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The tradeoff between the need to suppress drug-resistant viruses and the problem of treatment toxicity has led to the
development of various drug-sparing HIV-1 treatment strategies. Here we use a stochastic simulation model for viral
dynamics to investigate how the timing and duration of the induction phase of induction–maintenance therapies
might be optimized. Our model suggests that under a variety of biologically plausible conditions, 6–10 mo of induction
therapy are needed to achieve durable suppression and maximize the probability of eradicating viruses resistant to the
maintenance regimen. For induction regimens of more limited duration, a delayed-induction or -intensification period
initiated sometime after the start of maintenance therapy appears to be optimal. The optimal delay length depends on
the fitness of resistant viruses and the rate at which target-cell populations recover after therapy is initiated. These
observations have implications for both the timing and the kinds of drugs selected for induction–maintenance and
therapy-intensification strategies.
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Introduction

The failure of antiretroviral therapies to completely
suppress viral replication in some patients represents a
major difficulty in the management of HIV infection. In
therapy-naive patients without clinically apparent resistance
mutations, triple-drug therapy with two nucleoside–analog
reverse transcriptase inhibitors and a protease inhibitor or a
non-nucleoside reverse transcriptase inhibitor is standard [1].
In these patients, treatment success rates, defined as viral load
,50 copies/ml at 48 wk, range from 70% to 80%–85%
(reviewed in [2]). However, in patients with previous regimen
failure requiring salvage therapy, response rates are usually
considerably lower [3–5], and it is frequently not possible to
assemble a three-drug regimen with uncompromised activity
against all viral strains present. In these individuals, treat-
ment failure often occurs after an initial period of response
to a new regimen, and is usually associated with the
appearance of multiply drug-resistant viral strains. This has
led to attempts to treat highly experienced patients with
various deep salvage regimens consisting of four, five, or six
individual drugs [6–11]. These patients are particularly
vulnerable to the many drug interactions [12] (also reviewed
in [13]) and adverse metabolic, hematologic, neurologic,
cardiovascular, and gastrointestinal side effects that compli-
cate HIV therapy and seriously undermine the success of
clinical management [14–20] (also reviewed in [21]).

The need to minimize drug resistance while reducing
treatment-related toxicities has engendered an interest in
induction–maintenance (IM) strategies, in which a period of
intensified antiretroviral therapy (induction phase) is fol-
lowed by a simplified long-term regimen (maintenance phase)
[22–25]. Most such trials have yielded higher failure rates in
the treatment group than in controls receiving conventional
therapy. Failure typically occurs during maintenance therapy,
and has been attributed to poor regimen adherence [25] and
recrudescence of resistance mutations present before insti-

tution of induction therapy [23]. One weakness of existing
studies has been that induction therapy consisted of standard
three-drug antiretroviral therapy (ART) regimens in common
clinical use at the time of the study, under conditions now
recognized to permit subclinical viral replication [26,27].
Moreover, in these early studies, the induction phase only
lasted between 3 to 6 mo, which may be insufficient. However,
two recent studies have shown the apparent effectiveness of
induction therapy for 48 wk followed by maintenance therapy
with atazanavir [28] or lopinvir/ritonavir [29,30], and this has
led to new optimism concerning IM approaches.
We have hypothesized that a longer period of a highly

suppressive induction therapy that is appropriately timed
relative to the start of maintenance therapy may allow
minority resistant variants to decay below a stochastic
extinction threshold, allowing for successful long-term treat-
ment with simpler and better-tolerated regimens. To explore
this hypothesis quantitatively, we constructed a detailed
computer simulation model of the dynamics of sensitive
and resistant viruses during a hypothetical IM regimen. We
show that the timing and duration of induction therapy
relative to maintenance therapy can affect the probability
that viruses resistant to the maintenance regimen will be
eradicated in ways that are somewhat counterintuitive. Under
biologically plausible conditions, we find that 6–10 mo of
induction therapy are required to maximize the probability
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of eradicating these resistant viruses. For shorter induction
periods, we find that it is optimal to use a ‘‘delayed-
induction’’ regimen administered several days to weeks after
the start of the intended long-term maintenance therapy.

Results

Overview of the Model and Parameters
The model consists of CD4þ target cells, free viruses, and

three types of infected cells: short-lived infected cells with t1/2
of ;1 d, moderately long-lived infected cells with t1/2 of ;2.5
wk, and long-lived infected cells or ‘‘latently’’ infected cells
with t1/2 of ;3.5 y (Figure 1A). The model includes four
possible mutations that confer resistance to three antiretro-
viral drugs; mutations 1 and 2 each confer partial resistance
to drug I, whereas mutations 3 and 4 confer a high level of
resistance to drugs II and III, respectively (Figure 1B). Our
model allows viral recombination, and includes the effects of
partial drug efficacy, incomplete viral resistance, and cross-
resistance between drugs II and III. Drug-resistant viruses can
infect moderately long-lived and latently infected cells,
allowing for the formation of latent drug-resistant viral
reservoirs. Because the model assumes finite population sizes,
the various viral genotypes may fall below a threshold for
extinction. Since extinction is a chance event, we used
random, stochastic modeling terms to model the rate of
change of free viruses and infected cell populations that are
near the extinction threshold.

Viral Dynamics during Untreated Early and Chronic
Infection

In the absence of therapy, viral load rises to a peak of
approximately 106 virions/ml by day 25, then falls to an
equilibrium of ;105 virions/ml by day 100. Target-cell
populations decrease during acute viremia, then recover
somewhat as viral load falls to its steady state. (Analytical
formulas for the steady-state concentrations of infected cells
and free virus under a model very similar to the one here can

be found in [31–37].) As observed in [31–37], our model
assumes that resistant viruses have lower fitness in the
absence of drug. With our conservative parameter choices,
viruses with one, two, and three drug-resistance mutations
are generally present at frequencies of 10�3, 10�6, and 10�9,
respectively, during the period of acute primary infection,
whereas viruses with four drug-resistance mutations are
generally absent (Figure 2A). Thereafter, the frequency of
mutants and latently infected cells (unpublished data)
increase slowly to equilibrium. To account for this increase
in our simulations, we allowed viral populations to equili-
brate over a 4,000-d period (.10 y) before initiating therapy.
With less conservative parameter choices, viruses with three
resistance mutations will not generally preexist. In this case,
the qualitative results described below can be duplicated with
less intensive drug therapies.

Viral Dynamics during Conventional ART
After initiation of conventional triple-drug therapy, the

viral load decays at a rate of 0.6/d (first phase decay) for ;10
d, then at 0.04/d (second phase decay), until HIV-1 RNA falls
below the detection limit of 50 RNA copies (25 virions) per ml
of plasma around day 120 (Figure 2B). A population of
latently infected cells is assumed to contribute a third phase
of decay beginning around day 200, during which virus decays
at a rate of 0.00052/d. Viral loads during the third phase are
on the order of 1.0/ml [40]. Model behavior during primary
infection, chronic disease, and ART has been designed to
match experimental viral dynamics [38–40]. The minority
populations of resistant mutants form a reservoir of drug-
resistant viruses that can fuel viral rebound if therapy is
prematurely reduced or withdrawn. As expected, at low
population densities under conditions prevailing during
induction therapy, the appearance and loss of drug-resistant
populations behave as random, stochastic processes.

IM Therapy: Effect of Timing and Duration of Induction
Therapy on the Probability of Eradicating Viruses Resistant
to the Maintenance Regimen
We have used this model to investigate two questions about

IM therapies. (1) How long should the induction phase be in
order to eradicate viruses resistant to the drugs in the
maintenance regimen? (2) What is the optimal timing of
induction therapy relative to maintenance therapy? Could IM
therapies be improved, for example, if the agents that were
unique to the induction regimen were started before starting
the maintenance drugs? In the simulations below, the
maintenance regimen consists of drugs I and II, while drug
III is applied only during induction therapy (Figure 3). We
define ‘‘success’’ as achieving and maintaining a fully sup-
pressed circulating free virus population for a period of at
least 3 y after the end of induction therapy.
Figure 3A–3B gives typical results; Figure 3A shows how the

probability of success varies with the length of the induction
phase. In this simulation, the percentage of success increased
dramatically as the length of the induction therapy was
increased to ;120 d, and increased more gradually between
120 and 180 d. Further increases in the length of the
induction phase beyond 180 d had little effect with these
parameters. Figure 3B shows a typical simulation in which the
timing of induction therapy was altered. In these simulations,
a 30-d course of therapy intensification was started before
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Author Summary

Clinicians treating HIV infection must balance the need to suppress
viral replication against the harmful side effects and significant cost
of antiretroviral therapy. Inadequate therapy often results in the
emergence of resistant viruses and treatment failure. These
difficulties are especially acute in resource-poor settings, where
antiretroviral agents are limited. This has prompted an interest in
induction–maintenance (IM) treatment strategies, in which brief
intensive therapy is used to reduce host viral levels. Induction is
followed by a simplified and more easily tolerated maintenance
regimen. IM approaches remain an unproven concept in HIV
therapy. We have developed a mathematical model to simulate
clinical responses to antiretroviral drug therapy. We account for
latent infection, partial drug efficacy, cross-resistance, viral recombi-
nation, and other factors. This model accurately reflects expected
outcomes under single, double, and standard three-drug antire-
troviral therapy. When applied to IM therapy, we find that (1) IM is
expected to be successful beyond 3 y under a variety of conditions;
(2) short-term induction therapy is optimally started several days to
weeks after the start of maintenance; and (3) IM therapy may
eradicate some preexisting drug-resistant viral strains from the host.
Our simulations may help develop new treatment strategies and
optimize future clinical trials.

Optimized Induction–Maintenance Therapy



maintenance therapy (start days�30 to�10), at the same time
as maintenance therapy (start day 0), or after drugs unique to
the maintenance therapy were started (start days 10 and
higher). In the latter case, we refer to the period of intensified
therapy as a ‘‘delayed-induction’’ therapy. Interestingly, we
note that for induction therapies of limited duration, the
highest success rates occurred with delayed-induction ther-
apy initiated ;40 d after the start of maintenance therapy.

Delayed-induction therapy (also referred to as delayed-
intensification or booster therapy) results in higher eradica-

tion rates because drug-resistant viral populations are
predicted to decline transiently after the start of main-
tenance therapy [41–43]. This decline occurs because resist-
ant viruses, which are assumed to be less fit than sensitive
viruses [31–37], are no longer created via mutation once drug
therapy interrupts viral replication within the drug-sensitive
population. Drug-resistant populations do not increase until
target-cell populations increase enough to offset their
intrinsic growth rate disadvantage. Specifically suppressing
replication of resistant viruses with additional drugs when

Figure 1. Overview of Cell Populations (A) and Mutations Responsible for Resistance (B)

Mutation accumulation was modeled as a sequential process in which each genotype can acquire a single additional mutation in any given time-step
(0.002 d in our simulations). In a single time step, V1, for example, could mutate to V12, V13, or V14, but not to V123. The model also allows for
recombinational steps (see text), which are not depicted here.
doi:10.1371/journal.pcbi.0030133.g001
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this population is reduced in size maximizes the net impact of
induction therapy. This result can be shown analytically using
a simple one-infected cell, one-resistant virus, deterministic
version of this model in which wild-type (WT) virus is
completely sensitive to drug, and resistant virus is completely
resistant to drug (Figure 4A and 4B). With these simplifica-
tions, Nowak et al. [41] have shown that the dynamics of
resistant virus after therapy is approximately

V1ðtÞ ¼ V1ð0Þexp½dfðR1 � 1Þt� R1ð1� 1=R0Þð1� e�mtÞ=mg�

where V1(0) is the density of the resistant virus at the time
that therapy is initiated, m is the turnover rate of target cells
at steady state, d is the death rate of infected cells, R0 ¼ psk/
cdm, and R1 ¼ psk1/cdm. R0 and R1 are the basic reproductive
numbers (i.e., the mean number of new cells infected from a
single infected cell in a newly infected host who is not being
treated) for WT and resistant viruses [41]. For t� 1 / m and 0
, R1 , R0, the second term inside the curly brackets is large
compared with the first, leading to transient declines in V1. As
t becomes large compared with 1/m, this second term
approaches R1 (1 � R0) / m, whereas the first term continues
to increase linearly with t, allowing for eventual increases in
V1. Setting the derivative of V1(t) equal to zero, it is
straightforward to show that V1 reaches a nadir at

tmin ¼ �lnfðR1 � 1Þ=½R1ð1� 1=R0Þ�g=m

This indicates that the turnover rate of target cells is of
major importance in determining the optimal timing of
induction therapy relative to the maintenance therapy (as
illustrated in Figure 4B), though the replicative fitness of
resistant viruses (as quantified by values of R1 and R0) also
plays a role. Although we have focused on reductions in the
infection rate constant as the most logical way of modeling
fitness reductions, the dependence of tmin on R0 and R1

indicates that we will observe nearly identical results if the
resistant viruses have lower fitness due to a lower burst size or
a higher clearance rate.

Effect of Varying Viral Dynamic Parameters on the
Probability of Successful IM Therapy
The results above suggest that induction therapy should be

at least 180 d if started at the same time as the maintenance
therapy. It also suggests that the optimal time to initiate
short-term induction therapy may be several weeks after the
start of maintenance therapy. To explore these results in
more detail, and to verify that the results are not overly
specific to our parameter choices, we systematically varied
the key parameters in the full, stochastic model.
We first explored the effect of altering the fitness costs

associated with resistance to antiviral drugs (Figure 5A and
5B). As expected, the probability of success decreased with
increasing viral fitness under both treatment strategies.
Consistent with the equation for tmin above, the optimal time
to intensify therapy increased as the fitness of the resistant
virus decreased. Interestingly, we found that changing the
fitness of viruses resistant to the induction regimen (drug III)
had little or no effect on the optimal time to intensify
therapy: the effects depicted in Figure 5B can be ascribed
almost entirely to decreased fitness of viruses resistant to the
maintenance regimen. As predicted from the equation for
tmin above, we obtained nearly identical results if fitness costs
were due to resistant viruses having low burst sizes
(unpublished data).
Under simple population genetic models, the frequencies

of singly and doubly resistant viruses prior to therapy are
proportional to l/s, and l2/s2, respectively, where s is the
selective disadvantage of a drug-resistance mutation [43].
When viruses resistant to the maintenance therapy suffer
large fitness costs (e.g., w1 ¼ w2 , 0.65), they rarely, if ever,
contribute to the pool of long-lived infected cells. However,
when these mutations have very small fitness costs (e.g., w1 ¼
w2 . 0.96), these viruses frequently infect cells destined for
latency. (We note that if the cost of resistance to the
maintenance therapy is very low, simultaneous triple therapy
will fail as well.) We conclude, therefore, that the success of

Figure 2. Simulations of Viral Dynamics

(A) Dynamics in the absence of therapy.
(B) Decline in viral load during potent triple-drug combination therapy. Maintenance and inducer drugs are provided for 360 d starting on day 0.
Dark blue line, target cells; black line, WT virus; blue-green lines, single mutants; orange lines, double mutants; red lines, triple mutants. Viral
populations that are above the threshold for stochastic effects (dark gray line) may fluctuate if the corresponding infected cell populations are below
the cutoff for stochastic effects. After the initiation of therapy, WT virus declines with appropriate first-, second-, and third-order kinetics. Viruses with a
single mutation decline to near steady-state levels above the extinction threshold. Viruses with two resistance mutations approach the extinction
threshold, but are not entirely eliminated by day 300. Triple mutants are generally extinct by day 40.
doi:10.1371/journal.pcbi.0030133.g002
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maintenance therapy will depend greatly on resistance
mutations having measurable fitness costs.

We next explored the effects of altering the turnover rate
(m) of the target-cell population, which we accomplished by
simultaneously increasing m and k. From the approximate
equation for steady-state viral load:

V ¼ ps=cd� m=k

obtained from the simple one-infected cell model, we predict
that varying m and k proportionally will change the dynamics
of target-cell renewal without affecting pre-therapy viral load
(which is a potentially important confounding factor). In the
full model, we found that both the optimal time to intensify
therapy and the probability that standard IM therapy is
successful increased as target-cell turnover rates decreased
(Figure 5C and 5D). Success rates are influenced by m because
the target-cell populations needed for the growth of resistant
viruses recover more slowly when m is small. In the simple
one-infected cell model, recovery of target cells after therapy
is given by

TðtÞ ¼ s=mþ ½cd=kp� s=m�e�mt;

where t is time since the initiation of therapy. From this
equation, we see that the rate at which target cells return to
their pre-therapy steady state is strongly affected by their
death rate, m.

To examine the role of the latent viral reservoir, we varied
the rate at which latently infected cells are created (fL) in the

full, stochastic model. (Unless otherwise specified, all sub-
sequent results are derived from this stochastic model.) With
our canonical simulation parameters (with its conservative
estimate for the number of latently infected cells), latently
infected cells affected outcomes in only a small percentage of
cases. The probability of IM therapy failure changed little
within the range of fL ¼ 10�8 – 10�6, but decreased
significantly for fL � 6.4 3 10�6 (Figure 6A and 6B, and
unpublished data). These results indicate that both IM and
conventional triple-drug therapy may fail if the number of
latently infected cells is pushed too far above 106, a value
near the upper end of experimentally derived estimates
(Table 1). As expected from the analytical equations above,
altering the number of latently infected cells did not change
our previous conclusions concerning optimal timing of IM
therapy (Figure 6B).
Finally, we varied the death rate of the moderately long-

lived infected cells. In contrast to our conservative estimate
for dL, our canonical value for the death rate of moderately
long-lived cells, dM¼ 0.04/d, is at the upper end of what might
be inferred from second-phase decay rates [38,44–55]. We
believe dM¼ 0.04/d is appropriate because imperfect efficacy
and/or poor adherence will cause the second-phase decay rate
to be less than dM. Second-phase decay rates, furthermore,
have been shown to be higher in patients with higher viral
loads [55] (the situation modeled here). When we repeated
our simulations with lower values for dM, we found, as
expected, that the duration of induction therapy needed for

Figure 3. Schematic Illustrating Treatment Strategies Investigated in This Study

(A) Effect of progressively longer induction regimens (circles A–C) on the likelihood of successfully eradicating viruses resistant to maintenance therapy
under our canonical parameter set.
(B) Effect of altering the timing of induction therapy (circles A–C) relative to maintenance therapy on the likelihood of successful therapy.
x-Axis indicates duration of induction therapy in days (A), or interval between start of the induction and maintenance therapies, in days (B).
Maintenance therapy is assumed to start on day 0. y-Axis indicates percentage of simulations in which viral load remained undetectable for at least 3 y
after ending induction therapy.
doi:10.1371/journal.pcbi.0030133.g003
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successful IM therapy increased (Figure 6C). (In these
simulations, we simultaneously changed dM and fM in order
to study the effect of altering dM without affecting the pre-
therapy density of moderately long-lived infected cells.) For
the case dM ¼ 0.02/d, we observed that induction therapy
needed to be at least 300 d to have a high probability of
driving viruses resistant to the maintenance therapy to
extinction. As expected, changing dM had little effect on the
optimal time to intensify therapy (Figure 6D).

Effect of Resistance Levels and Cross-Resistance on the
Probability of Successful IM Therapy

Our canonical simulation includes somewhat arbitrary
choices for IC50 values for both drug I (for which high-level
resistance is assumed to require two mutations) and drugs II
and III (for which a single mutation confers high-level
resistance). To explore the effects of varying IC50 values, we
conducted simulations under a range of IC50 values for drugs
II and III (Figure 7A and 7B) and for drug I (Figure 7C and
7D). As expected, we found that the probability of success in
eliminating drug-resistant viruses decreased with increasing
IC50 values and decreasing drug concentration. As in our
previous simulations, the marginal benefit of increasing the
length of an induction regimen reached a plateau between
150 d and 270 d. We explored the effect of adding a cross-
resistance term wherein resistance to drug II confers partial
(or full) resistance to drug III, and vice versa. Success rates
decreased with increasing degree of cross-resistance, partic-
ularly when induction therapy preceded the start of main-
tenance (Figure 8A and 8B). However, the qualitative results
of our previous simulations remained unchanged.

Effect of Simultaneously Varying Both the Length and
Timing of Delayed-Induction Therapy

All of the delayed-induction therapy simulations above
assume a delayed-induction phase of 30 d. To explore the
effect of varying the duration and start time of delayed-
induction therapy, we repeated our simulations over a range
of induction treatment lengths and start times relative to

maintenance therapy (Figure 9). For induction therapies of 40
d or less, the optimal time to initiate induction therapy
continued to be 30–50 d, as in previous simulations. When the
length of induction therapy was increased to 160 d, however,
the curve flattened out considerably, indicating that the
benefit of delaying induction is diminished at longer treat-
ment durations. This is intuitively reasonable, since longer
induction therapies will cover the critical time when resistant
viruses are predicted to hit their nadir, even though they
might be started well before the optimal therapy intensifica-
tion times. The benefit of an optimally timed induction
therapy, therefore, is most acute when the length of therapy
intensification is short.

Effect of Viral Recombination on the Predicted Results of
IM Therapy
To explore the effects of viral recombination on these

strategies, we extended the model further to account for the
effect of recombination between genotypes V12 and V34. At
realistic recombination rates (i.e., with r � 0.01), we observed
virtually no effect on the success rate of IM therapy
(unpublished data). This is in part because terms of the form
lkTV123, which approximate the rate of production of V1234

by mutation, are at least an order of magnitude greater than
terms of the form rkI12V34, which approximate the rate of
input into the V1234 population by recombination in our
model. To achieve a higher-order resistance genotype by
recombination, two or more dissimilar resistant virions must
coinfect a cell, establish productive infection, and copackage
two nonidentical templates to produce a heterozygous virus
during virus production. After infection of a new target cell,
an odd number of recombination events must occur between
templates during reverse transcription, within a locus
between the relevant resistance mutations. In the case of
drugs targeting protease and reverse transcriptase (the two
most common drugs), recombination must occur within a
span of ;900 bp, or roughly one-tenth of the viral genome.
Only a fraction of resistant viruses will overcome all of these

Figure 4. Deterministic Model of the Dynamics of Resistant Viruses under the One-Drug, One-Mutant, One-Cell Version of Our Target-Cell Model

(A) Slow turnover rates for CD4þ target cells (m ¼ 0.02, k ¼ 0.0005).
(B) Rapid turnover rates for CD4þ target cells (m¼ 0.32, k ¼ 0.008).
Here m and k were increased proportionately so as to isolate the effect of changing turnover rate without altering pre-therapy viral load. Blue lines, WT
virus; red lines, drug-resistant virus; green lines, target cells. These simulations assume a high cost of resistance (w1¼ k1/k¼0.6). Other parameters are as
in Table 2 assuming a single population of short-lived infected cells. Interpretation: these simulations illustrate previous theoretical studies showing the
concentration of drug-resistant viruses declines transiently following the initiation of therapy.
doi:10.1371/journal.pcbi.0030133.g004
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hurdles. Given published estimates of approximately three
recombination events per replication cycle [56], r ¼ 0.01 is
reasonable, and perhaps somewhat high. To illustrate the
ultimate consequences of very high recombination rates, we
also performed simulations with unrealistically high recom-
bination rates (i.e., with r � 1). At these extreme values,
success rates declined in a manner similar to other
perturbations that make therapy less likely to be effective
(unpublished data). Thus, biologically plausible recombina-
tion rates had little qualitative or quantitative effect on the
outcomes observed in our four-mutation model.

Effect of Viral Population Size on the Probability of
Eradicating Resistant Viruses

The fact that effective population sizes are so much lower
than census sizes is one of the major riddles of HIV-1
evolution. This controversy arises from the observation that
the viral effective population size, as measured using standard

tools of population genetics, is orders of magnitude lower
than the census size (physical count of the number of viruses).
In the simulations shown so far, we have conservatively
assumed that the dynamics of viral resistance can be
described using a model in which the number of viruses in
the body equals a liberal estimate of census size. The
controversy over viral effective population size has led to
suggestions that the use of viral census size is too conservative
[57,58]. Unfortunately, it is not clear how to model the
effective population size since there is a lack of agreement on
why effective population sizes are so low. However, it is
possible to explore the effects of some of the more commonly
proposed explanations using the modeling framework devel-
oped here.
One explanation for low viral effective population size is

that most of the infected cells and virions assayed by PCR are
noninfectious. If this were the entire explanation for
extremely low effective population sizes, use of current

Figure 5. Computer Simulations Demonstrating Success Rates in Eradicating Viruses Resistant to Maintenance Therapy as a Function of Fitness Costs of

Resistance and Turnover Rates of Target Cells

(A,B) Effects of fitness (w) of resistant viruses in the absence of drug.
(C,D) Effect of target-cell death rates (m) (modeled here with simultaneous increases in k in order to keep pre-therapy viral load the same in each
simulation).
(A) and (C) demonstrate success rates as the duration of induction therapy is increased, and (B) and (D) demonstrate success rates over a range of
induction therapy start times. x-Axis indicates duration of induction therapy in days (A,C), or the interval between the start of a 30-d induction period
and maintenance therapy in days (B,D). Maintenance therapy is assumed to start on day 0. y-Axis indicates percentage of simulations in which viral load
remained undetectable for at least 3 y after ending induction therapy. Data in each panel were based on 500 replicate simulations. Interpretation:
delaying induction therapy until after the start of maintenance therapy results in higher success rates. Under these conditions, starting a 30-d induction
period after the start of maintenance therapy usually optimized the probably of success. Success rates decline as the fitness cost of resistance mutations
decreases (w approaches 1) and as target-cell turnover rates (m) increase. The latter effect occurs because target cells necessary for the return of
resistant virus rebound more rapidly after therapy at higher turnover rates.
doi:10.1371/journal.pcbi.0030133.g005
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estimates of census size would be inappropriate. To explore
what occurs if very few virions and integrated proviruses are
replication-competent, we repeated our simulations with a
census size 10,000-fold lower than the one used previously.
Under this assumption, we obtained qualitatively similar
results under a treatment regimen in which both the
induction and the maintenance therapies consist of one
drug. While a reduced therapy burden would be a welcome
finding, two-drug therapies have not been generally success-
ful, suggesting that these conditions are a less accurate
approximation of biological conditions.

Another possibility is that the effects of a genetic bottle-
neck during primary infection and rapid turnover of viral
populations due to strong immune selection periodically
purge HIV-1 populations of genetic variation. Because the
effective population size is proportional to the amount of
genetic variation, these factors would have a large negative
effect on the measured effective population size during
primary infection. To examine the impact of these processes
on the dynamics of resistant virus, we set viral load to a very

low value at the beginning of primary infection, and
simulated immune selection for a character unrelated to
resistance mutations, starting near day 200. We found that
neither mechanism for low effective population size had a
significant long-term impact on the frequencies of drug-
resistant viruses (unpublished data). Although these simula-
tions cover only some of the possible mechanisms for low
effective population size [59–61], they indicate that it is
possible to appropriately model drug therapy using popula-
tion sizes similar to the census size, regardless of the
calculated effective population size.

Behavior of Drug-Resistant Viruses under an Immune-

Control Model
The results above are all based on a ‘‘standard’’ model that

assumes that HIV is limited in vivo by the supply of CD4þ

target cells [38,45–48,62,63]. We have chosen to use this
standard model because it is supported by independent lines
of evidence [64] and is well-studied mathematically, and
because there is no clear consensus on appropriate methods

Figure 6. Computer Simulations Showing Relationships Between Long-Lived Infected Cells and Treatment Success Rates

(A,B) Effect of proportion of infected cells becoming latently infected quiescent memory T lymphocytes (modeled here by changing fL).
(C,D) Effect of varying the death rate of moderately long-lived infected cells, dM (modeled here with simultaneous increases in fM in order to keep the
pre-therapy density of moderately long-lived cells the same in each simulation).
(A) and (C) demonstrate success rates as the duration of induction therapy is increased, and (B) and (D) demonstrate success rates over a range of
induction therapy start times. x-Axis indicates duration of induction therapy in days (A,C), or the interval between the start of a 30-d induction period
and maintenance therapy in days (B,D). Maintenance therapy is assumed to start on day 0. y-Axis indicates percentage of simulations in which viral load
remained undetectable for at least 3 y after ending induction therapy. Data in each panel were based on 400 simulations. Interpretation: the death rate
of moderately long-lived infected cells is a major determinant of how long induction therapy should last. At expected rates of fL (rate at which infected
target cells transition to quiescent memory T lymphocytes), success rates depend little on rebound from the latent reservoir. However, success rates
decline as the rate of virus input into the latent reservoir exceeds ;6.4 3 10�6 per infected cell, indicating that rebound of resistant virus from the latent
reservoir becomes a significant factor.
doi:10.1371/journal.pcbi.0030133.g006
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to model immune responses. However, some modelers have
argued that viral load is determined primarily by the
dynamics of the immune response (reviewed in [65]). To
verify that our results are not specific to this target-cell
limited model, we have performed analogous simulations
under a model in which viral populations are limited instead
by the immune effectors (ones that act by preventing virus
from infecting cells). In Figure 10A, we show using this model
that drug-resistant viruses transiently drop in density follow-
ing drug therapy in a manner very similar to that which
occurred under the one-drug, one-cell, one-mutation, target-
cell limited model in Figure 4A. When this model was
extended to account for moderately long and very long-lived
infected cells and varying turnover rates for immune
effectors, we obtained results analogous to those for the
stochastic target-cell limited model (Figure 10B). In both
models, the essential feature is that the environment for
resistant viruses improves as viral load decreases, and in both
models the length of the dip depends on how rapidly ‘‘the
environment’’ improves. In the target-cell limited model,
drug-resistant viruses showed a larger transient reduction if
target cells regenerated slowly after therapy. In the immune-
control model, drug-resistant viruses underwent larger
transient declines if the HIV-specific effector cells decayed
slowly during drug therapy.

Discussion

In this study, we have used a detailed differential equation
model to investigate induction–maintenance (IM) strategies
for treating HIV-1 infections. In these strategies, an induction
regimen is used to drive viral load to low levels before
switching patients to a simpler and potentially better
tolerated long-term maintenance regimen. We find that an
appropriately deisgned IM regimen is likely to result in long-
term suppression of viremia, and may also result in the
eradication of minority virus populations resistant to the
maintenance regimen. The marginal benefit of increasing the
induction phase starts to level off between 4 and 10 mo,
depending on the parameter choices. Interestingly, we find
that in cases where target-cell populations recover slowly
after ART, the optimal time to initiate a short-term induction
regimen may be optimally started several days to weeks after
the start of maintenance drugs. (This delayed-induction
therapy may also be referred to as delayed-intensification
or booster therapy.) These delays are advantageous because
viruses resistant to the maintenance regimen briefly decline
after exposure to the maintenance drug, due to reduced
mutational input from the majority sensitive population.
These resistant viruses do not increase again until the
environment for the virus improves (modeled here as a
recovery in target-cell populations). Intensifying therapy
when the resistant virus population is close to its nadir
maximizes the effectiveness of the additional therapy. These
results therefore illustrate the importance of considering
dynamic feedback mechanisms such as those that occur under
classical predator–prey models in ecology [66,67] when
implementing IM regimens.
Although our exploration of this model has caused us to

view IM therapy in an optimistic light, our model predicts
that IM therapies can fail under a variety of conditions,
including situations in which drug resistance imposes little orT
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no fitness costs (Figure 5A and 5B), situations in which
latently infected cells are formed at high rates (Figure 6A and
6B), and situations in which the primary mutations respon-
sible for drug resistance have large effects on the IC50 values,
either directly (Figure 7) or indirectly via cross-resistance
(Figure 8A and 8B). Our specific predictions about the
optimal length for the induction period, likewise, depend on
the size of the overall viral reservoir and the rate of the decay
of moderately long-lived infected cells (the primary determi-
nant of optimal induction length). Finally, as discussed above,
our finding that the best time to intensify therapy is often
several days to weeks after the start of regular therapy
depends critically on two parameters: the fitness of the
resistant virus and the rate at which target-cell populations
recover after initiation of therapy. The lower the fitness of
resistant viruses and the slower the rate of recovery of target
cells (or other factors regulating viral density), the later the
optimal time to maximize therapy. In cases where target-cell
populations increase rapidly, or when other factors that limit
viral replication decay quickly during therapy, delaying the
induction phase may not be beneficial.

These findings may be important in several clinical

scenarios. IM therapy may be useful in resource-poor settings
where patients have limited access to antiretroviral drugs. In
these settings, it is particularly important to minimize the
chance of selecting for drug-resistant viruses during the
initial attempt to administer antiretroviral drugs. In addition,
an intensification–maintenance approach could provide
protection against the development of drug resistance in
antiretroviral-naive patients, particularly in patients infected
by a donor with known poor adherence to medications (in
which case it would be advisable to consider a maintenance
phase consisting of three or more drugs, as opposed to the
two-drug maintenance regimens modeled here). Recent
estimates suggest that up to 10%–15% of treatment-naive
patients harbor one or more drug-resistance mutations [68–
70], and this problem is likely to increase with increasing
availability of ART. Finally, the principle of IM approaches
could also be applied to the difficult problem of salvage
therapy. The latter two scenarios have not been specifically
modeled here.
The results presented here must be weighed against several

practical considerations: a two-drug maintenance regimen
may incur a higher failure risk among patients prone to

Figure 7. Simulations Demonstrating the Effects of Varying the Degree of Resistance on Treatment Success Rates

As in Figures 5 and 6, (A) and (C) demonstrate success rates as the duration of induction therapy is increased, and (B) and (D) demonstrate success rates
over a range of induction therapy/therapy intensification start times. IC50INT quantifies the degree of resistance that either mutation 1 or mutation 2
confers to drug I. IC50MUT quantifies both the degree of resistance that mutation 3 confers to drug II and the degree of resistance that mutation 4
confers to drug III. x-Axis indicates duration of induction therapy in days (A,C), or interval between start of a 30-d induction therapy and maintenance
therapy, in days (B,D). Maintenance therapy is assumed to start on day 0. y-Axis indicates percentage of simulations in which viral load remained
undetectable for at least 3 y after ending induction therapy. Data in each panel were based on 400 simulations. Interpretation: IM therapy success rates
decrease with the degree of resistance conferred by these mutations.
doi:10.1371/journal.pcbi.0030133.g007
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subtherapeutic drug levels for any reason, since there will be
a reduced level of concurrent coverage by other agents in the
regimen. It is also essential that the maintenance regimen not
include drugs for which the patient previously developed
drug resistance, a requirement that is complicated by the
problem of cross-resistance. In addition, it would be highly
desirable that agents used in maintenance therapy be simple
and well-tolerated, with favorable pharmacokinetics, and
have a high barrier to the development of resistance—both
in terms of the number of mutations required for resistance
and the fitness of the resulting mutants. By contrast, the
requirements for induction regimens are considerably less
stringent: induction therapy must be able to suppress

replication of viruses resistant to the maintenance regimen
and be free of intolerable adverse effects during short-term
use.
Although we have gone to considerable lengths to make the

model realistic, we still make a number of simplifying
assumptions. First, we ignore drug redistribution, and assume
that drug levels immediately reach the therapeutic window at
the time of initiation, remain constant during therapy, and
fall to zero at discontinuation. There will clearly be some
deviation from these ideal conditions in vivo because of
pharmacokinetic ‘‘loading effects,’’ individual failure to
adhere to treatments, antagonistic drug interactions, and
other factors. Although we believe that four mutations are
sufficient to capture the basic behavior of drug resistance,
this is clearly a simplification, as are some of our assumptions
about IC50 values and cross-resistance. Our point is to make a
reasonable model that captures key features, not to make a
complete model of drug resistance. We have also neglected
reversion of drug-resistant variants to WT virus. However,
this effect is likely to be small under drug therapy, and would
result in lower failure rates than modeled here.
In building our model, we assumed that double therapy

usually fails and that triple therapy usually succeeds, as has
been observed in clinical practice. There are, of course, wide
regions of parameter space where double therapy always
succeeds and, conversely, where triple therapy always fails,
and it is possible that many real patients could fall into one of
these two categories. Although the specific simulations
presented here would not be relevant to these patients, the
same concept (but with a different number of drugs) can be
applied to these patients. The key to applying IM strategies to
such patients would be develop methods for distinguishing
among patients whose maintenance therapies would require
one, two, three, or more drugs.
Finally, our model assumes a degree of fitness cost of

resistance to drugs. Several studies have linked the presence
of resistance mutations with decreased RT processivity [71],
reduced replicative capacity in vitro [72–75], a competitive
disadvantage against WT viruses in competition assays [75],

Figure 8. Simulations Demonstrating the Effects of Cross-Resistance on Treatment Success Rates

As in Figures 5–7, (A) demonstrates success rates as the duration of induction therapy is increased, and (B) demonstrates success rates over a range of
induction therapy/therapy intensification start times. The different lines quantify the degree of resistance that mutations 3 and 4 confer against drugs III
and II, respectively. x-Axis indicates duration of induction therapy in days (A), or interval between start of a 30-d induction therapy and maintenance
therapy, in days (B). Maintenance therapy is assumed to start on day 0. y-Axis indicates percentage of simulations in which viral load remained
undetectable for at least 3 y after ending induction therapy. Data in each panel were based on 400 simulations. Interpretation: IM therapy success rates
decrease with the degree of cross-resistance between mutations 3 and 4.
doi:10.1371/journal.pcbi.0030133.g008

Figure 9. Relationship between Duration of Induction Therapy and Start

Time of Induction Therapy Relative to Start of Maintenance Therapy

x-Axis indicates interval between start of induction and maintenance
therapies, in days. Maintenance therapy is assumed to start on day 0. y-
Axis indicates percentage of simulations in which viral load remained
undetectable for at least 3 y after ending induction therapy.
Interpretation: the success of IM therapy increases with increasing
duration of induction therapy. Delaying the start of induction therapy
until ;40 d after the start of maintenance therapy may be optimal, and
the effect of timing is most pronounced with induction therapies lasting
0.5–2 mo. Longer and shorter induction periods are less sensitive to the
effects of timing. There is little benefit to adding a delayed-induction
therapy at times beyond 90 d after the start of maintenance therapy.
doi:10.1371/journal.pcbi.0030133.g009
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lower viral loads, and lower rates of CD4 T cell loss in vivo
[72,73,75], and have shown a tendency for overgrowth by WT
viruses after discontinuation of therapy in cases of mixed
infection [76,77]. As shown in Figure 5A and 5B, the
probability of treatment success drops dramatically as the
cost of resistance decreases. An essential feature of any two-
drug maintenance regimen, therefore, is that the mainte-
nance regimen includes drugs for which resistant mutations
incur measurable fitness costs. In cases where fitness costs are
small, it would be advisable to choose maintenance regimens
in which four or more mutations are required for resistance
(something that can easily be implemented using a three-drug
maintenance regimen).

Key experiments needed to test the model’s assumptions
would focus on how the concentration of resistant viruses

residing in short-lived, moderately long-lived, and latently
infected cells changes during the first 90 d of therapy.
Experiments designed to test the prediction that resistant
viruses decrease transiently during therapy could be partic-
ularly informative. A better understanding of factors that
allow for continued replication in the face of various
therapies (e.g., identification of sanctuary sites in which
drugs do not penetrate) would also be very important. More
generally, experiments designed to improve our understand-
ing of viral effective populations size and factors that control
viral load in the absence of therapy could lead to the
construction of more realistic models for viral dynamics.
Also, since our model shows that the probability of therapy
success decreases as the number of latently infected cells
increases, our study suggests that it would be useful to obtain

Table 2. Effects of Individual Drugs on IC50 Values

Genotype IC50 Value in the Presence of Drug I IC50 Value in the Presence of Drug II IC50 Value in the Presence of Drug III

V 1 1 1

V1 5 1 1

V2 5 1 1

V3 1 100 1

V4 1 1 100

V12 25 1 1

V13 5 100 1

V14 5 1 100

V23 5 100 1

V24 5 1 100

V34 1 100 100

V123 25 100 1

V124 25 1 100

V134 5 100 100

V234 5 100 100

V1234 25 100 100

Drug concentrations were set to 20. Viruses with IC50 values greater than 20 are considered to be highly resistant in our model.
doi:10.1371/journal.pcbi.0030133.t002

Figure 10. Computer Simulations of Dynamics of Drug-Resistant Virus under Simple Immune-Control Model

(A) Immune-control analog of the one-cell, one-drug model presented in Figure 4.
(B) Effect of changing turnover rate of immune effectors under the immune-control analog of the full model explored in Figures 5–9. In this simulation,
the turnover rate of the immune effectors was modeled by simultaneously increasing sX, mX, and kX. Here, k¼0.00085, T¼1,000, l¼6 3 10�4, and w1¼
w2 ¼ w3¼ w4 ¼ 0.9. Other parameters are as in Table 2.
Interpretation: changing the factor responsible for controlling viral load did not change the conclusion that drug resistant viruses will decrease transient
after drug therapy. As with the target-cell limited model, the rate at which the factor that controlled viral load changed after therapy played a major role
in determining when therapy should be intensified.
doi:10.1371/journal.pcbi.0030133.g010
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additional quantitative estimates of the size of the latent viral
reservoirs. Most studies of the latent reservoir have focused
on blood. If less intensively studied sites such as the lung,
brain, or gastrointestinal tract were found to have larger than
expected numbers of latently infected cells, it might be
necessary to choose more conservative treatment strategies.

In addition to HIV-1, IM approaches are being used for the
treatment of a growing number of infectious illnesses,
including active tuberculosis [78], bacterial endocarditis
[79], and prosthetic joint infections [80], and have widespread
application in oncology. In these settings, induction therapy
is usually timed to coincide with initiation of maintenance
therapy, and maintained for an empirically determined
period of time. Although the replication dynamics of the
pathogenic elements in these cases (i.e., infecting micro-
organisms or aberrant host cells) differ significantly from
those of HIV, the chronic nature of these conditions, the
requirement for long-term therapy, and the potential for
developing resistance to drugs and immune responses pose
similar challenges to the host. The counterintuitive results
that have emerged from our analysis of HIV replication
under therapy suggest that it may be beneficial to explore
dynamic modeling approaches in these cases as well.

Materials and Methods

Overview of the model-building process. As with most biological
models, certain parameters and assumptions are better supported
than others. Parameters used in our model are given in Table 1. These
values resulted from a sequential process in which we first fixed
parameters, such as viral load, dI, dM, and d, which have been
characterized experimentally. We then manipulated unknown/less-
well–characterized parameters to match in vivo data on the viral
kinetics during primary infection, during therapy, and after a
treatment interruption. Most of these parameters were set to yield
conservative (i.e., higher than average) estimates for the number of
infected cells. We then varied the drug concentrations and IC50 values
(within estimated ranges) to match experimental observations that
triple therapy is usually successful but double therapy usually fails.
After completing these three steps, we performed our key explor-
atory simulations in which we examined the effects of varying the
length and timing of induction therapy. Simulations were repeated
across a wide range of reasonable values for parameters that remain
poorly characterized by experimental methods (e.g., target-cell
turnover rates).

Equations for viral dynamics. Dynamics of infection were
simulated using an extension of a commonly used model for viral
dynamics [38,41,45–48,62,81–85] that assumes that viral load is
limited by the supply of CD4þ target cells. Our model consists of 65
differential equations accounting for target cells, free virions, three
types of infected cells, and 16 viral genotypes (Figure 1B). The
dynamics of target cells and drug sensitive viruses are given by

dT=dt ¼ s� mT � ½KV þ K1V1 þ K2V2 þ K3V3 þ K4V4 þ K12V12

þ K13V13 þ :::þ K1234V1234�T;

dI=dt ¼ fIKTV � dI I ;

dM=dt ¼ fMKVT � dMM;

dL=dt ¼ fLKVT � dLL;

dV=dt ¼ pII � pMM þ pLL� cV ;

where I, M, and L represent short-lived, moderately long-lived, and
latently infected cells, respectively; V represents free virions; T
represents target cells; fM and fL are the fractions of target infected
cells that become moderately long-lived and latently infected cells
upon HIV-1 infection; fI¼1� fM� fL; s is the input rate of target cells;
m is the death rate of target cells; dI, dM, and dL are the death rates of

short-lived, moderately long-lived, and latently infected cells,
respectively; pI, pM, and pL are the rates at which short-lived,
moderately long-lived, and latently infected cells produce virus; c is
the clearance rate of free virus; t is time in days; K is the rate at which
WT virus infects cells, and Ki is the rate at which virus with resistance
mutation i infects target cells in the presence of therapy. To model
the effects of drugs on these different viruses, we assume that
infection rate constants K, K1, K2, ..., K1234 decline in the presence of
drug-using functions described below (see Modeling of viral
replication under drug therapy).

The dynamics of mutants partially resistant to drug I, but sensitive
to drugs II and III, are given by equations of the form:

dI1=dt ¼ fIK1V1T þ lKVT � dII1;

dM1=dt ¼ fMK1V1T þ lfMKVT � dMM1;

dL1=dt ¼ fLK1V1T þ lfLKVT � dLL1;

dV1=dt ¼ pI1 þ pMM1 þ pLL1 � cV1;

where l is the probability that a cell infected with WT virus will
acquire a resistance mutation to one of these drugs. The equations of
other resistant mutants are straightforward extensions of these
equations with sequential mutation accumulation. For example, the
dynamics of mutants with high-level resistance to drug I, but sensitive
to drugs II and III, are given by the equations.

dI12=dt ¼ fIK12V12T þ l½K1V1 þ K2V2�T � dII12;

dM12=dt ¼ fMK12V12T þ lfM½K1V1 þ K2V2�T � dMM12;

dL12=dt ¼ fLK12V12T þ lfL½K1V1 þ K2V2�T � dLL12;

dV12=dt ¼ pI I12 þ pMM12 þ pLL12 � cV12;

while the dynamics of mutants resistant to all four drugs is given by
the equations

dI1234=dt ¼ fIK1234V1234T þ l½K123V123 þ K124V124 þ K134V134

þ K234V234�T � dII1234;

dM1234=dt ¼ fMK1234V1234T þ lfM½K123V123 þ K124V124 þ K134V134

þ K234V234�T � dMM1234;

dL1234=dt ¼ fLK1234V1234T þ lfL½K123V123 þ K124V124 þ K134V134

þ K234V234�T � dLL1234;

dV1234=dt ¼ pI1234 þ pMM1234 þ pLL1234 � cV1234:

We note that this model assumes that reverse mutations from
resistance to sensitivity is negligible. Another cryptic assumption is
that short-lived, long-lived, and latently infected cells are derived
from a single population of CD4þ target cells, as modeled by Nowak et
al. [41]. In preliminary simulations and/or calculations, we have
determined under reasonable conditions that neither of these factors
has much effect on our qualitative conclusions.

Extinction conditions. The extinction threshold was set to 33 10�9

infected cells/ll, which is roughly equivalent to one infected cell per 2
31011 CD4 cells (the approximate total body CD4 cell population). In
preliminary work, we found that it is almost impossible to eliminate
viruses resistant to any single drug during triple-drug therapy. IM
therapy was therefore considered to be successful when the
concentration of viruses and cells infected with viruses resistant to
both of the drugs in a two-drug maintenance regimen fell to zero or if
viral load failed to rebound for a period of 3 y after ending induction
therapy.

Modeling of viral replication under drug therapy. To allow for
imperfect drug efficacy against WT virus, we assumed that the
infection rate constant for genotype i in the presence of drug j can be
modeled as:

Ki ¼ wi 3 IC50i;j=ðIC50i;j þ DjÞ3 k
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where k is the baseline infection rate constant for WT virus in the
absence of drug, wi is the replicative fitness cost associated with
mutation i (expressed as a percentage of k), IC50i,j is the concen-
tration of drug j at which infection rate constant for mutant i is 50%
of its original value, and Dj is the concentration of drug j [49]. In our
four-mutation system, mutations 1 and 2 confer partial resistance to
drug I, while mutations 3 and 4 confer substantial (though not 100%)
resistance to drugs II and III, respectively. For the ‘‘canonical case,’’
we assumed that mutations 1 and 2 each confer a 5-fold increase in
IC50 value against drug I, resulting in a 25-fold increase in resistance
for the double mutant V12 as expected [86], while mutations 3 and 4
confer 100-fold increases in IC50 values against drugs II and III,
respectively. In the figures, we refer to the fold increase in resistance
conferred by mutations 1 or 2 as ‘‘IC50INT’’ (since these mutations
confer an intermediate level of resistance), and the fold increase in
resistance conferred by mutations 3 and 4 as ‘‘IC50MUT’’ (since these
mutations confer high-level resistance; i.e., they are completely
mutated). Under this model, resistance to drug I would be analogous
to resistance to a protease inhibitor, while resistance to drugs II and
III would resemble resistance to nucleoside reverse transcriptase
inhibitors and first-generation nonnucleoside reverse transcriptase
inhibitors. The resulting IC50 values are summarized in Table 2. To
calculate the infection constants in the presence of multiple drugs, we
used generalizations of the IC50 formulas given above, wherein fitness
effects and IC50 effects are multiplied together to give the composite
infection rate constant. For example, the infection rate constant for
the quadruple mutant V1234 in the presence of drugs is given by:

K1234 ¼ w1w2w3w4½IC501234;1=ðIC501234;1 þ D1Þ�½IC501234;2=

ðIC501234;2 þ D2Þ�½IC501234;3=ðIC501234;3 þ D3Þ�3 k

where k is the baseline infection rate constant for WT virus in the
absence of drug; w1, w2, w3, and w4 are the negative fitness effects
associated with each resistance mutation; IC501,1, IC501,2, and IC501,3
are the IC50 values for genotype V1 against drugs I, II, and III,
respectively; IC501234,1, IC501234,2, and IC501234,3 are the IC50 values
for genotype V1234 against drugs I, II, and III, respectively; and D1, D2,
and D3 are the concentrations of drugs I, II, and III, respectively. In
the presence of drug, we assumed drug concentration values of 20 ng/
ml. In our model, drug concentrations immediately rise to ther-
apeutic levels or fall to zero when therapy is changed. In preliminary
calculations, we have determined that pharmacokinetic transients
have relatively little effect on our qualitative results under reasonable
conditions.

Finally, we modeled (reciprocal) cross-resistance between muta-
tions conferring resistance to drugs II and III by setting the IC50 value
each of these drugs to IC50WT 3 (IC50MUT / IC50WT)

a, where a is a
coefficient giving the degree of cross-resistance. When a¼ 0, the IC50
value equals that of the WT value; when a ¼ 1, the IC50 value of the
mutant equals that of the mutant that is resistant to the other drug.
These a values were then converted to percentages, where 0%
indicates no cross-resistance, and 100% indicates that mutations
conferring resistance to drug II are equally resistant to drug III and
vice versa.

Modeling the effects of recombination. In models with three
mutations, recombination acts only on the same order as the
mutation rate, since the triple mutant V123 can be created by either
one mutation added to V12 or recombination between V12 and V3.
However, in models with four or more mutations, recombination
between V12 and V34 reduces the number of mutation/recombination
events needed to create a fully resistant virus. To account for
recombination without adding a huge number of terms, we assumed
that infection of I34 by V12 or infection of I12 by V34 results in the
formation of the quadruple mutant with probability r, where 0 � r �
1. For example, the equation for short-lived infected cells with virus
with all four resistance mutations becomes:

dI1234=dt ¼ fI½K1234V1234 þ rK12V12I34 þ rK34V34I12�T

þlðK123V123 þ K124V124 þ K134V134 þ K234V234ÞT � dII1234:

Modifications for M1234 and L1234 were similar.
Stochastic effects at low population densities. To account for

random genetic drift occurring at low population densities, we used
stochastic terms similar to those used in [46] to model populations
near the cutoff for extinction. For each time-dependent variable x
(e.g., I, V), we first determined if x , nsxmin, where ns is the number of
copies below which x is subject to stochastic forces and xmin is the
concentration at which there is only one virus or infected cell in the

body. For x � nsxmin, we set x(tþ h)¼ x(t)þ [B(x)�M(x)]h, where h is the
step size, B(x) is the sum of the ‘‘birth’’ terms, and M(x) is the sum of
the ‘‘mortality’’ terms. For x , nsxmin, we set x(tþ h) to x(t)� 1, x(t), or
x(t) þ 1 according to the probabilities hM(x), 1 � [M(x) þ B(x)]h, and
hB(x). Use of deterministic equations for x . nsxmin strikes a balance
between the need to account for stochastic effects at low population
densities and the need to reduce computation times at higher
densities where stochastic effects are negligible. Since preliminary
runs with ns ¼ 25, 50, 100, and 200 gave similar results (but clearly
distinct from ns ¼ 1 or ns ¼ 5), we reasoned that ns ¼ 25 would be
sufficient to capture most of the stochastic variation that occurs at
low density. Probabilities were determined using the random number
generator MT19937 [87]. Simulations performed using the random
number generator ran2 [88] yielded indistinguishable results (un-
published data).

Starting parameter values. To create a realistic simulation of IM
therapy, we adjusted the parameters to match the dynamics of viral
decay during potent combination therapies [38,40,89,90]. Prior to the
initiation of therapy, we assumed that there are ;1010 viruses, ;3 3
108 short-lived infected cells, ;107 moderately long-lived infected
cells, and ;106 latently infected cells per body. Unless otherwise
stated, other parameter values used were: s¼2.0 cells/d, m¼0.02 cells/
d, k¼ 0.0008 cells3 ll/d, w1¼ 0.95, w2¼ 0.95, w3¼ 0.95, w4¼ 0.95, dI¼
0.6 cells/d, dM¼ 0.04 cells/d, dL¼ 0.00052 cells/d, f M¼ 0.07, fL¼ 10�6, p
¼ 100 virions/d, pM¼ 6 virions/d, pL¼2 virions/d, c¼ 3 d�1, and l¼13
10�4. All three drugs (D1, D2, D3) are set at 20 ng/ml when these drugs
are present. The input rate of target cells, s, was set so that the steady
state concentration of target cells is 100 cells/ll, or approximately
10% of a typical peripheral blood CD4 T cell count, since not all
CD4þ T cells are susceptible to HIV-1 infection. Units for target cells
are based on a total estimate of 23 1011 CD4 cells per body, of which
2% are in blood. The stochastic cutoff threshold was set at one
infected cell per body, or 3 3 10�9 cells/ll. The death rate of latently
infected cells of dL¼ 0.00052/d (t1/2¼;44 mo) was conservatively set
to one of the lower experimental estimates [50,89,91–93]. The
mutation rate was deliberately set to approximately three times the
estimated per-base rate to account for the fact that more than one
nucleotide mutation may lead to an amino acid change that results in
resistance. In all simulations, we assume that fitness effects are
multiplicative: that is, that k12¼ k1k2 / k, k13¼ k1k3 / k, k23¼ k2k3 / k, and
k123¼ k1k2k3 / k

2, as in [94]. The effects of changing less well-quantified
parameters, such as m and k, are summarized in the results.

Immune-control model. Although we focus on the target-cell
limited model described above, we also explored a simple immune-
control model to determine how dependent our qualitative results
are on the factors that regulate HIV-1 density. In our immune-
control model, the virus population expands exponentially without
limitation in the absence of immunity. Immune effectors, which
increase at a rate proportional to the number of infected cells,
interfere with the ability of virus to infect cells (as might happen if
immune cells release chemokines and/or neutralizing antibodies). We
implemented this initially using the following model with one
mutation and one type of infected cell:

dX=dt ¼ sX � mXX þ kXðI þ I1ÞX;

dI=dt ¼ KTVKs=ðKs þ XÞ � dI ;

dI1=dt ¼ K1TVKs=ðKs þ XÞ þ lKTV � dI1;

dV=dt ¼ pI � cV ;

dV1=dt ¼ pI1 � cV1;

where X is the concentration of immune effectors, sX is the rate of
appearance of immune effectors in the absence of immune
stimulation, mX is the death rate of immune effectors, kX is the rate
at which HIV-1–infected cells activate immune effectors, and Ks is a
saturation constant describing the negative effect that the immune
effectors have on the ability of HIV-1 to initiate infections. The
symbols T, I, I1, V, V1, K1, p, c, d, and l have the same meanings as in
the target-cell limited model above, though when simulating
dynamics under this model, we assume that T does not change over
time. To extend this immune-control mechanism to the full,
stochastic model, we made analogous extensions, setting dX / dt ¼ sX
�mXXþ kX(Iþ I1þ . . .þ I1234þMþ . . .þM1234)X and multiplying the
infection rate constants (K, K1, K2, . . ., K1234) by Ks / (Ks þ X), while
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keeping T constant. To simulate drug treatment for different rates of
turnover of immune effectors without also changing pretherapy viral
loads, we increased sX, mX, and kX proportionately. (The latter is
needed since steady-state viral load is the sum of terms proportional
to sX / kX and mX / kX.)
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