Letters to the Editor

twofold increased risk nearly 85% of the time. This is
clearly unacceptable in a positional cloning project.
While the precise numbers change, the general conclu-
sion applies to all types of meiotic mapping data.

The simple argument presented above underscores the
difficulty of finely mapping genes underlying complex
traits. This situation is in contrast to that of a rare simple
Mendelian trait, for which the gene always lies in the
region of maximal sharing delimited by the closest
flanking recombinants. Complex traits are different be-
cause a single recombinant cannot be trusted to rule out
a region as the gene’s location—the observed lack of
allele sharing may instead reflect the fact that an affected
individual happens not to carry the susceptibility gene.

LeEoNID KRUGLYAK AND ERIC S. LANDER
Whitehead Institute for Biomedical Research,
Cambridge, MA
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Likelihood Ratio Tests for Linkage and Linkage
Disequilibrium: Asymptotic Distribution and Power

To the Editor:

Terwilliger (1995) proposes an interesting likelihood ra-
tio test for linkage disequilibrium that appears conserva-
tive under the null hypothesis and powerful when one
of several alleles is positively associated with the disease.
In a model where p; is the population frequency of
marker allele j, pp is the population frequency of the
disease allele, and A is a parameter specifying the magni-
tude of the linkage disequilibrium, he defines the log-
likelihood of the data conditional on allele i being posi-
tively associated with the disease to be In[Li(A)] = 3
[XiIn(g; ) + Yn(r;)], where the observed counts of
marker allele j on disease and control chromosomes are
X; and Y, and where the predicted allele frequencies are
g; = p; + M1 — p;) and r; = p; — M1 — p;)po/(1 — pp)
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when j # i (i.e., the associated allele); and g; = p;
— Ap; and r; = p; + Ap;pp/(1 — pp) when j # i (ie,
the nonassociated alleles). (Incidentally, the likelihood
function in eq. [1] in the paper should be a product
rather than a sum, although the correct formula was
used in the computer program that implemented the
test.) He then defines the overall likelihood to be a
weighted sum of the conditional likelihoods over all
marker alleles; that is, L(A) = Z; p;Li(A). A likelihood
ratio statistic is then

A = 2{Max; [In[L(A)]}/{In[L(A = 0)]} . (1)

This statistic assumes that allele frequencies are known
(as in standard linkage analysis); when allele frequencies
are uncertain, a similar likelihood ratio statistic can be
defined by maximizing the numerator likelihood with
respect to A and allele frequencies jointly and maximiz-
ing the denominator likelihood with respect to allele
frequencies only. In either case A is assumed to be as-
ymptotically distributed as a 50:50 mixture of 0 and
x2 under the null hypothesis (Hp, A = 0). The reasoning
given for the 50% point mass at 0 is that the test is
“one-sided” (that is, Hp, A = 0, is tested against Hy, A
> 0). Thus, the numerator likelihood will maximize at
A = 0 (giving A = 0) whenever the unrestricted maxi-
mum falls in the inadmissible region A < 0, and this
occurs with probability 0.5 under H,.

Using this null distribution for A, however, Terwil-
liger found that the test tended to be conservative. This
finding suggests that this distribution is incorrect and
that the standard argument for a “one-sided” test does
not apply to A. To simplify matters in order to gain
insight into the apparent “anomalous” behavior of A,
it is helpful to consider a particular situation under
which A has some properties similar to LOD scores for
phase-unknown sibships. The situation is when both the
disease and marker loci are biallelic with known allele
frequencies p; = p, = pp = %. In this special case, given
the observed data (X, X5, Y3, Y,), the overall likelihood
can be written as

L = ()8%(1 — 0" % + (h)8"R(1 — 8%, (2)

where R=X; + V., N=X; + X, + Y; + Y,,and 0
= (1 — A)/2. This likelihood function is identical in form
to that of a phase-unknown sibship in which there are
R gametes of one type and N — R gametes of the other,
and where 0 is the recombination fraction. In both cases
H, corresponds to 8 = ', so that R is a binomial random
variable with parameters (N,'%). It is clear that R and
N — R are interchangeable without affecting the value
of L, so we can set R < N — R and define K = N — 2R.
Thus,

L = 6%1 — 0)f[e* + (1 —0)“]/2. (3)
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The likelihood ratio is therefore

LR = {8%(1 — O)R[6% + (1 — 0)K)2)/(*h)R*K | (4)

so that

2In(LR) = 2{(R + K — 1)In2
+ R[In6 + In(1 — 0)] (5)
+ In[6X + (1 — 0)X]} .

The likelihood ratio test statistic (A) is the maximum of
this function with respect to 8, over the admissible range
0 < 6 < . Omitting some mathematical details, the
first and second derivatives of 2In(LR) with respect to
0 evaluated at 8 = Y are

{d[2In(LR))/d6}o-12 = O (6)
and
{dz[ZIn(LR)]/d92}9=1/2 =4K(K - 1) — 8R. (7)

It follows that 2In(LR) is either a maximum or minimum
at 8 = Y, depending on whether 4K(K — 1) — 8R is
negative or positive. A maximum at 8 = % would imply
A = 0, since in this case there is no other stationary
point in the likelihood function. The probability that A
= 0 is therefore equal to the probability that 2R > K(K
— 1), which implies (K*/N) < 1. Under Hy, as N in-
creases, R approaches a normal distribution with mean
N/2 and variance N/4, so that K*N = (N — 2R)*)N
becomes approximately 2. The probability that A = 0
is therefore equal to the probability that %} < 1, which
is ~0.68. A is therefore not asymptotically distributed
as a 50:50 mixture of 0 and %3, but a mixture of 0 with
probability .68 and some other distribution with proba-
bility .32. The nonzero part of the distribution, which
can be determined exactly for any given value of N,
applies when (K¥N) > 1, that is, R < (N — VN)/2. (It
is not %2, because the log-likelihood function is 0 at both
the maximum and H, [0 = %], which violates one of the
regularity conditions assumed by standard asymptotic
theory.) However, since both A and K*N increase
monotonically with decreasing R for R < (N — \/ITI)/Z,
they are perfectly correlated in rank and are equivalent
in the sense that if the true distribution of each statistic
is known, the two tests will produce identical P values
on the same data, provided that A is positive. Since the
asymptotic distribution of K%N is known to be 3, it
provides a more convenient test than A. Similarly, it may
be possible to construct a test that is almost equivalent to
Terwilliger’s test for linkage disequilibrium but with the
advantage of a simpler asymptotic distribution.

The fact that LOD scores for phase-unknown sibships
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maximize at 6 = %, with probability ~.68 under non-
linkage may be surprising to some. Because the likeli-
hood is symmetrical about 8 = %, for phase-unknown
sibships (i.e., the LOD scores at® = ¥, —tand 0 = Y,
+ ¢ are identical), it is easy to be misled into thinking
that if the sibship size is large, the LOD score function
will almost never maximize at exactly @ = %, so that
the maximum LOD score is almost never 0. For exam-
ple, Risch (1989) states that for a phase-unknown sib-
ship the LOD score (scaled by a factor of 2In10) is dis-
tributed asymptotically as 3. It is interesting that if
there are J phase-unknown sibships and the sibshipwise
LOD scores are summed to give an overall LOD score
function, then the probability that the maximum total
LOD score is 0 is P[2 Z; R; > Z; Kj(K; — 1)], which is
asymptotically P(x; < J). As ] becomes large, this proba-
bility tends to .5, so that the maximum total LOD score
is 0 with probability .5. This result suggests that LOD
scores (scaled by a factor of 2In10) based on a large
number of families can be referred to one-sided y? test,
regardless of whether the constituent families are phase
known or phase unknown.

This mathematical demonstration applies to Terwil-
liger’s test in only one extremely simple situation. It is
not clear how the null distribution of A behaves under
other more general conditions. However, Terwilliger’s
simulations show that as the number of alleles increases,
the test becomes even more conservative, so that the
deviation of the null distribution from the assumed dis-
tribution is not confined to a few isolated situations.
The test would become more powerful if the correct null
distribution (obtained, for example, by Monte Carlo
methods) were used instead of a conservative null distri-
bution.

It is interesting to note that in spite of the use of a
conservative null distribution, Terwilliger’s test ap-
peared to be more powerful than a conventional Pearson
x? test when applied to simulated data. One reason for
this may be that the test was specifically designed to
detect a single common marker allele positively associ-
ated with the disease, and the test data were simulated
under this condition. The standard Pearson y* test does
not particularly favor the detection of a single common
positively associated allele, and so it is expected to be
less powerful than the new test in this situation, al-
though it may be superior under a different situation—
for example, if there were more than one allele positively
associated with the disease. When we investigated the
power of several other test statistics for association on
a real data set relating to fragile X, we found that tests
that aim to detect association with a single allele were
inferior to tests that take account of differences between
observed and expected frequencies of all alleles (Sham
and Curtis 1995). It is a general principle that tests that
deliberately set out to detect evidence for a particular
alternative hypothesis will be more powerful, if the par-
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ticular alternative hypothesis is close to reality, than tests
that are more general or “model free.” Which tests will
be more appropriate for the detection of linkage disequi-
librium will depend on the nature of linkage disequilib-
rium that tends to occur in real situations, and this is a
topic that merits further investigation.

Pak C. SHAM,"? DAVID CURTIS,! AND
CHARLES J. MACLEAN?
'Departments of Psychological Medicine and
2Biostatistics and Computing, Institute of Psychiatry,
London; *Departments of Psychiatry and Human
Genetics, Medical College of Virginia, Richmond
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Reply to Sham et al.

To The Editor:

Many solutions to the problem of why my proposed
statistic (Terwilliger 1995) for detection of linkage dis-
equilibrium is overly conservative have been proposed.
Some have gone so far as to suggest that the obvious
typographical error in my equation (1), which Sham et
al. [1996, in this issue] point out should have been writ-
ten as

m
— XY,
L =II 4,

i=1

was actually an endemic mathematical error in my
model. Let me assure you that the simulations and the
software have all been performed using the correct form
of equation (1), as shown above; the error in the manu-
script is purely a typographical one. This matter has
nothing to do with the overconservative distribution ob-
served. Sham et al. (1996) rationalize that the observed
increased point mass at zero is analogous to the already
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well-studied situation in phase-unknown linkage analy-
sis (e.g., Nordheim et al. 1984). I partially explained the
increased point mass at o = 0 for the multipoint statistic
by arguing that ““the admissible proportion of the total
parameter space becomes smaller and smaller” with an
increase in the number of markers (Terwilliger 1995, p.
784). It has been further brought to my attention (M.
Knapp, personal communication) that the maximization
procedure I employed in some cases does not fully max-
imize the likelihood over allele frequencies and A, lead-
ing to a decrease in the value of the statistic in some
situations. It is likely that all of these factors play some
role in why the assumption of the 0.5x%, distribution
for this statistic is overly conservative, but to date I
know of no concrete answer to what the actual distribu-
tion is.

Sham et al. (1996, p. 1093) claim that my approach
““assumes that [marker] allele frequencies are known.” In
point of fact, [ have never made this assumption—1I always
have treated them as nuisance parameters in the analysis.
It is trivial to analytically maximize the null hypothesis
likelihood over the allele frequencies, but under the alter-
native hypothesis, it is a very complicated numerical max-
imization problem. When the number of alleles becomes
large, it becomes an extremely computationally intensive
task. To make the maximization more tractable, I re-
stricted the admissible parameter space for the allele fre-
quencies when maximizing the likelihood.

The effect is that sometimes a global maximum is not
achieved, especially when there are either a number of
rare marker alleles, or a rather small data set. This effect
contributes to some of the conservativeness of the statisti-
cal method I proposed. However, the effect is not large
unless the true state of nature in compatible neither with
the null hypothesis of no association nor the specified alter-
native or there are a number of marker alleles that occur
very infrequently in the data set at hand. Improved soft-
ware for the globally maximized likelihood calculations
for both case-control linkage disequilibrium analysis and
haplotype relative risk analysis is available via anonymous
ftp from ftp.well.ox.ac.uk.

The letter by Sham et al. (1996) is largely devoted
to a rediscovery of previously characterized properties
of phase-unknown likelihoods. A comprehensive the-
oretical analysis of this situation has been made by
Nordheim et al. (1984, p. 785), who examined the
“unusual performance of likelihood methods for ge-
netic linkage models with unknown phase” because
the “maximum likelihood method for recombination
frequency yields estimates of 0.5 for many possible
sets of data.” The issue has been considered separately
by many other investigators as well (e.g., Tai and Chen
1989; Dcerge 1995). In my article (Terwilliger 1995),
I drew an analogy to phase-unknown linkage analysis
in describing how my likelihoods are computed. How-
ever, the analogy is not direct beyond there, because,



