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Background. Brain computer interfaces (BCI) based on electro-encephalography (EEG) have been shown to detect mental
states accurately and non-invasively, but the equipment required so far is cumbersome and the resulting signal is difficult to
analyze. BCI requires accurate classification of small amplitude brain signal components in single trials from recordings which
can be compromised by currents induced by muscle activity. Methodology/Principal Findings. A novel EEG cap based on dry
electrodes was developed which does not need time-consuming gel application and uses far fewer electrodes than on
a standard EEG cap set-up. After optimizing the placement of the 6 dry electrodes through off-line analysis of standard cap
experiments, dry cap performance was tested in the context of a well established BCI cursor control paradigm in 5 healthy
subjects using analysis methods which do not necessitate user training. The resulting information transfer rate was on average
about 30% slower than the standard cap. The potential contribution of involuntary muscle activity artifact to the BCI control
signal was found to be inconsequential, while the detected signal was consistent with brain activity originating near the motor
cortex. Conclusions/Significance. Our study shows that a surprisingly simple and convenient method of brain activity
imaging is possible, and that simple and robust analysis techniques exist which discriminate among mental states in single
trials. Within 15 minutes the dry BCI device is set-up, calibrated and ready to use. Peak performance matched reported EEG BCI
state of the art in one subject. The results promise a practical non-invasive BCI solution for severely paralyzed patients, without
the bottleneck of setup effort and limited recording duration that hampers current EEG recording technique. The presented
recording method itself, BCI not considered, could significantly widen the use of EEG for emerging applications requiring long-
term brain activity and mental state monitoring.
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INTRODUCTION
Electro-encephalography (EEG) is the oldest brain imaging

technology, and among non-invasive methods it still offers the

highest temporal resolution. Far from being a mere research aide,

it promises an inexpensive, risk-free means of communication and

neuroprosthetic control for the severely disabled [1,2]. Recent

advances in Brain Computer Interface (BCI) research have

dramatically increased the amount of information we can extract

from EEG over classical averaging and neurofeedback techniques

[3]. Although EEG can monitor brain events very responsively in

time, it suffers from high inter-trial variability and spatial mixing:

numerous electrical sources active at any given time in the brain

are superimposed onto the scalp across distances of over 5 cm [4].

These limitations have led to the assumption that many electrodes

are necessary, and that one needs to average signal features across

time or repeated trials to accurately discriminate mental states.

Apart from intrinsic challenges of EEG signal analysis, one of

the main obstacles precluding EEG-BCI from being used in

patients’ daily lives is setup encumbrance. Modern EEG practice,

as part of the electrode application procedure known to specialists

as montage, requires tedious application of conductive gel between

electrodes and scalp. While recordings in certain clinical

applications may last up to 72 hours, they progressively degrade

as the gel dries leading to a failure of about a quarter of the

electrodes within 24 hours and thus requires daily maintenance

[5]. We introduce a new EEG cap design with few electrodes and

show that the much sought-after ‘dry electrode’ technology is

surprisingly frugal and accurate enough for excellent online

discrimination. Dry electrodes bypass gel application, thereby

reducing set-up time. Fewer electrodes mean less time spent

checking individual signal quality and adjusting the cap. Our new

design (Fig. 1c) consists of only 6 dry unipolar electrodes and one

dry reference electrode. The cap applies a moderate amount of

pressure upon the scalp via an array of specially coated metal

contacts which do not cause discomfort to the users as reported by

our experimental subjects. The sparse electrode arrangement and

slightly reduced ‘dry’ signal quality places the onus on robust

signal processing for effective BCI.

The advent of machine learning in the field of BCI has led to

significant advances in real-time EEG analysis. While early EEG-

BCI efforts required neurofeedback training on the part of the user

that lasted on the order of days [6] in current practice it suffices to

collect data in which the patient is cued to perform one of a small

set of mental tasks called classes. After setup and less than

30 minutes [7] of training data collection, a classification algo-

rithm analyzes brief recordings and learns to discriminate mental

tasks in less than 5 minutes of computation time, thereby

relocating adaptation from the user to the computer. Robustness
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of BCI decoding algorithms, re-use of classifiers [8] and artifact

removal have benefited from significant research effort [3].

Successful EEG analysis requires both temporal (filtering) and

spatial (source-localizing) decomposition. The current Berlin Brain

Computer Interface consists of a heuristic search of EEG

frequency bands and time intervals which maximize class

discrimination, as a temporal decomposition step. It is followed

by an automatic, signal driven source localization algorithm

termed Common Spatial Pattern (CSP) [9] [3] which correlates

spatial activity within a class while concurrently discriminating this

correlation pattern from that of another class. The final step is an

algorithm which performs automatic discrimination (i.e. classifi-

cation) based on features generated by the spatio-temporal

decomposition. As has been shown [7], the frequency bands

chosen, the time intervals and the spatial patterns are consistent

with known neurophysiology of movement imagination, provide

excellent discrimination and, as shown in this study, work well

despite noise in the signal and sparse recording sites. Furthermore,

the analysis method required in order to maximize information

gain from EEG, as evidenced by our investigative study, can be

both straightforward and effective.

METHODS
The results of our 1D cursor control paradigm [10], previously run

with a full (64 gel electrode) cap [7], was repeated in this study

such that dry cap performance could be compared for the same

subjects. 5 healthy subjects (4 male, 1 female) participated. Two

subjects were initially tested, however due to particularly thick and

full hairstyle no continuously stable signal could be extracted, and

thus they were excluded from the study. For 3 of the 5 selected

subjects the previously collected data was used, while for the other

2 the paradigm was reproduced. All subjects were volunteers

drawn from the members of the laboratory, and all had prior

experience with the paradigm. As it was judged that through the

use of dry electrodes there was minimal increase in physical,

psychological and social risk to the subjects no further ethics board

approval was needed than that already in use for gel electrodes

(Charité - Universitätsmedizin Berlin Ethics Commission). As per

our standard EEG procedure, which may involve skin prepara-

tion, in the unlikely case of a minor scratch, disinfectant and a first-

aid kit were on hand. Subjects were instructed to end the session if

they felt any discomfort. No injury of any kind occurred and no

serious discomfort was reported. The subjects gave verbal consent

to the eventual dissemination of results and are identified by

randomized initials herein.

While EEG cap setup normally requires an attendant and about

30 minutes of preparation, the dry cap can be simply placed on

the head and manually adjusted even by the subject herself in less

than 2 minutes. For the ‘dry cap’ experiments a 14-channel DC

amplifier set-up (BrainAmp128DC, Munich, Germany) was used

(6 EEG channels and 4 bipolar artifact measure channels). In the

first part of the experiment (‘calibration session’), a sequence of 80

left/right cues was presented visually by means of a letter which

appears in the middle of the computer screen. The subjects were

asked to imagine the cued class without moving either limbs or the

eye. All subjects used left/right hand movement imagination

except one subject who used left hand/ right foot imagination

Figure 1. Signal spectra and electrode placement. Typical signal spectrum from proposed dry electrode (each trace corresponds to averaged
spectra for each class). b) Comparable signal from conventional electrode with electrolyte gel (same subject, same conditions). c) Illustration of dry
cap. d) Contralateral CSPs of left/right classes from full cap and location of 6 dry cap electrodes.
doi:10.1371/journal.pone.0000637.g001
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since the earlier study [7] predicted this combination to be optimal

for that subject. The cues were presented for 3.75 seconds with an

inter-cue relax interval of 1.75+/20.5 seconds. Electro-oculo-

grams (EOG) were measured using 2 standard (gel) electrodes per

eye (one lateral to each eye, one above the left eye, one below the

left eye) the difference between each pair being amplified as to

obtain vertical and horizontal components, while surface bipolar

electromyogram (EMG) electrodes where placed on the Flexor

Carpi Radialis. As one of the subjects used right foot imagination

for one class EMG was measured from the Gastrocnemius. Apart

from off-line checks, electromyograms are monitored online and

the maximal co-contraction EMG level recorded: no trials were

excluded. The average dry electrode impedance measured was

78.6630.0 KV.

The dry cap BCI system was thus ready for use after roughly

15 minutes: 2 for electrode preparation, 8 for calibration data

collection and 5 minutes for the classifier algorithm to learn from

the calibration data. For habitual use, calibration could be

eliminated and classifiers reused [8]. In a second part of the

experiment (‘feedback session’) subjects were asked to move a dot

displayed on the screen to a target represented by a bar on either

the right or left side of the screen by imagining the corresponding

class. The dot movement provided continuous performance

feedback to the subjects. Each subject performed 400 trials

divided into 4 sets allowing him/her a brief pause for mental

relaxation (See Video S1).

A semi-automatic search for the time interval of the event-

related desynchronization (ERDs) and frequency band whose

power discriminates most between classes for each subject

generally selects the so-called mu- and beta- rhythms (8–25 Hz,

Fig. 1a,b) in the motor cortex [7,11]. The discriminating frequency

band search determined a band-pass filter which attenuated signal

amplitude outside these bands thereby accomplishing a temporal

‘demixing’.

The resulting filtered multivariate signals, segmented in the

ERDs time interval, are used to compute two covariance matrices

S1 and S2 from the calibration data. The CSP algorithm searches

for a matrix W and a vector of n values 0#di#1 which achieves:

W
P

1 W T~D W
P

2 W T~I{D

Where n is the number of channels and D is a diagonal matrix with

entries di. Using z-transform notation for digital signals, for any

trial, the spatio-temporally de-mixed data is:

y(z)~W H(z)x(z)

Where x is the raw EEG signal and H(z) is a diagonal matrix of

identical band-pass filter transforms. The columns of the source to

signal transform W21 are called the Common Spatial Patterns

(CSPs). The CSP decomposition can be thought of as a coupled

decomposition of 2 matrices (for 2 classes) similar to a principal

components analysis yielding eigenvectors and eigenvalues. As the

eigenvalues di are equal to the power ratio of signals of class 1 by

class 2 in the corresponding CSP filter (eigenvector in i-th column

of matrix W), best discrimination is provided by filters with very

high (i.e. near 1) or very low (i.e. near 0) eigenvalues. Accordingly

CSP projections with the highest 2 and lowest 2 eigenvalues were

chosen as features (n = 4).

The decomposed time-varying multivariate signal y(t) can be

easily transformed into an n-vector of log-variances, by estimating

!!!eq i 0 over a desired time window. The elements of this vector

are the ‘features’ that the classifier learns to associate with a given

class. The classifier used was Linear Discriminant Analysis (LDA),

which assigns linear weights to features as to provide a separating

hyper-plane between classes in feature space. In the ‘feedback’

sessions the time window length used was adjusted to subject

preference for cursor responsiveness and ranged from 600 to

1000 msec. The speed of the cursor is proportional to the

continuous linear weighted sum of features as computed by the

LDA output.

In order to rule out that the reported ITRs are due to muscle

artifact, we analyze whether a classifier based on EOG or EMG

alone achieve a significant ITR. For this, unfiltered EOG and

EMG signals were segmented into 5 windows, each 500 msec

long, starting after cue presentation for feedback data. The log

variance of these segments provided features (i.e. 5 segments of 2

EOG resp. EMG channels = 10 features) that were classified by

LDA in a leave-one-out fashion, i.e. each segmented feedback trial

is labeled by a classifier trained on all other trials.

Table 1. Results of feedback sessions for dry vs. full cap.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Subjects al zg ay zk aw Average

Feedback – Gel Cap

1D (bit/min) 24.4 13.0 22.6 8.8 5.9 14.9

correct (%) 98.0 98.0 95.0 86.8 80.5 91.7

time/trial (s) 2.1 3.9 1.9 3.0 2.9 2.8

peak (bit/min) 35.4 19.6 31.5 23.4 11.0 24.2

Feedback – Dry Cap

1D (bit/min) 17.6 3.4 14.1 7.9 5.0 9.6

correct (%) 91.8 79.2 94.8 84.5 83.8 86.8

time/trial (s) 2.0 4.7 3.1 2.9 4.4 3.4

peak (bit/min) 36.5 14.0 25.0 23.1 16.8 23.1

Percentage difference Gel Cap – Dry Cap

1D (%) 227.8 263.4 237.6 210.2 215.2 230.8

correct (%) 26.3 219.1 20.2 22.6 3.9 24.9

time/trial (%) 4.7 218.1 238.7 24.0 234.1 218.0

peak (%) 3.0 228.4 220.6 21.3 34.5 22.6

Feedback Classification Accuracy EEG-EOG-EMG

EEG (%) 91.8 79.2 94.8 84.5 83.8 86.8

EMG (%) 72.3 47.5 52.2 61.1 85.8 63.8

EEG (% on EMG-) 90.4 78.7 94.3 83.5 89.9 87.4

EOG (%) 72.8 49.0 55.1 58.5 80.6 63.2

EEG (% on EOG-) 91.2 76.4 95.5 85.1 88.4 87.3

EMG (% of MVC) 2.7 1.2 1.7 1.3 0.7 1.5

EMG-fb (% of EMG-pre) 107.9 102.5 98.1 103.0 109.4 104.2

Feedback gel cap (top) reports feedback data from an earlier study (3). The first
line shows the bit/min information transfer rate of 1D cursor control averaged
over 8 sessions consisting of 25 trials each. The second line gives the average
percentage of correct trials and the third and fourth lines provide the average
time per trial and the peak performing session result. Feedback dry cap (middle)
as above. Note that here 4 sessions of 100 trials each were evaluated. Also the
peak performance was computed as the best 25 consecutive trials. The lower
part (bottom) of the table summarizes the relative loss in performance of the
respective setups for the subjects. Note that a negative sign indicates lower
performance of the dry electrode cap. ‘‘% of MVC’’ stands for the power of
feedback trials, as compared to the maximum voluntary contraction (MVC).
EMG-fb stands for the EMG activity in the actual feedback trials, as compared to
the preparatory phase of each feedback trial, EMG-pre.
doi:10.1371/journal.pone.0000637.t001..
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RESULTS
The main object of the study was to compare the Information

Transfer Rate (ITR) obtainable with the dry cap with that previously

established for the full cap for an existing paradigm using the same

subjects. Classification results are summarized in Table 1.

The locations of the 6 channels used were determined with the

aid of a sensitivity analysis on full cap data similar to [12]. After

a CSP matrix W is calculated, the row with the lowest sum of

absolute values is labeled as the least-significant channel in terms

of classification. After elimination of this channel from further

analysis, the entire CSP/LDA classification procedure can be re-

run. By performing channel elimination iteratively, we can

approximate the expected error for any ‘best’ m,n channels and

derive a relative ranking of channel relevance (see Figure 2).

While subject experience and proper instruction can alleviate

the confounding role of EMG and EOG by encouraging

performance in which no such activity can be detected (2 of the

subjects had no detectable artifact) in most subjects, artifacts are

unavoidable as they are involuntary in nature. The results in

Table 1 (lowest part) show that classification based on EOG/EMG

is either close to chance level, or much less accurate than that

based on EEG. Furthermore note that in the trials in which EOG

or EMG analysis erred in classification, EEG still consistently

classified with the same accuracy as in other trials.

DISCUSSION
With only 6 dry electrodes approximately placed above the motor

cortex (Fig. 1d), the information transmission rate achieved a peak

of 36.5 bits/min (on par with any EEG-BCI performance

reported) and is on average 30.8% slower than previous

experiments with 64 wet electrode caps on the same subjects.

Despite its simplicity the CSP algorithm and extensions thereof

[3,13] remains among the highest consistent performers among

the many EEG-BCI analysis techniques developed and attempted

[14]. For general scientific interest, a BCI algorithm needs to do

more than simply show a high ITR. Critical is the identification

and description of the physiological origin of signal that provides

for discrimination. It would be useful to perform ‘EEG source

localization’, i.e. a spatial de-mixing of the signal which provides

for electrical dipole locations back-calculated from the recorded

signal. Using algorithms designed for this particular purpose, it has

been shown that motor imagery based BCI does indeed localize to

the motor cortex [15]. Although source localization from only 6

channels of recording cannot be done without an unacceptable

loss in accuracy, we had full-cap data from the same paradigm at

our disposal.

Interestingly, the CSP algorithm was originally conceived to be

a signal-driven source localization technique which can locate

known dipole sources [9]. As such, the primary CSP patterns of

the full-cap data for left- and right- classes do indeed show highest

sensitivity around the contra-lateral motor cortical areas (see

Figure 1 and 2) as expected from basic motor neurophysiology.

Further evidence is gained by simply asking the question: if we

only had m electrodes available, where should they be placed in

order to maximize classification? We performed a sensitivity study

where the electrode that least contributed to the CSP-based

classification was iteratively removed from the analysis. Results are

shown in Figure 2. Note that ‘best’ electrode placement varies

from subject to subject but is fundamentally fronto-parietal and

bilateral (i.e. above the motor cortical areas). Note also that for at

least one subject the expected 6-channel performance is low, as

was confirmed in the dry cap experiment. Since potentials propagate

perpendicularly from the folded cortical surface, varying anatomy

and cranial electrical properties among subjects means that one

cannot just place electrodes ‘above the motor cortex’ and expect

maximal performance. Our study does show that such a simplifying

strategy works surprisingly well, based on a ranking of electrode

location relevance (see Figure 2) averaged across subjects. In-

dividualized electrode placement will likely improve performance,

but not without considerable cost, however. Further technical

development of the electrode design – and specialized research - may

also be necessary in order for the recording pins design to improve in

such a manner that they bypass all hair-types and make consistent

contact with the scalp. The subjects tested were not chosen with any

such criteria in mind and good results were obtained from 5 out of

the first 7 people tested.

EEG analysis, whether it is classification or localization, can be

compromised by EOG and EMG even if these are produced

involuntarily. Arm muscle activation or bodily movement must be

considerably large in order to affect EEG [4,16]. In our

experiments, no movement is visible (See Video S1) and measured

hand EMG magnitudes averaged 1.5% of maximum voluntary

contraction (MVC). Note that this is not necessarily phasic activity

but mostly tonic co-contraction. EMG levels during cue pre-

sentation (i.e. movement imagination) are from 21.9% to 9.5%

Figure 2. Relationship of ITR to number of electrodes and position. a) Predicted error rates vs. number of channels for different subjects (colored
lines) and average (black line). b) electrode importance ranking averaged across subjects, plus dry cap electrode placement.
doi:10.1371/journal.pone.0000637.g002

Dry EEG Cap for BCI

PLoS ONE | www.plosone.org 4 July 2007 | Issue 7 | e637



greater than EMG levels during the brief rest period between

trials. A look at the last rows of Table 1 shows that EMG

classification accuracy correlates with the magnitude of this

difference (on the order of 0.15% of MVC) rather than the

overall EMG magnitudes. Being based on overall differences so

slight, EMG affords significantly poorer classification than EEG.

EOG represents mainly ocular muscle activity but can also

partially reflect facial, tongue and jaw muscle activity. As EOG

electrodes are closer to the scalp than EMG electrodes, their

activity, even if moderate, is more likely to represent an artifact in

EEG. Note the EMG/EOG classifiers operated on feedback trial

data and not calibration trial data, which may have contained

other types of eye movement patterns due to the absence of visual

target presentation.

Prior analysis of artifact influence in BCI experiments has

shown that the type of movement can be determined earlier and

more accurately in EEG than in EMG/EOG [17]. That EEG, in

this study, still indicates mental states in trials and subjects in

which artifact, whether EMG or EOG, cannot discriminate the

mental class further reinforces the idea that the classifier responds

mainly to cortical activity patterns, in a physiologically expected

location and frequency range.

The implications of dry electrode technology are significant, both

in terms of practicability of non-invasive BCI for the severely

disabled and in terms of a robust, affordable brain imaging technique

for long-term neuroscience experiments (some sessions lasted over

5 hours). Clinical applications may include daily EEG monitoring

for epilepsy or narcolepsy. Regarding healthy subjects, dry-electrode

BCI opens a more practical outlook for Human-Machine In-

teraction, for monitoring alertness, emotion or mental workload.

This study attempts to maximize the practical value of BCI from

the fewest number of recording channels possible. The scientific

implications of this approach are that by careful analysis and

electrode placement effective functional imaging of the awake,

active brain can be achieved non-invasively and in a fairly simple,

cost and time-effective manner. Dry electrodes may be sparsely

placed elsewhere on the scalp as to focus on other cortical areas

that are not motor-related.

The state of current EEG-BCI research makes use of

electrophysiological phenomena that contribute to accurate

discrimination among mental states in single trials. Future research

will focus on further improvements of EEG sensor and data

analysis technology and strive towards simple devices that learn to

adapt to a user or patient and allow communication even in highly

noisy and non stationary real world scenarios.

SUPPORTING INFORMATION

Video S1 Sample feedback session trial set. Subject controls the

cursor (a cross) to cued left/right targets (flashing bars on each side

of the monitor).

Found at: doi:10.1371/journal.pone.0000637.s001 (5.11 MB

MOV)
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