intracranial volume and level of education. All data were
analysed using SPSS 12.0.1 (SPSS Inc., Chicago, IL, USA).

Results

Patient characteristics are shown in Table 1. Table 2 shows
the brain tissue and WML volumes unadjusted for differ-
ences in age or intracranial volume. Table 3 shows the
results of the analysis of the tissue volume differences
between controls and patients with type 2 diabetes.
Diabetes patients had significantly smaller grey matter
volume (estimated volume difference −21.8 ml; 95% CI
−34.2, −9.4; p=0.001; F=12.091) and significantly larger
lateral ventricle volume than controls (estimated volume

difference 7.1 ml; 95% CI 2.3, 12.0; p=0.004; F=8.441).
Total CSF volume was also larger in diabetes patients, but
not significantly so (estimated volume difference 9.5 ml,
95% CI −0.4, 19.5; p=0.060; F=3.594). White matter
volume was unaffected (estimated volume difference
2.8 ml, 95% CI −3.2, 8.8; NS; F=0.844). WML volume
was significantly larger in type 2 diabetes patients (56.5%;
95% CI 4.0, 135.8; p=0.032; F=4.684). The cumulative
distribution of WML volume is shown in Fig. 2. All
participants had at least some WML. However, in type 2
diabetes patients a smaller proportion of the subjects had
very small lesion volumes (<0.5 ml) (Pearson χ2 with
continuity correction, p=0.014). Such very small volumes
mostly reflect pencil-thin lining and capping, which is often
considered to be a normal finding in this age group [19].
The regression analyses were repeated for men and women
separately (Table 3). Although the direction of the effect of
type 2 diabetes was similar in the two sexes, significant
associations of type 2 diabetes with tissue volume were
only found in women.

Within the patients with type 2 diabetes, no significant
associations between MR volumes and diabetes duration,
hypertension, mean arterial pressure or hypercholesterolaemia
were found. Higher HbA1c levels were associated with larger
grey matter volume (6.479 ml per unit HbA1c (%); 95% CI
0.2, 12.8; p=0.043; F=4.203), but not with any other
volume abnormalities. A history of macrovascular disease
was associated with a larger total CSF volume (12.4 ml; 95%
CI 2.6, 28.7; p=0.020; F=5.659) and a smaller total brain
volume (−15.0 ml; 95% CI −29.8, −0.2; p=0.047; F=4.057).
In the diabetic participants lower composite cognitive
performance was associated with significantly smaller total
brain volume (−15.4 ml per unit of the composite cognitive
z-score; 95% CI −27.6, −3.1; p=0.015; F=6.199), larger
WML volume (57.4%; 95% CI 2.2, 142.4; p=0.040;
F=4.370) and non-significantly larger total CSF volume
(11.0 ml; 95% CI −0.6, 22.1; p=0.051; F=3.911).

In the control group exploratory analyses showed an
association between higher BMI and larger total CSF volume
(2.0 ml; 95% CI 0.34, 3.6; p=0.017; F=6.287). No other
significant associations were found within the control group.

Across the whole population, age was significantly
associated with reduced grey matter and total brain volumes
and larger lateral ventricle, CSF, total CSF and WML
volumes (p<0.001; F>20.424; adjusted for diabetic status,
sex, intracranial volume and level of education). Age was
the most powerful predictor of WML and lateral ventricle
volumes and it came second after intracranial volume for
predicting grey matter, CSF, total brain and total CSF
volumes. No significant interactions between age and
type 2 diabetes were found (all p>0.14). The interaction
between age and sex showed a trend towards significance,
men having more grey matter decrease (−1.8 ml/year; 95%

Table 3 Adjusted tissue volume differences between participants with
type 2 diabetes and control participants

Estimated volume
difference (ml)

F
value

All
White matter 2.8 (−3.2, 8.8) 0.844
Grey matter −21.8 (−34.2, −9.4)** 12.091
Total brain −19.0 (−29.9, −8.1)** 11.863
Lateral ventricles 7.1 (2.3, 12.0)** 8.441
CSF not including lateral
ventricles

9.5 (−0.4, 19.5) 3.594

Total CSF 16.7 (6.8, 26.5)** 11.247
LN WML 0.45 (0.04, 0.86)a* 4.684
Men
White matter 1.8 (−7.4, 11.0) 0.157
Grey matter −14.5 (−33.6, 4.6) 2.315
Total brain −12.7 (−30.6, 5.2) 2.026
Lateral ventricles 4.9 (−3.7, 13.5) 1.283
CSF not including lateral
ventricles

6.9 (−10.2, 24.0) 0.650

Total CSF 11.8 (−4.9, 28.5) 1.993
LN WML 0.37 (−0.19, 0.93)b 1.781
Women
White matter 7.0 (−1.5, 15.6) 2.696
Grey matter −37.1 (−54.1, −20.1)*** 19.062
Total brain −30.1 (−44.9, 15.4)*** 16.695
Lateral ventricles 9.0 (3.2, 14.8)** 9.563
CSF not including lateral
ventricles

17.2 (4.9, 29.4)** 7.802

Total CSF 26.1 (13.6, 38.7)*** 17.215
LN WML 0.54 (−0.11, 1.20)c 2.745

LN WML Natural log of WML volume
Data are mean (95% CI) adjusted for age, sex, intracranial volume and
level of education (data missing for one woman with type 2 diabetes)
*p<0.05; **p<0.01; ***p<0.001
a 56.5% (95% CI 4.0, 135.8)
b 44.9% (95% CI −17.0, 154.7)
c 72.4% (95% CI −10.6, 232.4)
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CI −3.9, 0.3; p=0.092; F=2.888) and women having more
white matter decrease (−0.9 ml/year; 95% CI −1.9, 0.1;
p=0.079; F=3.134) with age (other volumes p>0.26).

Discussion

Our MR image-based segmentation paradigm showed that
type 2 diabetes was significantly associated with smaller grey
matter volumes and larger lateral ventricle and WML
volumes, whereas white matter volume was not affected. A
smaller grey matter volume suggests cortical atrophy, whereas
a larger lateral ventricle volume may indicate subcortical
atrophy. Separate analysis for men and women showed
significantly smaller grey matter and total brain volumes and
significantly larger lateral ventricle, CSF and total CSF
volumes in female but not in male diabetic patients.

The apparent differential effects of diabetes on brain
volumes in men and women were an unexpected finding.
Previous studies on cognitive functioning or dementia in
patients with diabetes have provided no clear indications
that the effects of diabetes on the brain might be sex-
specific [24], although it should be noted that the role of
sex has not yet been studied systematically. In the general
population, intracranial volume and relative and absolute
grey matter and white matter volumes are known to differ
between men and women [25]. Sex also influences the
effects of ageing [26–28], men being more severely
affected by age-related grey matter decrease than women
[29, 30], which was also found in this study. WML
volumes among male and female controls were similar,
but in female type 2 diabetes patients we found signifi-
cantly larger WML volumes than in male type 2 diabetes
patients. In conditions other than diabetes, more severe

WMLs in women than in men have been reported [15, 31–
33], but similar WML severity in both sexes has also been
reported [19]. Diabetic women had non-significantly
smaller age-adjusted total intracranial volumes than control
women. However, the expected effects of these intracranial
volume differences on brain tissue volumes were smaller
than the observed differences in effects on grey matter, CSF
and lateral ventricle volumes. Age is a very important
predictor of brain tissue and WML volumes and age effects
may have confounded the effects of type 2 diabetes in men
and women in this study. Hence, the implications of the
effect of sex observed in the present study remain to be
determined.

No statistically significant associations between MR
image measures and hypertension or mean arterial pressure
within the group of type 2 diabetes patients were found.
Similar results were obtained with manual measurements of
atrophy and with WML grading in the same study
population [2], and in a study that assessed the relation
between type 2 diabetes, blood pressure and temporal lobe
atrophy [5]. In contrast, another study reported that
hypertension was an important determinant of cortical
atrophy in patients with type 2 diabetes [4]. We found an
association between glycosylated haemoglobin and a slight
increase in grey matter volume in type 2 diabetes patients.
This counterintuitive finding may be due to chance. Other
studies in subjects without diabetes have linked increased
glycosylated haemoglobin with cerebral atrophy [34] and
WMLs [35]. Cognitive impairment was associated with
smaller total brain volume and larger WML volumes in
type 2 diabetes patients. This is in line with observations
from another recent study that reported an association
between WMLs and subcortical brain atrophy and cognitive
performance, in particular the speed of information pro-

Fig. 2 Cumulative distribution
of WML volume (control men,
closed squares; men with type 2
diabetes, closed triangles; con-
trol women, open squares;
women with type 2 diabetes,
open triangles). Very small le-
sion volumes (<0.5 ml) were
significantly more frequent
among controls (p=0.014) than
participants with type 2 diabetes
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cessing [36]. This suggests that atrophy as well as WMLs
have a negative impact on cognition.

Previous studies that analysed WML volume or progres-
sion in type 2 diabetes patients have reported inconsistent
results [4, 5, 7–18]. Several methodological factors may
have contributed to these inconsistencies. First, techniques
to measure WML severity have varied widely, from noting
lesion presence or absence [12] to volumetric measure-
ments [13, 18]. The majority of studies applied semiquan-
titative ordinal grading scales. It has been shown that these
scales can give variable results [37] and some scales are
relatively insensitive to mild to moderate WMLs. Second,
the examined populations and the study design varied
considerably [38]. Only a small proportion of the studies
had a true population-based setting, whereas the majority of
studies were hospital-based, involving cohorts of patients
with stroke, hypertension or other forms of cardiovascular
disease. Furthermore, several studies involved fewer than
20 type 2 diabetes patients [8, 11–13, 18]. These small
sample sizes may have reduced statistical power. The
present study used volumetric measurements in a large
population-based sample.

The combination of increased atrophy and increased
WML volume indicates that type 2 diabetes is associated
with mixed pathology in the brain. The association with
vascular lesions, such as WML, is not surprising because
diabetes is a well-known risk factor for cerebrovascular
disease [39]. Indeed, previous imaging studies [38], as well
as autopsy studies [40], have reported an increased
occurrence of vascular lesions, in particular infarcts, in
diabetic patients relative to controls. The mechanisms
underlying accelerated brain atrophy in diabetic patients
are less clear. Several processes related to glucose toxicity,
abnormalities in cerebral insulin homeostasis, and micro-
vascular abnormalities have been implicated [41], but their
exact contributions to abnormalities in cerebral function
and structure in diabetes still need to be elucidated.

A limitation of our quantitative automated volumetric
segmentation algorithm is slight overestimation of the CSF
and slight underestimation of the lateral ventricle volume in
subjects with markedly enlarged occipital horns. Some
misclassification of interhemispheric CSF as lateral ventri-
cle might also occur. However, the misclassified volumes
are small compared with ventricle (about 2% and 6%) and
CSF (about 0.3% and 0.4%) volumes and total CSF
volumes are not affected. The artefacts were proportionally
distributed across men and women and between type 2
diabetes patients and controls. Therefore, it is unlikely that
these inaccuracies affected the analyses. Furthermore, all
segmentations were inspected visually, so results will not
have been affected by other segmentation errors.

Our algorithm did not classify WMLs into deep and
periventricular lesions. Such automated subclassification

may provide valuable information; however, it is hard to
achieve. WMLs tend to extend smoothly from the ventric-
ular wall [42] and periventricular WMLs are often
connected to deep WMLs on MR images. Therefore,
defining meaningful boundary criteria that can be consis-
tently and reproducibly applied automatically is difficult.

Other published methods have used T1 and T2 [25], PD
and T2 [26], T1 only [27], or T1, PD and T2 [30] MR
images for segmentation. However, in a previous study it
was shown that the use of IR and FLAIR images is highly
preferable in brain tissue segmentation and that optimal
performance of the automated KNN classification algorithm
is achieved with this combination of images [20]. Further-
more, the learning data were segmented manually on the
basis of IR and FLAIR images with the T1, T2 and PD
images available to the expert for reference. Thus, our KNN
classifier retrieves its learning data from expert segmenta-
tions based on all available information and segments using
the optimal image combination for tissue classification.

Our automated segmentation method offers major
advantages over manual methods by enabling precise,
objective and reproducible volumetric measurements of
cerebral tissues in large numbers of patients. In future
studies, this method might be used to quantify the
progression of abnormalities on MR images in patients
with type 2 diabetes, as well as in patients with other
conditions. Such studies using quantitative MR data should
focus not only on the differences between groups of patients
and controls, but also on differences within a patient group to
identify determinants of structural brain changes.
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