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ABSTRACT A range of ab initio calculations were carried out on the axial and equatorial anomers of the model carbohydrate
2-ethoxy tetrahydropyran to evaluate the level of theory required to accurately evaluate the glycosyl dihedral angle and the
anomeric ratio. Vacuum CCSD(T)/CBS extrapolations at the global minimum yield DE ¼ Eequatorial � Eaxial ¼ 1.42 kcal/mol.
When corrected for solvent (by the IEFPCM model), zero-point vibrations and entropy, DG298 ¼ 0.49 kcal/mol, in excellent
agreement with the experimental value of 0.47 6 0.3 kcal/mol. A new additivity scheme, the layered composite method (LCM),
yields DE to within 0.1 kcal/mol of the CCSD(T)/CBS result at a fraction of the computer requirements. Anomeric ratios and one-
dimensional torsional surfaces generated by LCM and the even more efficient MP2/cc-pVTZ level of theory are in excellent
agreement, indicating that the latter is suitable for force-field parameterization of carbohydrates. Hartree-Fock and density
functional theory differ from CCSD(T)/CBS for DE by ;1 kcal/mol; they show similar deviations in torsional surfaces evaluated
from LCM. A comparison of vacuum and solvent-corrected one- and two-dimensional torsional surfaces indicates the equatorial
form of 2-ethoxy tetrahydropyran is more sensitive to solvent than the axial.

INTRODUCTION

The conformational flexibility of polysaccharides is largely

determined by the glycosidic linkage. While steric factors

approximately locate the global minimum for each linkage

type (1), predicting the energies of the other torsional minima

and the barriers is substantially more challenging (2,3).

There are three reasons. The complex orbital interactions

responsible for the anomeric (4–9) and exoanomeric effects

(10,11) modulate the glycosyl torsional surface; the number

of atoms and degrees of freedom in even a disaccharide is

currently beyond the capabilities of high level ab initio

methods; and, as follows from the strong interaction of car-

bohydrates and water, solvent effects must be considered.

This article explores the practical application of ab initio

theories to the computation of the anomeric effects, and the

mapping of glycosyl torsional surfaces. Calculations are

based on the model carbohydrate 2-ethoxy tetrahydropyran

(2-Eth-THP, Fig. 1). This compound exhibits both anomeric

(the axial configuration is favored over the equatorial despite

unfavorable steric interactions) and exoanomeric effects (the

gauche form of the torsion angle f shown in Fig. 1 is pre-

ferred). Because hydroxyls are not present, 2-Eth-THP can

be described at the complete basis set (CCSD(T)/CBS) level

of theory at the global minimum of each configuration (axial

and equatorial; see Fig. 1). The c-angle is entirely defined by

heavy atoms, making 2-Eth-THP a more realistic model of

both disaccharides and glycolipids than the more commonly

studied 2-methoxy tetrahydropyran (2-Me-THP).

The essential strategy of this study is to proceed from the

CCSD(T)/CBS treatment to progressively more approximate

methods that can be applied to wider ranges of points. The

first step is to develop a computationally efficient method that

yields the energy difference between the axial (ax-2-Eth-THP)

and equatorial (eq-2-Eth-THP) configurations with accuracy

comparable to CCSD(T)/CBS but at reduced cost. This is

denoted the layered composite method (LCM), and incor-

porates CCSD(T) energies into a layered additivity scheme.

This differs from other composite methods that typically

employ MP4 energies as a reference and QCISD(T) as the

method to account for triples corrections (12–14).

The second step utilizes the LCM one-dimensional (1-D)

torsional surfaces of f and c of 2-Eth-THP as targets for a

variety of methods because it is presently not feasible to cal-

culate these surfaces at the CCSD(T)/CBS limit. This yields

a ranking of methods, and speaks to the practical question

of whether a method must yield the correct anomeric ratio

when only the relative conformational energies of particular

anomers are required. Solvent effects are included at selected

levels of theory via implicit models (15–19). This not only

affords comparisons to experiment but also lends insight to

the differential responses of the axial and equatorial anomers

to nonpolar and aqueous environments.

The Methods section outlines the ab initio approaches

employed in this study, and describes the layered composite

method (LCM) in detail. The Results and Discussion section

consists of three subsections. Anomeric Ratios begins with the

determination of the optimal LCM combination based on

comparison with CCSD(T)/CBS results previously calculated

for 2-Me-THP (20) and presently calculated for 2-Eth-THP.
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Minimum energy (DE), zero-point corrected energy (DE0),

thermally corrected (DH298), and free energy (DG298) differ-

ences are calculated for 2-Eth-THP in vacuum and solvent at

various levels of theory, and the deficiencies of some

treatments are discussed (20–22). The Glycosyl Torsional

Potentials subsection reports two-dimensional (2-D) f,c maps

for the 2-Eth-THP glycosyl linkage calculated at the MP2/6-

31G(d) level, and proceeds to the 1-D torsional surfaces for the

LCM and other relevant levels of theory. Lastly, Effects of

Solvation investigates the solvent effects on the 1-D and 2-D

surfaces, and the final section presents the Conclusions.

METHODS

Computations were performed using either the Gaussian 03 (23), Q-Chem

3.0 (24), or Molpro 2002 (25) software packages. Full 2-D surfaces were

created by rotating around the glycosyl torsion angles f and c in 15� in-

crements and performing optimizations for a total of 576 points on each

surface. Using these two surfaces as guides, 1-D glycosyl torsional surfaces

of the f and c angles in ax-2-Eth-THP and eq-2-Eth-THP were generated.

In the full 2-D surfaces the selected dihedrals were constrained and the

remainder of the molecule optimized at the MP2/6-31G(d) level of theory.

Solvation corrections to the f,c surfaces were performed as single point en-

ergy corrections and employed the IPCM implicit solvation model (19).

RIMP2 and Local MP2 calculations were performed with Q-Chem 3.0. The

calculation of DG298 was performed after optimizing the global minima of

the respective 2-D surfaces at the MP2/cc-pVTZ level of theory and com-

puting the normal modes of vibration at 298.15 K.

One-dimensional surfaces were refined with constrained optimizations at

the MP2/cc-pVTZ level of theory. Solvation corrections made to the 1-D f

and c surfaces employed the more robust and efficient IEFPCM solvation

model (15–18) and were again performed at the MP2/cc-pVTZ level of

theory. The corrections performed on the 1-D surfaces employed a dielectric

constant of 78.4 to model the effects of water as a solvent. The solvation

correction to the anomeric ratio was performed using a dielectric of 10.0 to

approximate experimental conditions (26). More explicitly, since the exper-

imental free energy difference was determined in neat liquid 2-Eth-THP we

approximated the dielectric constant by using the default radius (2.560 Å) and

eN (1.971) of tetrahydrofuran while increasing the dielectric constant (e) from

7.58 (e of tetrahydrofuran) to 10.0, thereby effectively increasing the polarity.

We devised and performed layered composite method calculations,

LCM(X,Y) where X ¼ 2,3 and Y ¼ 3,4,5. All LCM calculations employed

the Dunning correlation consistent basis sets as denoted by cc-pVXZ (X ¼
D,T,Q,5) (27). The LCM(X,Y) procedure can be considered a combination of

G3 (12) and ONIOM (28) theories where X refers to the number of layers

(i.e., levels of theory) and Y refers to the largest cardinal number of the

Dunning basis sets.

EðHigh; LargeÞ ffi EðHigh; SmallÞ
1 ½EðLow; LargeÞ � EðLow; SmallÞ�;

(1)

where High ¼ CCSD(T), Large ¼ cc-pVTZ, Low ¼ MP2, and Small ¼
cc-pVDZ. This leads to the following definition of LCM(2,3):

EðCCSDðTÞ; cc-pVTZÞ ffi EðCCSDðTÞ; cc-pVDZÞ
1 ½EðMP2; cc-pVTZÞ
� EðMP2; cc-pVDZÞ�: (2)

The LCM(2,3) has a similar form to the G3(MP2)-RAD procedure of Radom

and co-workers (29,30), although it uses Dunning basis sets and does not

include a high-level correction. In addition to a two-layered composite en-

ergy, a three-layered composite energy was formulated using the definition

where High ¼ CCSD(T), Intermediate ¼ MP2, Low ¼ HF, Large ¼ cc-

pVQZ, Medium¼ cc-pVTZ, and Small¼ cc-pVDZ. This leads to LCM(3,4)

being defined as

All structures were optimized at the MP2/cc-pVTZ level of theory.

To validate the LCM(X,Y) procedure, we performed complete basis set

(CBS) extrapolations (31,32). The CBS limit of the SCF total energy was

determined by fitting the cc-pVXZ (X ¼ T,Q,5) calculations to the three-

parameter function:

E ¼ E
CBS

RHF 1 a expð�bXÞ: (5)

The CBS limit of the MP2 correlation energy was obtained using a

simplified version of the two-point Helgaker extrapolation (33),

E
CBS

MP2ðA;BÞ ¼
A

3
E

cc-pVAZ

MP2 � B
3
E

cc-pVBZ

MP2

A
3 � B

3 ; (6)

where A ¼ 5 (the cardinal number of cc-pV5Z) and B ¼ 4 (the cardinal

number of cc-pVQZ). To compute the CCSD(T)/CBS limit, Eq. 6 was again

employed. The CCSD(T)(D,T) and MP2(D,T) results yield

dE
CBS

CCSDðTÞ ¼ E
CBS

CCSDðTÞðD; TÞ � E
CBS

MP2ðD; TÞ; (7)

FIGURE 1 Schematic of axial (left) and equatorial (right) 2-ethoxy tetrahy-

dropyran, including labels showing the glycosyl (f) and exoglycosyl (c)

torsion angles.

EðHigh; LargeÞ ffi EðLow; LargeÞ1 ½EðHigh; SmallÞ � EðIntermediate; SmallÞ�
1 ½EðIntermediate; MediumÞ � EðLow; MediumÞ�;

(3)

EðCCSDðTÞ; cc-pVQZÞ ffi EðHF; cc-pVQZÞ1 ½EðCCSDðTÞ; cc-pVDZÞ � EðMP2; cc-pVDZÞ�
1 ½EðMP2; cc-pVTZÞ � EðHF; cc-pVTZÞ�:

(4)
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which leads to the final CBS energy of

E
CBS

CCSDðTÞ ¼ E
CBS

RHF 1 E
CBS

MP2ðQ; 5Þ1 dE
CBS

CCSDðTÞ: (8)

This extrapolated energy was only computed for the grid-constrained global

minimum of the ax-2-Eth-THP and eq-2-Eth-THP anomers.

RESULTS AND DISCUSSION

Anomeric ratios

Many groups have sought to accurately compute anomeric

ratios of carbohydrates with most employing Hartree-Fock

(HF) or density functional theory (DFT) (34–37). The reasons

for the choices in level of theory are twofold: one, until

recently efficient computational hardware and software did not

exist to perform high level calculations on such large systems;

and, two, it has been noted by several groups, but initially by

Salzner and Schleyer (21) and then by Tvaroska and Carver

(22,35), that Möller Plesset series methods (i.e., MP2 and

MP4) significantly overestimate anomeric ratios of model car-

bohydrates. For example, Tvaroska and Carver reported a 2.23

kcal/mol anomeric energy difference at the MP2/6-31G*

level of theory compared to a 1.47 kcal/mol result at the HF/

6-31G* level. A very recent article by Weldon et al. (20)

investigated this problem by performing CCSD(T) with

complete basis set (CBS) extrapolations and concluded that

HF and DFT overestimated the equatorial stabilization by 0.7

and 0.4 kcal/mol, respectively (20). This is somewhat at odds

with previous studies (21,22,35) that have concluded that

MP2 was erroneous. However, these studies were limited to

small basis sets and lower levels of theory.

As a first step toward understanding the influence of

applied level of theory on the anomeric ratio and other con-

formational energies, the proposed extrapolations, LCM(X,Y)

X ¼ 2,3 and Y ¼ 3,4,5, were applied to 2-Me-THP and

compared to the CCSD(T)/CBS anomeric energy difference

reported by Weldon et al. (20) (1.27 kcal/mol). The two-

layered result (LCM(2,3)), which is obviously deficient in the

n-particle direction (i.e., basis set), overestimates the energy

difference by 0.16 kcal/mol (1.43 kcal/mol). In contrast, the

three-layered result (LCM(3,4)), agrees almost exactly with

the much more expensive and tedious CBS extrapolation pro-

cedure; i.e., DE¼ 1.26 kcal/mol, which is only 0.01 kcal/mol

different from the result of Weldon et al.

To further demonstrate the accuracy of the layering pro-

cedure, Table 1 compares the results of full CBS extrapola-

tions on the global minima of ax-2-Eth-THP and eq-2-Eth-

THP with LCM (2,3), (2,4), (2,5), (3,4) and (3,5). The LCM

results are within 0.1 kcal/mol of the much more costly CBS

extrapolations in all cases. For example, LCM(3,4) is 100

times faster than the CCSD(T)/CBS procedure, and requires

one-20th of the system resources. This is because LCM(3,4)

employs only a CCSD(T)/cc-pVDZ energy, while the CCSD(T)/

CBS requires a CCSD(T)/cc-pVTZ energy. Consequently,

energies along the 1-D torsion were generated at the LCM(3,4)

level, and served as a standard for more approximate methods.

While the above results indicate that the proposed com-

posite methods can yield very good agreement with CBS

results, additional calculations were undertaken to determine

if even more computationally accessible methods could also

yield satisfactory agreement. The results confirm that HF

overstabilizes equatorial conformations of THP derivatives.

The DE at the MP2/cc-pVTZ level shows that ax-2-Eth-THP

is preferred by 1.60 kcal/mol, which predicts 93.7% axial

population. On the other hand, the experimental free energy

difference (DGexp) shows a 68% (DGexp ¼ 0.47 6 0.3 kcal/

mol) axial population for neat 2-Eth-THP (26). However,

both HF/cc-pVQZ (DE ¼ 0.55 kcal/mol) and HF/cc-pVTZ

(DE ¼ 0.64 kcal/mol) are easily within the error of the

original experiment and would lead to equatorial populations

of 71.7% and 74.7%, respectively. These results are in accord

with those of Weldon et al. (20), who show that DE is not

directly comparable to DH298 or DG298 for 2-hydroxy- and 2-

methoxy-THP. To explore this point, the enthalpic and en-

tropic contributions, computed at 298.18 K, at the highest level

of theory reasonable (MP2/cc-pVTZ) were investigated to

determine their effect on the relative energies. After adding

entropic corrections to the energy difference (DE / DG298) at

the MP2/cc-pVTZ//MP2/cc-pVTZ level, the free energy dif-

ference decreased to 1.41 kcal/mol (91.5%) in favor of the

axial conformer. This again is a substantial overestimation of

the axial population in solution. Applying this correction to the

LCM(3,4) extrapolation results in a DG298 of 1.16 kcal/mol

(87.6%), which is still overly favorable to the axial conformer.

Free energy calculations, even in the gas phase, show an

increased entropy for the equatorial conformer, lowering the

DG298. These results indicate that the anomeric effect is a

balance of both enthalpic and entropic effects, and when

attempting to use correlated levels of theory to accurately

compute anomeric ratios of carbohydrates it is essential to

include the thermal corrections. The anomeric energy dif-

ference computed at the CCSD(T)/cc-pVTZ//MP2/cc-pVTZ

level only corrected the MP2 energy gap by 0.13 kcal/mol.

This parallels the results of Weldon et al. (20), who dem-

onstrated that increasing level of theory from MP2 to

CCSD(T) is relatively basis-set-independent and accounts

for only ;0.1–0.2 kcal/mol. This is one of the properties that

makes additivity-based extrapolations possible.

Based on the present results, the seemingly correct results of

HF may be attributed to three major factors: overstabilization

of the equatorial anomer; cancellation of errors between a lack

of correlation treatment and a lack of solvation effects; and

neglect of thermal (enthalpic and/or entropic) effects. These ob-

servations allow us to conclude that the use of HF to obtain

anomeric energy differences is not appropriate.

At this stage, it was deemed appropriate to determine the

contribution of solvation effects to the axial and equatorial rel-

ative energy. To account for these effects, the anomeric ratio

was computed at both the MP2/cc-pVTZ and MP2/cc-pVTZ/

Modeling Carbohydrate Stereoelectronics 3
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IEFPCM levels of theory. Performing these calculations

yielded solvation corrections (DEgas � DEsolvent) of 0.64

(grid-constrained) and 0.75 kcal/mol (fully relaxed). Fully

relaxed solvation corrections were also computed at the HF/

cc-pVTZ and B3LYP/cc-pVTZ levels of theory to examine

the methodological dependence of this effect. There is good

agreement between the MP2 correction (0.75 kcal/mol) and

HF (0.86 kcal/mol) and B3LYP (0.74 kcal/mol). In addition,

the validity of a static solvation correction was examined by

performing HF/cc-pVTZ/IEFPCM//HF/cc-pVTZ and B3LYP/

cc-pVTZ/IEFPCM//B3LYP/cc-pVTZ calculations. This re-

sulted in solvation corrections of 0.79 and 0.68 kcal/mol for

the HF and B3LYP levels, respectively. This confirmed

relatively small minima shifts from the fully relaxed

IEFPCM optimizations and validates our use of reaction

field corrections at the gas-phase optimized structures. From

this point forward, the MP2 fully relaxed solvation correction

(0.75 kcal/mol) will be employed. Applying the MP2

solvation correction to LCM(3,5) and CCSD(T)/CBS (Table

1) resulted in DG298 values of 0.45 and 0.49 kcal/mol,

respectively. The results are in excellent agreement with the

experimental value of 0.47 6 0.3 (26). From this analysis it

is clear that, even very high-level, vacuum-based ab initio

methods (i.e., CCSD(T) extrapolations, LCM(X,Y), etc.)

cannot reproduce the DGexp of this model carbohydrate.

However, even a simple solvation correction can yield good

agreement with experiment.

Given the popularity of density functional theory, we also

computed the anomeric ratio employing the most widely used

functional (B3LYP) and a common Pople basis set (6-3111

G(d,p)). Optimizing both the axial and equatorial conformers

at this level of theory led to a 0.44 kcal/mol anomeric energy

difference. As previously noted, B3LYP, in addition to HF,

also suffers from overstabilization of the equatorial anomer.

As reported by Weldon et al. (20), this effect, using DFT,

accounts for an ;0.4 kcal/mol lowering of DE. However,

using the 6-3111G(d,p) basis set, the difference is nearly

1 kcal/mol. After confirming that these were minima on their

relative potential energy surfaces, we added the entropic

corrections and arrived at a 0.96 kcal/mol DG298, which is in

better agreement with the ;0.4 kcal/mol value observed for

2-methoxy and 2-hydroxy THP.

To further investigate the equatorial overstabilization of

HF and DFT we examined the trends in going from DE /
DG298 and vacuum / solvated and compared this to MP2

results. When examining the DE alone, HF and DFT appear

to be doing very well; however, when entropic effects are

included, free energy differences are underestimated. When

solvation corrections are incorporated, which bring MP2

results to within the experimental error, HF and DFT invert

the relative stability as compared to experiment. HF predicts

the equatorial conformer to be 0.19 kcal/mol more stable

than the axial, and B3LYP predicts 0.13 kcal/mol equatorial

favorability. This result arises because both entropic effects

and solvation effects stabilize the equatorial form. A compar-

ison of the �0.19 and �0.13 free energy differences to the

experimental value of 0.47 yields equatorial overstabiliza-

tion of 0.66 and 0.60 kcal/mol, respectively, for HF and

B3LYP. These are slightly larger than the 0.4 kcal/mol

predicted by Weldon and co-workers.

Glycosyl torsional potentials

2-D f,c maps

We performed constrained (f, c) 2-D surface optimizations at

the MP2/6-31G(d) level for the glycosyl linkage of both ax-2-

Eth-THP and eq-2-Eth-THP. These surfaces (Fig. 2), which

TABLE 1 Anomeric energy differences (DE) defined

as Eequatorial � Eaxial

Level of theory DE (DE0, DH298, DG298)

HF/cc-pVDZ//HF/cc-pVDZ 1.28 (0.98, 1.03, 0.92)

HF/cc-pVTZ//HF/cc-pVTZ 0.64 (0.35, 0.44, 0.27)

HF/cc-pVTZ/IEFPCM//HF/cc-pVTZ �0.11 [�0.40, �0.31, �0.48]

HF/cc-pVTZ/IEFPCM//HF/

cc-pVTZ/IEFPCM

�0.19 [�0.48, �0.39, �0.56]

HF/cc-pVQZ//HF/cc-pVQZ 0.55 (0.28, 0.32, 0.26)

MP2/6-31G(d)//MP2/6-31G(d) 2.30 (2.02, 2.06, 2.01)

MP2/cc-pVDZ//MP2/cc-pVDZ 2.02 (1.73, 1.78, 1.68)

MP2/cc-pVTZ//MP2/cc-pVDZ 2.10 (1.80, 1.86, 1.69)

MP2/cc-pVTZ//MP2/cc-pVTZ 1.60 (1.36, 1.39, 1.41)

MP2/cc-pVQZ//MP2/cc-pVTZ 1.54 [1.31, 1.33, 1.35]

MP2/cc-pV5Z//MP2/cc-pVTZ 1.54 [1.31, 1.33, 1.35]

MP2/cc-pVTZ/IEFPCM//MP2/cc-pVTZ 0.96 [0.72, 0.75, 0.77]

MP2/cc-pVTZ/IEFPCM//MP2/

cc-pVTZ/IEFPCM

0.75 [0.51, 0.54, 0.56]

LMP2(TRIM)/cc-pVTZ//MP2/cc-pVTZ 1.63 [1.39, 1.42, 1.44]

LMP2(DIM)/cc-pVTZ//MP2/cc-pVTZ 1.30 [1.06, 1.09, 1.11]

RIMP2/cc-pVTZ//RIMP2/cc-pVTZ 1.51 [1.27, 1.30, 1.32]

CCSD(T)/cc-pVDZ//MP2/cc-pVTZ 2.00 [1.76, 1.78, 1.58]

CCSD(T)/cc-pVTZ//MP2/cc-pVTZ 1.47 [1.23, 1.26, 1.28]

CCSD(T)/CBS//MP2/cc-pVTZ 1.42 [1.19, 1.21, 1.23]

CCSD(T)/CBS/IEFPCM//MP2/cc-pVTZa 0.68 [0.44, 0.47, 0.49]

B3LYP/6-3111G(d,p)//B3LYP/

6-3111G(d,p)

0.44 (0.55, 0.43, 0.96)

B3LYP/cc-pVTZ//B3LYP/cc-pVTZ 0.63 (0.45, 0.45, 0.58)

B3LYP/cc-pVTZ/IEFPCM//B3LYP/

cc-pVTZ

�0.07 [�0.25, �0.25,�0.12]

B3LYP/cc-pVTZ/IEFPCM//B3LYP/

cc-pVTZ/IEFPCM

�0.13 [�0.31, �0.31,�0.18]

LCM(2,3) 1.49 [1.25, 1.28, 1.30]

LCM(2,4) 1.41 [1.17, 1.20, 1.22]

LCM(2,5) 1.41 [1.17, 1.20, 1.22]

LCM(3,4) 1.35 [1.11, 1.14, 1.16]

LCM(3,5) 1.39 [1.15, 1.18, 1.20]

LCM(3,5)/IEFPCM* 0.64 [0.41, 0.43, 0.45]

Experimental (26) 0.47 6 0.3

A positive value indicates the axial anomer is more stable than the equa-

torial form. Values in the parentheses are zero-point corrected (DE0),

enthalpy (DH298), and free energy (DG298) differences, respectively. Values

in brackets were not computed but instead were projected using the MP2/

cc-pVTZ vibrational information.

*Applied a solvation correction based on the neat liquid dielectric (0.75

kcal/mol), computed at the MP2/cc-pVTZ/IEFPCM//MP2/cc-pVTZ/

IEFPCM level of theory. Experimental value is the free energy difference

(DGexp) in the neat fluid.
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were created to identify all possible minima and maxima,

show the respective conformers to have multiple broad

minima located near the f equals 60� and 285� regions. An

additional local minimum appears on the eq-2-Eth-THP

surface (Fig. 2, right) at the 60�,195� (f, c) point. This broad

low energy region, which is purely an exocyclic effect, comes

about because of stabilization of the exocyclic oxygen lone-

pair by the remaining portion of the exocyclic substituent (i.e.,

ethyl moiety). At the 60�,195� minimum, the exocyclic lone-

pair orients to maximize hyperconjugation with the adjacent

C-H anti-bonding orbitals. This effect also contributes to the

stabilization of the global minimum of 300�,195�.

1-D f surfaces

To our knowledge, no high-level ab initio study has been

published examining the glycosyl torsional potentials of ax-

2-Eth-THP and eq-2-Eth-THP. Most researchers have used

either HF or DFT to map these potentials because of prob-

lems associated with computing the anomeric effect and the

cost of obtaining full 1-D surfaces at higher levels of theory.

In the past, 2-Me-THP has typically been the largest model

employed to study anomeric and exoanomeric effects and

to parameterize modern carbohydrate force fields (37–40).

Mapping the f- and c-torsional potentials of ax-2-Eth-

THP and eq-2-Eth-THP will allow for a comparison with

2-Me-THP.

Booth et al. (41) determined experimentally the three con-

formations that are most highly populated on the f-surfaces

of axial and equatorial 2-Me-THP. These correspond to the

f¼ 60� region on the ax-2-Eth-THP surface and the f¼ 60�
and 300� regions on the eq-2-Eth-THP surface (Fig. 3). Our

results confirm this assertion.

Examining the f-surface of ax-2-Eth-THP (Table 2, Fig.

3, top) in detail reveals a deep, well-defined minimum at 60�
at all levels of theory. HF and B3LYP flatten this portion of

the surface making 60� and 75� nearly isoenergetic. This

result should have little effect on the populations, as there are

no other well-defined minima that would contribute signif-

icantly while sampling this surface.

FIGURE 2 Relaxed f,c surfaces for the axial (left) and equatorial (right) 2-Eth-THP glycosyl linkage computed at the MP2/6-31G(d) level of theory, with

vacuum (top) and solvent (IPCM) (bottom).
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All levels of theory agree on the shape of the f-surface

global minimum of eq-2-Eth-THP (Fig. 3, bottom). The

minimum, which is nearly isoenergetic at f-values of 285�
and 300�, is fairly broad. Another minimum, which corre-

sponds to Booth’s prediction of a second participating con-

formation, appears at f¼ 60�. The LCM(2,3) and LCM(3,4)

results are ;2.3 kcal/mol above the global minimum. This is

nearly 1 kBT lower in energy than the HF results (2.9 kcal/

mol) and ;0.5 kBT lower than the B3LYP and MP2/6-31G(d)

results (2.7 kcal/mol). These differences cannot be ignored as

they would likely lead to significant population differences

when sampling on their respective surfaces. At the barrier of

this transition, HF again does not agree with LCM, whereas

B3LYP and MP2/6-31G(d) behave more favorably. HF/

cc-pVDZ underestimates the barrier by 0.7 kcal/mol, while

the larger basis sets (HF/cc-pVXZ X ¼ T,Q) more closely

match the LCM(3,4) results (Table 2). These results clearly

show that using a deficient double-z quality basis set will

lead to significant differences not only in populations but

also in predicted rates of conversion between relevant states.

In contrast, the MP2/cc-pVTZ surfaces are in excellent

agreement with LCM(3,4) f-surfaces with the largest devi-

ations being observed in the vicinity of the inaccessible high-

energy region (f ¼ 285�) on the axial surface (Fig. 3, top).

To examine the effects of entropy on the 1-D f surfaces,

frequencies (and thus DG298) were computed at the HF/

cc-pVTZ and B3LYP/6-3111G(d,p) levels employing the

extreme points listed in Table 2. At both levels of theory, the

ax-2-Eth-THP free energy surface shows a clearly defined

minimum at the 150�. The DE between 60� and 150� is 3.11

and 3.39 kcal/mol for HF and B3LYP, respectively. However,

when entropy is accounted for, these free energy differences

(DG298) drop to 2.49 and 2.86 kcal/mol. In addition, the

barrier that separates these two points along the surface

increases from 3.33 to 3.83 kcal/mol at the B3LYP level while

the HF barrier remains virtually unchanged. Although the

MP2 frequencies are currently too expensive to perform the

same analysis it is expected that similar trends would be

observed thus deepening the 150� minima and increasing the

barrier that separates it from the global minimum at 60�.

An analogous effect is observed when examining DE /
DG298 on the eq-2-Eth-THP f-surface. For example, the

energy surface shows a shoulder region located at 210� that

appears to be a very shallow minimum at the LCM(3,4) level

of theory; however, this does not exist with HF and B3LYP.

When transitioning from energy to free energy, the DG298

between the global minimum (300�) and 210� drops from

FIGURE 3 1-D Axial (top) and equatorial (bottom) f-surfaces.

TABLE 2 Relative energies of the f-torsional potentials for axial and equatorial 2-Eth-THP

Axial f-torsional profile Equatorial f-torsional profile

Level of theory 60� 135� 150� 240� 0� 60� 135� 210� 300�

HF/cc-pVDZ//HF/cc-pVDZ 0.00 3.43 3.57 10.62 4.57 2.87 8.24 4.40 0.00

HF/cc-pVTZ//HF/cc-pVTZ 0.06 3.05 3.17 10.14 4.85 2.93 7.78 3.91 0.00

HF/cc-pVTZ//HF/cc-pVTZ (DG) 0.22 3.05 2.48 10.21 5.08 3.39 8.02 3.17 0.31

HF/cc-pVQZ//HF/cc-pVQZ 0.07 2.94 3.06 9.95 4.93 2.94 7.63 3.78 0.01

MP2/cc-pVDZ//MP2/cc-pVTZ 0.00 4.28 4.19 9.94 5.34 2.50 7.71 4.35 0.00

MP2/cc-pVTZ//MP2/cc-pVTZ 0.00 3.90 3.74 9.09 5.39 2.42 7.14 4.01 0.00

CCSD(T)/cc-pVDZ//MP2/cc-pVTZ 0.00 4.16 4.08 9.61 5.20 2.45 7.57 4.33 0.00

LCM(2,3) 0.00 3.79 3.63 8.76 5.25 2.37 7.00 3.99 0.00

LCM(3,4) 0.00 3.68 3.53 8.57 5.32 2.37 6.83 3.84 0.00

B3LYP/6-3111G(d,p)//B3LYP/6-3111G(d,p) 0.00 3.33 3.39 8.82 5.20 2.69 7.36 4.10 0.00

B3LYP/6-3111G(d,p)//B3LYP/6-3111G(d,p) (DG) 0.04 3.83 2.90 9.43 5.69 2.63 7.92 3.33 0.14

MP2/6-31G(d)//MP2/6-31G(d) 0.00 4.51 3.99 10.39 5.28 2.73 7.96 4.56 0.00

MP2/cc-pVTZ/IEFPCM//MP2/cc-pVTZ 0.00 3.44 2.98 7.34 6.28 2.40 5.72 2.64 0.21

All values in kcal/mol. Entries with nonzero values at f ¼ 60� or 300� have energy minima slightly shifted from these values.
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3.91 to 3.17 kcal/mol at HF/cc-pVTZ and 4.10 to 3.33 kcal/

mol at B3LYP/6-3111G(d,p). More importantly, an in-

crease occurs at 225� that creates a true barrier on the B3LYP

(3.90 / 4.27 kcal/mol) free energy surface; however, the

barrier actually decreases on the HF surface, but does so less

than the decrease at the 210� minimum.

1-D c-surfaces

Next, c-surfaces (Fig. 4, Table 3) of ax-2-Eth-THP and eq-2-

Eth-THP were computed keeping their respective f-values

(60� for ax-2-Eth-THP and 300� for eq-2-Eth-THP) fixed at

their lowest energy values as determined from the full MP2/

6-31G(d) 2-D surface maps. In contrast to the f-surfaces,

which are governed by fairly deep minima, the c-potentials

have one well-defined minimum and two broad shallow

minima on either side of the global minimum.

The axial c-surface global minimum is very broad and is

centered between 150� and 195�. The energetic variation of

this region is maximized at the 150� position and is only

;0.5 kcal/mol higher in energy than the global minimum,

which is positioned at 180�. On each side of the global

minimum there is a shallow minima that lies ;1 kcal/mol

higher in energy. The local minimum at c ¼ 75�–90� is

extremely shallow, and is not even found at HF levels of

theory. All correlated levels confirm this minimum, but pre-

dict a depth of only 0.2–0.4 kcal/mol.

At c ¼ 270� another shallow minimum occurs. The

LCM(3,4) extrapolation predicts this to be 1.39 kcal/mol

above the global minimum with a barrier between them of

only 1.74 kcal/mol leaving a well-depth of 0.35 kcal/mol. At

the HF levels of theory we again observe sporadic behavior

with HF/cc-pVXZ (X ¼ D,T,Q; Table 3). These results are

nearly a full kBT higher in energy than the extrapolated re-

sults and would lead to significant population differences if

using these surfaces for simulations. On the other hand, the

rather cost-effective MP2/cc-pVTZ level of theory repro-

duces the higher level curves with an average error of ,0.05

kcal/mol.

Similar to the axial surface the equatorial c-surface has its

broad global minimum spanning the 180�–195� region.

Results from the LCM(3,4) calculations show a local

minimum (c ¼ 105�) lying 0.92 kcal/mol above the global

minimum with a barrier between them of only 0.39 kcal/mol.

HF results, which show no minimum at c ¼ 105�, lie sig-

nificantly higher in energy than the LCM results. Although

B3LYP agrees with LCM results slightly better than HF, the

barrier between this point and the global minimum is only

0.07 kcal/mol and is questionable at this level of theory.

An additional minimum exists (c¼ 270�) on the equatorial

surface. This minimum is not predicted by HF, and is only

weakly predicted by B3LYP with only a 0.31 kcal/mol barrier

and total energy difference of 1.40 kcal/mol. However,

LCM(3,4) predicts DE ¼ 1.12 kcal/mol with a barrier going

to the global minimum of 0.54 kcal/mol.

Analysis of the c-surfaces shows that both the axial and

equatorial potentials are very soft and this degree of freedom

will be quite floppy. Therefore, it is essential that an adequate

level of theory be chosen to properly characterize it. The

axial and equatorial f-surfaces are not nearly as soft and thus

it has been possible to use lower levels of theory. However,

even on well-defined surfaces such as equatorial f (Fig. 3,

bottom), significant differences can be observed by using too

low a level of theory (i.e., HF). For example, there is nearly a

full kBT energy difference between our LCM results and the

best HF level when comparing DE of f ¼ 300� and 60� on

the eq-2-Eth-THP surface. In contrast to this behavior, the

MP2/cc-pVTZ surfaces closely mirror the LCM(3,4) results

with an average error, at the extrema, of ,0.06 kcal/mol.

Examining the DG298 values on the 1-D ax-2-Eth-THP c

surface (at the HF/cc-pVTZ and B3LYP/6-3111G(d,p))

reveals that entropy tends to destabilize the extreme points

that we examined. The only exception to this was the 75�
point on the B3LYP surface, which was stabilized slightly

(0.12 kcal/mol). Although entropy destabilizes the extreme

points, the minima (75� and 240�) actually become better

defined. This is because the transition points along the path

are destabilized more than the minima. For example, on the

B3LYP surface, the 240� barrier increases by 0.91 kcal/mol.

whereas the 270� minimum only increases by 0.27 kcal/mol.FIGURE 4 1-D Axial (top) and equatorial (bottom) c-surfaces.

Modeling Carbohydrate Stereoelectronics 7

Biophysical Journal 93(1) 1–10



The exception to this is the 75� region on the HF surface

where no minimum was previously predicted.

In contrast to the behavior of the ax-2-Eth-THP c-surface,

the eq-2-Eth-THP c-surface does encounter slight entropic

stabilization at the minima. However, like the ax-2-Eth-THP

surfaces, the barriers become larger when going from energy

to free energy, thus creating more well-defined minima. Again,

this analysis was not feasible at the MP2 level of theory, but it

is expected that observed trends will remain consistent.

Effects of solvation

The impact of aqueous solvation on the conformational

properties of the 2-Eth-THP glycosyl linkage was investigated

by IEFPCM (1-D surfaces) and IPCM (2-D surfaces) reaction

field models. Energies for selected points of the 1-D surfaces

are listed in Tables 2 and 3 for the f- and c-torsions,

respectively. The axial f-surface global minimum retains the

same shape as vacuum ab initio methods predict. However, a

well-defined minimum appears at f ¼ 165� with a well depth

of 0.7 kcal/mol. Our solvation-corrected curve (at the MP2/cc-

pVTZ/IEFPCM level) effectively stabilizes the vacuum

surface and shows a maximum correction of ;1.8 kcal/mol

at the high energy f ¼ 240� structure. Qualitatively, solvation

has little effect on the surface, but quantitatively the shallow

minimum that vacuum levels predicted is stabilized by 1.0

kcal/mol and the barrier connecting this to the global minimum

is lowered by 0.3 kcal/mol. The axial c-surface shows very

little qualitative or quantitative effects from solvation.

The equatorial f-surface shows larger solvent shifts than

does the axial. The first and most important change on this

surface is the dramatic stabilization at f ¼ 135�. Vacuum

calculations show this to be the global maximum whereas

solvation predicts the global maximum to be at f ¼ 0�/360�.

This amounts to lowering the high energy barrier between

global/local minima by 1.5 kcal/mol. In conjunction, solva-

tion raises the barrier at f¼ 0�/360� from 4.9 to 6.3 kcal/mol

(1.4 kcal/mol). The positions of the global and local minima

also shift slightly from 300� to 285� and 60� to 75�, respe-

ctively. In addition, the shoulder region of this surface, located

at ;210�, becomes a shallow minimum.

The equatorial c-surface also undergoes changes with

respect to the vacuum. The global minimum, which was

broad and spanned c ¼ 180�/190� region, is now even

broader, encompassing c ¼ 150� as well. The minimum

located at 105� is significantly destabilized by solvent. The

vacuum minimum, which was 0.8 kcal/mol above the global

minimum, is raised 0.5 kcal/mol in energy. In contrast, the

vacuum minimum located at 270� is stabilized by solvent

and the DE is lowered from 1.2 kcal/mol to 0.7 kcal/mol with

the barrier height remaining nearly unchanged.

Observing the role solvent corrections had in modifying

the 1-D glycosyl torsional potentials, a solvation correction

was added to the full 2-D (f,c) vacuum surfaces of ax-2-

Eth-THP and eq-2-Eth-THP (Fig. 2, bottom). As observed

for the 1-D torsional potentials, solvent has the largest effect

on high energy regions of the f,c surfaces. In particular, the

f ; 180� region on the 2-D surfaces of both ax-2-Eth-THP

and eq-2-Eth-THP show significant (2–3 kcal/mol) stabili-

zation when solvent is introduced. This corresponds to the

highest energy transition state on the respective 1-D poten-

tials. In addition to the changes seen at the f maximum re-

gion, the equatorial map shows more variation at c ; 285�,

which encompasses the global minimum region (Fig. 2, right).
A general conclusion drawn from the full 2-D solvation

maps is that equatorial conformations typically undergo

more dramatic stabilization as a consequence of adding

solvent. Specifically, the higher energy (and lower energy to

a lesser extent) regions associated with equatorial confor-

mations incur greater solvent stabilization as compared to

their axial counterparts. This result is expected due to the ex-

tended conformations that equatorial anomers can adopt;

however, the present maps allow us to observe the exact re-

gions in which solvent has the largest effects.

TABLE 3 Relative energies of the c-torsional potentials for axial and equatorial 2-Eth-THP

Axial c-torsional profile Equatorial c-torsional profile

Level of theory 75� 120� 180� 240� 270� 105� 135� 180� 240� 270�

HF/cc-pVDZ//HF/cc-pVDZ 1.64 1.34 0.00 2.33 1.75 1.09 1.20 0.00 1.56 1.54

HF/cc-pVTZ//HF/cc-pVTZ 1.74 1.52 0.00 2.37 2.00 1.50 1.43 0.00 1.77 1.68

HF/cc-pVTZ//HF/cc-pVTZ (DG) 2.43 1.95 0.00 2.94 2.01 1.10 2.01 0.00 2.29 1.51

HF/cc-pVQZ//HF/cc-pVQZ 1.76 1.56 0.00 2.38 2.07 1.60 1.50 0.00 1.80 1.69

MP2/cc-pVDZ//MP2/cc-pVTZ 1.11 1.38 0.00 1.92 1.10 0.44 1.05 0.00 1.49 0.96

MP2/cc-pVTZ//MP2/cc-pVTZ 1.13 1.60 0.00 1.87 1.40 0.83 1.24 0.01 1.69 1.16

CCSD(T)/cc-pVDZ//MP2/cc-pVTZ 1.06 1.29 0.00 1.79 1.01 0.43 1.04 0.02 1.42 0.91

LCM(2,3) 1.08 1.51 0.00 1.74 1.31 0.82 1.23 0.03 1.62 1.11

LCM(3,4) 1.10 1.55 0.00 1.74 1.39 0.92 1.31 0.04 1.66 1.12

B3LYP/6-3111G(d,p)//B3LYP/6-3111G(d,p) 1.28 1.48 0.00 1.96 1.59 1.31 1.38 0.00 1.71 1.40

B3LYP/6-3111G(d,p)//B3LYP/6-3111G(d,p) (DG) 1.16 2.27 0.00 2.87 1.86 1.22 2.20 0.00 2.44 1.34

MP2/6-31G(d)//MP2/6-31G(d) 1.16 1.39 0.00 1.92 1.32 0.54 1.14 0.05 1.55 1.13

MP2/cc-pVTZ/IEFPCM//MP2/cc-pVTZ 1.04 1.51 0.02 1.77 1.29 1.27 1.46 0.08 1.60 0.70

All values in kcal/mol. Entries with nonzero values at c ¼ 120� or 180� have energy minima slightly shifted from these values.
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CONCLUSIONS

This is the first high-level, ab initio study on the model

carbohydrate 2-ethoxy tetrahydropyran. This compound is a

mimic for the glycosyl linkage in disaccharides and glyco-

lipids. We performed constrained (f,c) vacuum optimiza-

tions at the MP2/6-31G(d) level of theory (15� intervals) and

determined 2-D potential energy surfaces for both the axial

and equatorial anomers of 2-Eth-THP. These surfaces pro-

vide the approximate locations of all minima and transition

states connecting them. Three minima exist on the axial

surface with the global minimum at 60�,185�. The equatorial

surface displays four minima, with the 300�,195� point being

the lowest in energy.

We computed the anomeric ratios (DE and DG298) for ax-

2-Eth-THP and eq-2-Eth-THP at various levels of theory.

We developed and applied an energy additivity scheme,

LCM(X,Y); X ¼ 2,3 and Y ¼ 3,4,5, to predict high level

results for the anomeric ratios and compared these results to

previous theoretical and experimental work. In agreement

with recent work published by Weldon et al. (20), it is shown

that HF and DFT benefit from cancellation of errors and tend

to overstabilize equatorial carbohydrate conformations. We

also determined that, for THP derivatives, performing extrap-

olations with high level (e.g., CCSD(T)) estimates in vacuum

and correcting for thermal effects is not enough to achieve

results that are in agreement with solution-based experi-

ments. However, including solvation effects, even at the im-

plicit level, corrects gas phase results, and is essential for

comparing computed anomeric ratios with experimental free

energy differences (DG298).

Glycosyl torsional potentials were examined by mapping

constrained 1-D surfaces at numerous levels of theory. Using

these surfaces as foundations we performed LCM(2,3) and

LCM(3,4) extrapolations of all four possible f- and

c-surfaces of ax-2-Eth-THP and eq-2-Eth-THP. From this

it was determined that variations in the 1-D surfaces,

predicted with lower levels of theory such as HF, DFT, and

MP2 in combination with small basis sets, can be significant

and that care must be taken if accurate potentials are desired.

In contrast, the MP2/cc-pVTZ level of theory yields very

good agreement with the fully extrapolated f- and c-

constrained torsional potentials; the surfaces are typically

within 0.15 kcal/mol of the full three-layered, LCM(3,4),

results. However, if possible, we suggest using the two-

layered approach, especially at high energy regions of the

surfaces. The improved results are due to the coupled cluster

and basis set corrections that are employed in the layered

schemes.

In addition, entropic effects were examined on the 1-D

torsional potentials. It was determined that, in general,

entropy helps to stabilize minima, although not necessarily

directly. For example, in many cases minima were desta-

bilized by entropy, but their associated barriers to the global

minimum were destabilized to a larger extent. This effec-

tively increased their stability and resulted in more well-

defined minima.

Also examined were solvation effects on the 1-D and 2-D

f-and c-surfaces. These results suggest that solvation effects

are more important in stabilizing equatorial carbohydrates

(e.g., eq-2-Eth-THP, b-Glucose) than their axial anomeric

forms. A particularly clear example is the equatorial f gly-

cosyl torsional potential, which changes qualitatively when

using an implicit solvent model.

This study not only examines some fundamental aspects

of carbohydrate structural and stereoelectronic properties,

but also lays the groundwork for the parameterization of a

CHARMM (42,43) compatible carbohydrate force field.

Vacuum and solvent maps, like the ones produced in the

current work, will be invaluable not only to groups that are

interested in parameterizing new force fields, but also to

those interested in correcting current force fields via the em-

pirical correction procedures.
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