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Limits on Fine Mapping of Complex Traits

To the Editor:
We recently published a paper in the Journal on high-
resolution genetic mapping of complex traits (Kruglyak
and Lander 1995). In that paper, we considered the
confidence region for the position of a gene localized
by genetic mapping. We showed that the size of this
confidence region increases rapidly as the trait becomes
more complex (that is, as the relative risk or the propor-
tion of alleles shared by affected relatives decreases). We
concluded that using affected-relative-pair analysis to
localize a gene conferring a modest increased risk to a
region suitable for positional cloning (e.g., 1 cM) re-

quires a large number of relative pairs (or, more gener-
ally, meioses).

Since the paper appeared, we have discovered an intu-
itive way to understand the difficulty of fine mapping
of susceptibility genes for complex traits. The insight
was motivated by a colleague who inquired why one
could not simply confine the search for a susceptibility
gene to the region of maximum allele sharing in a sib-
pair (or other relative pair) data set.
The key question is thus: what is the chance that a

susceptibility gene will not lie in the region of maximum
allele sharing? The answer is easily obtained by using
the methods described in our previous paper (Kruglyak
and Lander 1995).

Proposition

Consider a susceptibility locus at which affected sibs
share a proportion of alleles z > 1/2. (This proportion
is given by z = (z1 + 2z2)/2, where z1 and Z2 are the
proportions of affected sib pairs sharing 1 and 2 alleles
identical by descent at the susceptibility locus.) The
probability that the gene will not lie in the region of
maximum allele sharing in an affected-sib-pair study is
(1 -z)(3z- 1)/z2.

Proof

In fact, one can easily show a stronger result. Consider
an affected-relative-pair study involving relative pairs
with allele-sharing proportion a at random loci and al-
lele-sharing proportion z at a susceptibility locus. The
chance that the number of pairs sharing alleles at the
true susceptibility locus is lower by at least A than the
maximum observed number is qA(2 - qA), where the
quantity q = a(1 - z)/[z(1 - a)]. The proof follows from
appendices D and E of Kruglyak and Lander (1995).
The special case above corresponds to a = 1/2 and A
= 1. The proof implicitly assumes that a large number
of relative pairs has been studied; this is a realistic as-
sumption in the context of fine mapping.

Consider the consequences of this relation for posi-
tional cloning based on sib-pair data. Let Xo, Xs, and kM
denote the relative risk ratios for an offspring, a sibling,
and a monozygotic twin of an affected individual, re-
spectively. Then, z = (Xo/ks + XM/Xs)/4 for a single-locus
trait and z = (3ks - 1)/4ks in the special case of an
additive single-locus trait for which Xco = Xs and kM
= Xs - 1 (Risch 1990a, 1990b). Thus, for an additive
trait with Xs = 40, 6, 3, 2, and 1.5, the sharing propor-
tion z = 0.74, 0.71, 0.67, 0.63, and 0.58, respectively.
The corresponding chance that the gene lies outside the
region of maximal sharing is 0.57, 0.65, 0.74, 0.84, and
0.92. By looking only in the region ofmaximum sharing,
one will thus miss a gene conferring sixfold increased
risk -2/3 of the time, a gene conferring threefold in-
creased risk -3/4 of the time, and a gene conferring
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twofold increased risk nearly 85% of the time. This is
clearly unacceptable in a positional cloning project.
While the precise numbers change, the general conclu-
sion applies to all types of meiotic mapping data.
The simple argument presented above underscores the

difficulty of finely mapping genes underlying complex
traits. This situation is in contrast to that of a rare simple
Mendelian trait, for which the gene always lies in the
region of maximal sharing delimited by the closest
flanking recombinants. Complex traits are different be-
cause a single recombinant cannot be trusted to rule out
a region as the gene's location-the observed lack of
allele sharing may instead reflect the fact that an affected
individual happens not to carry the susceptibility gene.

LEONID KRUGLYAK AND ERic S. LANDER
Whitehead Institute for Biomedical Research,
Cambridge, MA
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Likelihood Ratio Tests for Linkage and Linkage
Disequilibrium: Asymptotic Distribution and Power

To the Editor:
Terwilliger (1995) proposes an interesting likelihood ra-
tio test for linkage disequilibrium that appears conserva-
tive under the null hypothesis and powerful when one
of several alleles is positively associated with the disease.
In a model where Pi is the population frequency of
marker allele j, PD is the population frequency of the
disease allele, and X is a parameter specifying the magni-
tude of the linkage disequilibrium, he defines the log-
likelihood of the data conditional on allele i being posi-
tively associated with the disease to be ln[Li(X)] = Ij
[Xiln(qj ) + Yjln(rj )], where the observed counts of
marker allele j on disease and control chromosomes are
Xi and Y, and where the predicted allele frequencies are
q; = pj + X(1 - Pj) and rj = Pi - (1 - P )PD(1- PD)

when j * i (i.e., the associated allele); and qj = pj
- Xpj and rj = pj + XpjpD/(1 - PD) when j * i (i.e.,
the nonassociated alleles). (Incidentally, the likelihood
function in eq. [1] in the paper should be a product
rather than a sum, although the correct formula was
used in the computer program that implemented the
test.) He then defines the overall likelihood to be a
weighted sum of the conditional likelihoods over all
marker alleles; that is, L(X) = 1i piLi(X). A likelihood
ratio statistic is then

A = 2{Maxx[ln[L(X)]}/{ln[L(R = 0)]) . (1)

This statistic assumes that allele frequencies are known
(as in standard linkage analysis); when allele frequencies
are uncertain, a similar likelihood ratio statistic can be
defined by maximizing the numerator likelihood with
respect to X and allele frequencies jointly and maximiz-
ing the denominator likelihood with respect to allele
frequencies only. In either case A is assumed to be as-
ymptotically distributed as a 50:50 mixture of 0 and
Xi under the null hypothesis (HO, X = 0). The reasoning
given for the 50% point mass at 0 is that the test is
"one-sided" (that is, Ho, X = 0, is tested against H1, X
> 0). Thus, the numerator likelihood will maximize at
X = 0 (giving A = 0) whenever the unrestricted maxi-
mum falls in the inadmissible region X < 0, and this
occurs with probability 0.5 under Ho.

Using this null distribution for A, however, Terwil-
liger found that the test tended to be conservative. This
finding suggests that this distribution is incorrect and
that the standard argument for a "one-sided" test does
not apply to A. To simplify matters in order to gain
insight into the apparent "anomalous" behavior of A,
it is helpful to consider a particular situation under
which A has some properties similar to LOD scores for
phase-unknown sibships. The situation is when both the
disease and marker loci are biallelic with known allele
frequencies Pi = P2 = PD = 1/2. In this special case, given
the observed data (X1, X2, Y1, Y2), the overall likelihood
can be written as

L = (1/2)OR(1 _ 0)N-R + (1/2)0N R(l _ 9)R1 (2)

where R = X1 + Y2, N = X1 + X2 + Y1 + Y2, and 0
= (1 - X)/2. This likelihood function is identical in form
to that of a phase-unknown sibship in which there are
R gametes of one type and N - R gametes of the other,
and where 0 is the recombination fraction. In both cases
Ho corresponds to 0 = 1/2, so that R is a binomial random
variable with parameters (N, 1/2). It is clear that R and
N - R are interchangeable without affecting the value
of L, so we can set R N - R and define K = N - 2R.
Thus,

L = OR(1 - 9)R[9K + (1 - 0)KI/2. (3)


