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Summary
The neuronal type of primary chronic idiopathic intesti-
nal pseudoobstruction (CIIP) results from the develop-
mental failure of enteric neurons to migrate or differenti-
ate correctly. This leads to intestinal motility disorders,
which are characterized by symptoms and signs of bowel
obstruction in the absence of a mechanical obstacle. Most
of these conditions are congenital, and among them some
are inherited. One syndromic condition characterized by
intestinal pseudoobstruction with morphological abnor-
malities of the argyrophil neurons in the myenteric
plexus, associated with short small bowel, malrotation,
and pyloric hypertrophy, has been previously described.
We have studied a family affected by this disorder, in
which the disease appeared to segregate as an X-linked
recessive trait. In order to map the CIII locus in this
family, we performed linkage analysis in 26 family mem-
bers by use of highly polymorphic microsatellite markers
from the X chromosome. One of these markers,
DXYS154, located in the distal part of Xq28, shows no
recombination with a maximum lod score of 2.32.
Multipoint analysis excluded linkage with markers span-
ning other regions of the X chromosome. Our results,
integrated with the current genetic and physical map of
Xq28, determine the order of loci as cen-DXS15-(CHPX)-
DXS1108/DXYS154-tel. This study establishes, for the
first time, the mapping assignment of a neuropathic form
of CIIP other than Hirschsprung disease.

Introduction
Chronic idiopathic intestinal pseudoobstruction (CI1P)
is a clinical syndrome caused by severe abnormality of
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gastrointestinal motility. The patients have recurrent
symptoms and signs of intestinal obstruction without
any mechanical lesion. CIIP can be secondary to several
diseases, such as Chagas disease, myxedema, or Du-
chenne muscular dystrophy (Milla 1994).
Among primary forms of CIIP are those associated

with defects of enteric neuronal cells, in which anatomo-
pathological findings include quantitative (e.g., hypo-,
hyper- and a-ganglionosis) and various qualitative ab-
normalities (Staiano et al. 1996). In Hirschsprung dis-
ease, lack of migration of enteric ganglion cells results
in a quantitative abnormality of innervation along gas-
trointestinal segments of variable length. In other cases,
migration of enteric neurons is not affected, but enteric
ganglia and nerve fibers show qualitative abnormalities,
suggesting the presence of a differentiation defect.
An example of this type of defect is an inherited syn-

drome presenting with short small bowel, malrotation,
and pyloric hypertrophy associated with morphological
defects of argyrophil neurons in the myenteric plexus
(Tanner et al. 1976; OMIM 243180). Genetic studies
in families affected by this syndrome have been limited
to clinical and anatomopathological descriptions of fa-
miliar cases, for which an autosomal recessive inheri-
tance pattern has been proposed (Tanner et al. 1976).
Here, we describe a family with a phenotype closely
resembling this syndrome, showing an X-linked reces-
sive inheritance pattern. Linkage analysis performed in
this family enabled us to map the disease locus (chronic
idiopathic intestinal pseudoobstruction-X chromosome;
CIIPX) to Xq28.

Material and Methods

Clinical Features of the ClIPX Family
We have studied a patient presenting with signs and

symptoms of intestinal pseudoobstruction in the first
few days of life; laparotomy demonstrated a short small
bowel with malrotation and pyloric hypertrophy. Histo-
logical examination of full thickness ileal and colonic
biopsies, taken at 8 mo and again at 3 years, showed
abnormal neurons in the myenteric plexus as well as
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Figure 1 Electron micrograph of colonic myenteric ganglion
from individual V-3, showing shrunken degenerate neurons (arrows).
Scale bar 3 gm.

nerve fibers in the lamina propria in the colon (fig. 1).
The clinical, morphological, and histological findings
suggested that the patient was affected by an autosomal
recessive syndrome described elsewhere that is charac-
terized by intestinal pseudoobstruction due to neuronal
disease, associated with a short small intestine, malrota-
tion, and pyloric hypertrophy (Tanner et al. 1976;
OMIM 243180). Therefore, the study was extended to
the patient's relatives, and a condition clinically similar
to the proband (fig. 2, V-3) was observed in his first
cousin, V-5. Furthermore, eight additional males, re-

lated through females in the family, died in the first
months after birth with gastroenterological symptoms
of intestinal pseudoobstruction, suggesting an X-linked
recessive inheritance of the trait (fig. 2).

Detection of Polymorphisms
Genomic DNA was isolated from whole blood by a

standard procedure (Sambrook et al. 1989). In one indi-
vidual, V-5, DNA was extracted from paraffin-embed-
ded tissue. A first set of 18 primers (table 1) was selected
with an average heterozygosity of 70% at an in-
termarker relative recombination distance of 10-20 cM
(Donnelly et al. 1994; Gyapay et al. 1994; Willard et

al. 1994; Genome Data Base). The second set of eleven
markers was chosen in the Xq28 and Xp21.3 regions
from the sources mentioned above. PCR amplification
was performed following the Genome Data Base instruc-
tions. PCR products were separated on 6% acrylamide
denaturing gel. Autoradiography was performed for 2-
20 h.

Linkage Analysis
Simulation analysis was carried out using the SLINK

and MSIM programs (Weeks et al. 1990) assuming a

fully penetrant X-linked recessive model with a disease
allele frequency of .0001, and a marker with four alleles
with equal frequencies, corresponding to a heterozygos-
ity of 75%. A total of 200 replicates of the pedigree were
simulated under the assumption of a true recombination
fraction between the disease and the marker locus of 0
and .05, respectively. To estimate false-positive rates,
2,000 replicates were simulated under the hypothesis
of no linkage (true 0 = .50). Standard two-point and
multipoint analyses were carried out using the MLINK,
ILINK, and LINKMAP programs of the LINKAGE
package version 5.1 (Lathrop et al. 1984) on a Sun
SPARC Station IPC, on the assumption of the same pa-
rameter values for the disease gene that were used in the
simulation. Equal allele frequencies (1/n, where n is the
number of alleles) were used for each marker, since all
relevant individuals were either typed, or their genotypes
could be inferred from those of their relatives. Two-
point and multipoint analyses including DXYS154,
which is located in the pseudoautosomal region on the
long arm of the X chromosome, were carried out as
described by Ott (1986).

Results

Linkage analysis was performed on 26 available fam-
ily members. Simulation analysis yielded expected and
maximum lod scores of 1.67 and 2.32 for a true value
of the recombination fraction between the disease and
the marker locus equal to 0 and of 1.06 and 2.14 for
true 0 equal to .05, respectively. The probability of a
false-positive result (a lod score >2, under the hypothe-
sis of no linkage) was estimated to be 0.2% in a total
of 2,000 replicates.

Following these results, we analyzed a first set of 18
markers spanning the entire X chromosome (table 1)
(Donnelly et al. 1994; Gyapay et al. 1994; Willard et
al. 1994). Only two markers, DXS1214 in Xp21.3 and
DXS1108 in Xq28, gave a positive lod score of 0.30
and 1.08 at 0 = 0. Therefore, we decided to analyze 11
more markers from these two regions (table 1). Four
additional markers from Xq28 gave positive lod scores,
with a maximum of 2.32 occurring at a recombination
fraction of 0 from the pseudoautosomal marker
DXYS154 (with an upper limit of the 1-lod-unit support
interval corresponding to a value of 0 = .206). This
marker was 100% informative in our pedigree (all fe-
males heterozygous). A new simulation showed that the
probability of a lod score >2.3, under the hypothesis
of no linkage, was only 0.05%. In contrast, all the new
markers from the Xp2l region now yielded negative lod
scores.

In order to exclude the possibility that the disease locus
might actually be located in another region of the X chro-
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Figure 2 Complete pedigree of the CI1P family. Bars = deceased individuals; open circles containing a solid dot = obligate carriers; and
question marks = individuals who died of unknown causes. Haplotypes for 6 Xq28 markers are shown for the sampled individuals (bold).
Disease-associated haplotype is shown by black-filled bars. Gray-filled bars indicate that the markers in that region were not informative, and
the white bars indicate the unaffected haplotype. Microsatellite markers are listed in the following order, from the top: DXS1193, DXS52
(VNTR), DXS15, F8C, DXS1108, and DXYS154.

mosome, we carried out a series of overlapping five-point
multipoint analyses (four markers plus the disease locus).
All the markers included in the multipoint analyses were

taken from the 1993-94 Genfthon map of the X chromo-
some, from which information on the distances between
adjacent markers was obtained (Gyapay et al. 1994). Neg-
ative lod scores were obtained in all the intervals thus
tested between DXS996 and DXS1 193, with the only ex-

ception being the interval between DXS984 and
DXS1200, for which a maximum lod score of .69 was

obtained (data not shown). The results of the multipoint
analysis, which included six of the Xq28 markers, are

shown in figure 3, panel A. A peak lod score of 2.32 was

still obtained at 0 distance from DXYS154, which was

already 100% informative in the two-point analysis. On
the basis of analysis of recombinants, the critical region
for the disease gene is therefore limited by DXS15 toward
the centromere and by the pseudoautosomal boundary
toward the telomere (fig. 2).

Discussion

We report, for the first time, a family affected by an

X-linked form of neuronal CIIP. Extensive histological
studies performed on intestinal specimens from individual
V-3 support the hypothesis that the underlying defect

in this family is at the neuronal level. Deficiency of the
myenteric plexus argyrophilic neurons have been de-
scribed elsewhere in several cases of intestinal obstruction
with malrotation, short small bowel, and pyloric hyper-
trophy, for which an autosomal recessive mode of inheri-
tance has been proposed (Tanner et al. 1976). A similar
phenotype is present in our family, suggesting that this
clinical entity can be associated with different loci.
To begin studying this developmental disorder at the

molecular level, we localized the gene for X-linked neu-
ronal CIIP to Xq28. The significant lod score obtained
with DXYS154, compared to the negative ones for the
other microsatellites mapping to regions other than
Xq28, strongly supports the localization of the CIIP gene
to this area. The penetrance of the disease in this family
appears to be complete. None of the unaffected sons
of obligate carriers manifests any symptoms of CIIP.
Although intestinal histological data are not available,
we presume that these asymptomatic males do not carry
the disease gene, since all males manifesting the disease,
except individual V-3, died with acute symptoms of
bowel obstruction within the first months after birth.
Data from the 1994 X Chromosome Workshop assigns
the order of loci as cen-DXS1 1 93-DXSS2-DXS15-
DXS1 1 77-DXS1 108-DXYS1 54-tel in Xq28 (Willard et
al. 1994). The critical region is defined by marker
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Table 1

Two-Point Lod Scores between CIIPX and 29 Markers on the X Chromosome

LOD SCORE AT 0 =

Locus .0 .01 .05 .1 .2 .3 .4 0 Zmax

DXS996 -° -2.60 -1.27 -.74 -.30 -.11 -.02 .50 .00
DXS987 -00 -4.62 -2.54 -1.66 -.82 -.38 -.13 .50 .00
DXS4S1 -00 -1.70 -1.00 -.70 -.40 -.22 -.10 .50 .00
DXS1067 -00 -1.40 -.72 -.44 -.19 -.08 -.02 .50 .00
DXS997 -00 -3.03 -1.65 -1.08 -.54 -.27 -.10 .50 .00
DXS1214 .30 .30 .28 .26 .20 .15 .08 .00 .30
DXS992 -cc -4.00 -1.99 -1.19 -.49 -.19 -.04 .50 .00
DXS1238 -00 -5.70 -2.98 -1.87 -.87 -.38 -.12 .50 .00
DXS993 -00 -2.60 -1.28 -.76 -.33 -.14 -.04 .50 .00
DXS991 -00 -2.30 -.99 -.49 -.10 .04 .05 .37 .06
AR -cc -2.60 -1.28 -.76 -.33 -.14 -.04 .50 .00
DXS227 -cc -2.89 -1.52 -.96 -.44 -.19 -.05 .50 .00
DXS986 -00 -2.89 -1.52 -.96 -.44 -.19 -.05 .50 .00
DXS122S -cc -4.01 -2.00 -1.20 -.52 -.21 -.06 .50 .00
DXS1196 -cc -2.89 -1.52 -.96 -.44 -.19 -.05 .50 .00
DXS1231 -cc -4.60 -2.54 -1.70 -.90 -.48 -.20 .50 .00
DXS1210 -00 -1.70 -1.00 -.70 -.40 -.22 -.10 .50 .00
DXS424 -°° -.61 .00 .19 .28 .23 .14 .20 .28
DXS1047 -00 -4.30 -2.27 -1.45 -.73 -.39 -.20 .50 .00
DXS984 -00 -1.04 -.40 -.17 -.01 .02 .02 .32 .02
DXS1200 -00 -.31 .30 .48 .53 .44 .25 .17 .54
DXS1215 -00 -.93 -.29 -.07 .09 .11 .08 .28 .12
DXS1193 -oo -.02 .52 .64 .61 .46 .25 .13 .65
DXS52 -cc -1.20 -.47 -.15 .10 .17 .13 .30 .17
DXS15 -cc -1.15 -.34 -.00 .26 .29 .20 .27 .30
DXS1177 1.59 1.57 1.47 1.35 1.07 .76 .41 .00 1.59
F8C 1.11 1.09 1.02 .93 .73 .51 .27 .00 1.11
DXS1108 1.08 1.07 1.02 .93 .74 .51 .26 .00 1.08
DXYS154 2.32 2.27 2.08 1.83 1.35 .89 .44 .00 2.32

NOTE.-Markers are listed from the Xp telomere to the Xq telomere. Markers used in the first part of the analysis are in italics. Markers
chosen for the second part of the analysis are in bold.

DXS15, showing no recombination with CIIP and the
pseudoautosomal boundary. This region spans 4.4 cM,
corresponding to 3 Mb on the physical map.

Several genes have been identified in the Xq28 region,
and most of them appear to be clustered in the 2 Mb
of DNA between the G6PD and DXS1S loci, where the
CIIPX critical region is located (Maestrini et al. 1992;
Bione et al. 1993; Sedlacek et al. 1993). Some of these
genes may be considered good candidates for an involve-
ment in CUIP, on the basis of the type of protein they
encode and their expression pattern (fig. 3, panel B).
The filamin gene (ABP-280), for example, encodes a pro-
tein that links actin filaments to membrane glycoproteins
and can play an important role in the cytoskeletal orga-
nization of neurons (Gorlin et al. 1993). Another candi-
date gene is the human homologue of bovine rab GDI
(XAP 4) (Sedlacek et al. 1993), which was initially iden-
tified as an inhibitory GDP/GTP exchange for rab 3A,
a protein implicated in neurotransmitter release. The

gene is expressed in several rat tissues, including the
small intestine (Matsui et al. 1990), and appears to be
involved in the regulation of intracellular vesicle traffic
(Araki et al. 1990; Shirataki et al. 1993).
Migration and differentiation of enteric neuronal cells

from the neural crest during the first weeks of develop-
ment is a complex process in which several genes encod-
ing for membrane receptors, their ligands, intracellular
signaling substrates, transcription factors, and extracel-
lular matrix components play a major role. This is
underlined by the involvement of the RET protoonco-
gene (Edery et al. 1994; Mulligan et al. 1994; Romeo
et al. 1994; Angrist et al. 1995a, 1995b) and, more

recently, of the gene encoding the endothelin-B receptor
(EDNRB) (Puffenberger et al. 1994; Attie' et al. 1995b),
in the pathogenesis of Hirschsprung disease, the most
common form of neuronal intestinal pseudoobstruction.
It is interesting to note that higher penetrance of HSCR
in males compared to females (Badner et al. 1990) was
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Figure 3 A, Multipoint linkage map of CIIPX and Xq28.
Marker DXS1 193 was chosen arbitrarily as the origin for the map.
Intermarker distances were taken from references mentioned in the
text. Recombination fractions were converted into centimorgans by
using Haldane's map function. B, Schematic representation of CIIPX
critical region, including some of the genes mapping in the interval.
Flanking markers are in italic. Candidate genes are in bold. ABP-280
is the filamin gene (Gorlin et al. 1993). STA is the gene mutated in
Emery-Dreyfuss muscular dystrophy (Bione et al. 1994). CDM is a
gene with similarity to the rod-like tail portion of heavy-chain myosins
(Mosser et al. 1994). XAP 4 is the human homologue of the bovine
rab GDI (Sedlacek et al. 1993). DNL1L is homologue to Dnase I
(Parrish et al. 1995). pSS encodes for a palmitoylated membrane pro-
tein (Metzenberg and Gitschier 1992).

observed in both RET and EDNRB mutations (Puffen-
berger et al. 1994; Attie' et al. 1995a). An intriguing
hypothesis might be that CIIPX represents an additional
susceptibility locus in Hirschsprung disease.
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