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Summary

Allele-specific replication differences have been observed
in imprinted chromosomal regions. We have exploited
this characteristic of an imprinted region by using FISH
at D15S9 and SNRPN (small nuclear ribonucleo protein
N) on interphase nuclei to distinguish between
Angelman and Prader-Willi syndrome patient samples
with uniparental disomy of chromosome 15q11-q13
(n = 11) from those with biparental inheritance (n
= 13). The familial recurrence risks are low when the
child has de novo uniparental disomy and may be as
high as 50% when the child has biparental inheritance.
The frequency of interphase cells with asynchronous
replication was significantly lower in patients with uni-
parental disomy than in patients with biparental inheri-
tance. Within the sample population of patients with
biparental inheritance, those with altered methylation
and presumably imprinting center mutations could not
be distinguished from those with no currently detectable
mutation. This test is cost effective because it is per-
formed on interphase cells from the same hybridized
cytological preparation in which a deletion is excluded,
and additional specimens are not required to determine
the parental origin of chromosome 15.

Introduction

The Prader-Willi and Angelman syndromes (PWS and
AS, respectively) are clinically distinct genetic disorders
that map to chromosome 1Sqll-q13, an imprinted re-
gion (Ledbetter et al. 1981; Butler et al. 1986; Kaplan et
al. 1987; Magenis et al. 1989). Several genetic etiologies
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exist for each syndrome. They include de novo deletions
that span -4 Mb (Butler and Palmer 1983; Donlon et
al. 1986; Knoll et al. 1989; Magenis et al. 1989; Nicholls
et al. 1989b; Williams et al. 1990), uniparental disomy
(UPD) of i5qi1-q13, and biparental inheritance and
disomy (BPD) with or without a detectable mutation in
the imprinting process (Nicholls et al. 1989a; Knoll et
al. 1991; Malcolm et al. 1991; Mascari et al. 1992;
Glenn et al. 1993a; Reis et al. 1994; Buiting et al. 1995).
De novo deletions are paternally derived in PWS and
maternally derived in AS and occur in -70% of each
of the patient populations. Maternal UPD is observed
in >25% of the PWS population (Mascari et al. 1992)
and paternal UPD in <5% of the AS population (Knoll
et al. 1991; Malcolm et al. 1991). The remaining pa-
tients (<5% PWS and -25% AS) have BPD. Patie ts
with BPD either have alterations in the regulation of
imprinting characterized by aberrations in DNA meth 1-
ation and mutations of DNA sequences upstream of t e
SNRPN (small nuclear ribonucleo protein N) gene a r,
as in the case of AS, normal DNA methylation witho t
a detectable mutation in the imprinting process (N i-
cholls et al. 1989a; Knoll et al. 1991; Malcolm et A1.
1991; Mascari et al. 1992; Meijers-Heijboer et al. 199
Wagstaff et al. 1992; Clayton-Smith et al. 1993; Gle n
et al. 1993a; Reis et al. 1994; Buiting et al. 1994, 199 5;
Sutcliffe et al. 1994). Patients within this class of muta-
tions are rare in both syndromes (<5% of AS and PWS).

Familial recurrence risks may be as great as 50 o
when the proband exhibits BPD with or without a mut -

tion in the imprinting process. By contrast, the risk s
generally no greater than population incidence wh
either a large deletion or de novo UPD is observed (Cla -
ton-Smith et al. 1993; Woodage et al. 1994; Willia s
et al. 1995).

Imprinting has been shown, to date, to display chara -
teristics of parent-of-origin allele specificity in gene e -

pression, gene methylation, and asynchronous replic,
tion timing. Within 15q 1 -q13, several imprinted loci
SNRPN (Glenn et al. 1993b, 1996; Nakao et al. 199';
Reed and Leff 1994), D15S63 (Dittrich et al. 1992 ,
IPW (Wevrick et al. 1994), D15S9/ZNF127/DN3 4
(Driscoll et al. 1992), and the expressed sequence tags
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PAR-1 and PAR-5 (Sutcliffe et al. 1994)-have been
identified and shown to display differential DNA meth-
ylation. Each of these is expressed from the paternal
chromosome only. Imprinted chromosome regions also
display allele-specific asynchronous replication timing
over domains as large as 4 Mb in 15qi1-q13 (Kitsberg
et al. 1993; Knoll et al. 1994; LaSalle and Lalande
1995). While most regions in 15q11-q13 show paternal-
early and maternal-late replication timing, a small re-
gion of 15qi1-q13 shows the opposite pattern (Knoll et
al. 1994; LaSalle and Lalande 1995). Differential DNA
methylation (Dittrich et al. 1992; Glenn et al. 1993a;
Reis et al. 1994; Buiting et al. 1995) has been employed
as a diagnostic tool for PWS and AS, but gene expression
and replication timing have not.

In many diagnostic centers, the initial laboratory test-
ing regime for a patient suspected of having AS or PWS
often includes routine metaphase chromosome analysis
along with FISH, to exclude the presence of a deletion.
In the absence of a deletion, DNA analyses of the patient
and his or her parents are performed to determine
whether the proband displays UPD or BPD of chromo-
some 15qi1-q13. If neither a deletion or UPD are de-
tected, the patient is referred to a research laboratory
for assessment of potential imprinting mutations. We
have extended the use of FISH to include analysis of
allele-specific replication on interphase nuclei to deter-
mine whether both deletion exclusion and discrimina-
tion of UPD from BPD is possible with the same hybrid-
ized cytological preparation.
Material and Methods
Patient Samples
Lymphocytes or lymphoblastoid cells were available

from 24 nondeletion AS or PWS patients whose geno-
types had been established by studies of genetic poly-
morphism (table 1). DNA methylation status at D15S63
(Dittrich et al. 1992) and/or SNRPN (Sutcliffe et al.
1994) was also determined on lymphocytic DNA for
most of these patients. Cells from three normal control
individuals who are parents of affected children were
included to demonstrate asynchronous replication at the
loci studied. Lymphocytes were either cultured directly
from whole blood or were transformed before routine
harvest and fixation. Cell pellets, which contained both
metaphase and interphase cells, were stored in Carnoy's
fixative at 40C from overnight to 5 years before being
dropped onto microscope slides for FISH. Previous find-
ings have demonstrated no differences in asynchronous
replication between phytohemagglutinin-stimulated lym-
phocytes or Epstein-Barr virus-transformed lympho-
blastoid cells (Kitsberg et al. 1993; Knoll et al. 1994).
DNA Probes
Chromosome 15qll-q13-specific DNA probes for

loci D15S9 and SNRPN were used for FISH. These

probes were selected because they reside within the AS/
PWS chromosomal region and are imprinted (Driscoll
et al. 1992; Sutcliffe et al. 1994). Phage clone 34-10
(D15S9) (Knoll et al. 1993) was labeled with digoxi-
genin-11-dUTP or biotin-16-dUTP via nick-translation
under standard conditions (Knoll and Lichter 1994).
SNRPN, a cosmid clone from the 3' end of the SNRPN
gene, was labeled with digoxigenin-11-dUTP via nick-
translation and is commercially available (Oncor; Oz-
celik et al. 1992). Each new batch of labeled probe was
tested on normal lymphocytes, and only those batches
with -90% hybridization efficiency were used.

FISH
All cytological preparations were coded. Cells were

dropped onto wet microscope slides, air dried, and aged
at room temperature for 1-14 d prior to FISH. The cells
were denatured, hybridized with SNRPN and 34-10 in-
dividually and washed at stringencies as described by
Knoll and Lichter (1994). Digoxigenin-labeled probes
were detected with rhodamine-conjugated antibody and
biotin labeled probes were detected with avidin-fluores-
cein. Total nuclear DNA was stained with 4',6-diamid-
ino-2-phenylindole (DAPI; 100 ng/ml).

For analysis, hybridization signals were viewed with
an epifluorescence microscope equipped with a dual
band (fluorescein isothiocyanate [FITC]/Texas red;
Omega Optical) or a triple-band pass filter set (FITC/
Rhodamine/DAPI; Chroma Technology). The nuclear
counterstain was viewed through a standard single-band
pass filter (Zeiss). Representative cells were imaged with
a Photometrics CCD camera (fig. 1). For imaging, each
fluorochrome was viewed with the appropriate single-
band filter, individually captured in gray scale by using
IP Lab software (Signal Analytics), pseudocolored and
the three images merged.

Replication Analysis
The probes selected for hybridization are within the

15qll-q13-imprinted domain (Kuwano et al. 1992;
Knoll et al. 1993; Mutirangura et al. 1993). Three
distinct hybridization patterns on interphase nuclei
were scored. They are GI (two single hybridization
signals corresponding to unreplicated chromosomes),
G2 (two distinct pairs of signals corresponding to
cells in which both homologues had replicated), and
G1/G2 (one single and one double signal correspond-
ing to cells in S phase in which only one homologue
has replicated) (see fig. 1). The replication pattern
was scored if nuclei were intact and nonoverlapping
and both homologues were hybridized. Homologues
were scored as replicated if a doublet or signal pair
was observed and the distance between the doublet
signals was -2 signal widths apart. For each probe,
the numbers of cells in Gi, G1/G2, and G2 from usu-
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Table 1

Summary of Molecular Findings

DNA
Individuals Diagnosis Genotypea Methylationb Reference

Patients:
Patient 4 PWS

Patient 7 PWS

Patient 8 PWS

Patient 9 PWS

Patient 12 PWS

Patient 13 PWS

Patient 21 PWS

Patient 22 PWS

Patient 24 PWS

WJK64C
WJK75C
WJKlC
WJK4C
WJK14'
Patient 10

CHB94-268
CHB94-324
CHB94-486
CHB94-515
JKB342
DBHc

DKHc

PWS
PWS
AS, sib of WJK4
AS, sib of WJK1
AS
PWS-atypical

AS
PWS-atypical
AS
PWS-atypical
AS
PWS, sib of DKH

PWS, sib of DBH

JK391C AS
Patient 14 PWS

UPD MAT

UPD MAT

UPD MAT

UPD MAT

UPD

UPD

MAT

MAT

UPD MAT

UPD

UPD

UPD
UPD
BPD
BPD
BPD
BPD

*PD
BPD

BPD
BPD

BPD

MAT

MAT

MAT/PAT

MAT/PAT
MAT/PAT
MAT/PAT
MAT/PAT
MAT/PAT
MAVd

MATd

BPD PATd
BPD MATd

Parent
Parent
Parent

MAT/PAT
MAT/PAT
MAT/PAT

PWS 9, Mascari et al. 1992;
Present study

PWS 12, Mascari et al. 1992;
Present study

PWS 13, Mascari et al. 1992;
Present study

PWS 14, Mascari et al. 1992;
Present study

PWS 17, Mascari et al. 1992;
Present study

PWS 18, Mascari et al. 1992;
Present study

PWS 25 , Mascari et al. 1992;
Present study

PWS 26, Mascari et al. 1992;
Present study

PWS 28, Mascari et al. 1992;
Present study

Nicholls et al. 1989a
Present study
Knoll et al. 1991
Knoll et al. 1991
Knoll et al. 1991
PWS 15, Mascari et al. 1992;

P. K. Rogan, unpublished data
Present study
Present study
Present study
Present study
Present study
PWS-U, Buiting et al. 1995;

Saitoh et al., in press
PWS-U, Buiting et al. 1995;

Saitoh et al., in press
AS-C, Buiting et al. 1995
PWS 19, Mascari et al. 1992;

Present study

Present study
PWS-U, Buiting et al. 1995
PWS-U, Buiting et al. 1995

a Genotype analysis by RFLP and/or microsatellite analyses of parents. Ellipses (. . .) = not determined.
b Methylation status at D1SS63 or SNRPN with maternal (MAT) and/or paternal (PAT) alleles present.
c Epstein-Barr-transformed lymphoblastoid cells; otherwise peripheral lymphocytes.
d Methylation pattern is not concordant with genotype.

ally ¢ 100 interphase cells were scored by two indi-
viduals. The presence of G2 cells (in the absence of
metaphase cells) established that the cultures were

actively growing at the time of fixation.

Statistical Analysis
The G1, G1/G2, and G2 data were fit to general linear

models (GLM) specifying either genotype, probe, or

methylation status, or scorer as independent variables.
Repeated measures analysis of variance was used (proce-
dure GLM, SAS Institute). Methylation data were not
available for some patients. The cell counts for G1, Gi/
G2, and G2 were specified as repeated measures of the
same subject. Between-subject effects for all replication
data on G1, G1/G2, and G2 were detected by multivari-
ate analysis of variance.

Controls:
JKB341
GRHc
DLHc
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Figure 1 Schematic of different phases of the cell cycle (G1, or gap 1; G2, or gap 2; S, or DNA synthesis; and M, or mitotic) and
corresponding computerized images of DAPI-stained cells hybridized with SNRPN. G1, S, and G2 comprise interphase of the cell cycle, and
M is the mitotic part in which metaphase chromosomes are recognizable. In G1 the locus has not yet replicated, and two single hybridizations
are observed. In S (also referred to as "G1/G2"), one of the chromosomes has replicated (double signal) and the other has not (single hybridization
signal), while in G2, both chromosomes have replicated (two pairs of double hybridizations). In metaphase of mitosis, both chromosomes show
hybridization at 15ql1-q13 in the absence of a deletion.

Principal component analysis was performed with the
procedure FACTOR (SAS Institute) for each of the de-
pendent (GI, G1/G2, G2) and significant independent
variables (genotype, scorer, methylation) found in the
GLM. Components with eigenvalues > 1 were analyzed.
The loading or influence of each variable for each princi-
pal component represented its contribution to the total
variance of all the variables. In order to verify that load-
ings of the variables were independent for different com-
ponents, data were also transformed orthogonally prior
to performing the analysis to determine whether the re-

sults differed from the nontransformed data.

Results

The probes selected for hybridization are within the
imprinted domain in AS and PWS (Kuwano et al. 1992;
Knoll et al. 1993; Mutirangura et al. 1993) and show
three distinct hybridization patterns on interphase nuclei
(fig. 1). These three patterns correspond to the Gi (gap
1), S (synthesis), and G2 (gap 2) phases of the cell cycle.
In Gi cells, DNA synthesis has not yet occurred, and
two single and separated hybridizations are observed.
In S-phase cells, DNA replication has occurred on only
one homologue and are referred to as "G1/G2 cells."
This pattern appears as a single distinct hybridization
and a pair of closely spaced hybridization signals. In
G2 cells, both homologues have replicated, and each
homologue appears as a pair of hybridization signals.
These three patterns are present in all individuals.

Detection of UPD by Interphase Analysis
Normally, the paternal allele replicates prior to the

maternal allele at D15S9 and SNRPN in a subset of cells
(table 2; Kitsberg et al. 1993; Knoll et al. 1994; Malcolm
and Donlon 1994). If both alleles are inherited from one

parent, as in the case of UPD, the alleles are predicted
to replicate synchronously. The present study validates
this prediction at both D15S9 and SNRPN in UPD pa-

tients with PWS. The results from each patient were fit
to a GLM that was dependent on the numbers of cells
in G1, G1/G2, and G2. Significantly lower numbers of
G1/G2 cells (F = 139.67; P = .0001) and significantly
higher numbers of G1 cells (F = 19.25; P = .0001)
were observed in the patients with UPD (n = 11). The
percentages of G1 and G1/G2 cells for patients with
UPD ranged between 78% and 90% and 3% and 11%,
respectively, compared with 56%-76% and 21%-36%
for patients with BPD at these loci (fig. 2). These probes
did not show significant differences in replication timing
at either G1 (F = 0.19; P = .66) or G1/G2 (F = 0.08;
P = .77).

BPD of Chromosome 15q1 1-q 13

Asynchronous replication in patients with BPD at the
probe loci was similar to normal control individuals (fig.
2; table 2; Kitsberg et al. 1993; Knoll et al. 1994). The
BPD patient population included six with normal meth-
ylation patterns at D15S63 and/or SNRPN, four with
altered methylation patterns due to mutations in the

Gl I I
,-N
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Table 2

Summary of Replication Data

MEAN NUMBER OF CELLS ± SD

CLASS AND PROBE G1 (%) G1/G2 (%) G2 (%)

UPD:
SNRPN 92.3 ± 13.5 (86.4) 7.9 ± 2.7 (7.4) 6.6 ± 3.1 (6.2)
34-10 95.3 ± 13.6 (83.7) 9.2 ± 2.9 (8.1) 9.3 ± 3.9 (8.2)

BPD with normal methylation:
SNRPN 89.8 ± 25.2 (64.5) 38.2 ± 12.6 (27.5) 11.1 + 7.4 (8)
34-10 76.1 ± 8.7 (68.3) 27.4 ± 3.0 (24.6) 7.9 + 2.9 (7.1)

BPD with abnormal methylation:
SNRPN 77.3 ± 10.7 (66.9) 30.3 ± 3.6 (26.2) 7.9 + 4.3 (6.8)
34-10 74.4 ± 13.6 (64.9) 32.8 ± 10.2 (28.6) 7.4 + 3.8 (6.5)

Control:
SNRPN 68.5 ± 6.0 (66.1) 30.3 ± 1.7 (29.2) 4.8 ± 2.2 (4.6)
34-10 69.3 ± 5.8 (64) 31.3 ± 4.5 (28.9) 7.7 ± 5.1 (7.1)

imprinting process, and three in whom methylation pat-
terns were not examined. This allele-specific replication
assay did not discriminate between BPD patients with
altered methylation patterns from those with no detect-
able mutation. This is because some patients with muta-
tions that result in altered methylation show asynchro-
nous replication, methylation status for all individuals
was not correlated with replication asynchrony to
the same extent as the individual's genotype, though
both associations were significant (GI, P = .02; G1/G2,
P = .01).

Distinguishing UPD from BPD
Principal component factor analysis revealed that the

proportion of cells in the G1/G2 phase were associated
with methylation status and with the individuals' geno-
type (UPD or BPD) (table 3). Genotype, however, was
the most significant factor contributing to the variance
in frequency of asynchronously replicating cells between
UPD and BPD patients. Two different observers scored
the data. Observer differences were detected when all
replication data (Gi, G1/G2, and G2) were analyzed
together (F = 5.75; P = .02), but these differences con-
tributed to a different principal component than either
genotype or methylation status (table 3, factor 3). There-
fore, the interpretation of genotype on the basis of the
degree of asynchronous replication was not influenced
by which individual performed the analysis. Since both
of the probes analyzed gave similar results, their effects
on the variance of each principal component were also
negligible. Orthogonal transformation of these data con-
firmed that the observed variance due to genotype was
related to the frequency of GI or G1/G2 cells rather
than to which observer carried out the analysis. Further-
more, the variance in allele-specific replication asyn-
chronicity due to genotypic differences was 30-fold

greater than the observer associated variance (eigenvalue
= 5.02 vs. 0.17).

Discussion

This study extends the use of interphase FISH from
the detection of aneuploidy (Cremer et al. 1988; Tka-
chuk et al. 1990; Ried et al. 1992) to the discrimination
of UPD from BPD on chromosome 15 (by using probes
from an imprinted region). UPD patients had a signifi-
cantly lower population of asynchronously replicating
cells (3%-11 %) than those with BPD at the tested loci
(21%-36%). The G1/G2 cells in the UPD specimens
may be the result of a low level of stochastic asynchro-
nous replication and/or a <10% inefficiency of probe
hybridization or visualization (see Material and Meth-
ods). There was no overlap between the UPD and BPD
patient populations in the mean percentage and range
of cells undergoing asynchronous replication. Therefore,
we suggest scoring the frequency of G1/G2 cells for dis-
tinguishing UPD from BPD. While the mean frequency
of G1 cells was also significantly different between UPD
and BPD, a smaller difference between the ranges were
observed. Asynchronous replication on interphase nu-
clei, however, was not useful in discriminating among
the different BPD classes, i.e., those with altered methyl-
ation (and presumably imprinting mutations) from those
with no detectable genetic abnormality. This finding im-
plies that methylation does not significantly affect the
overall frequency of asynchronously replicating cells.
This suggests that the frequency of asynchronous repli-
cation is related to parent of origin of the chromosome
rather than gene expression or methylation status.
The phenomenon of asynchronous replication as de-

tected by FISH is not understood. It may reflect true
differences in replication timing or chromatin conforma-
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Uniparental Biparental

SNRPN

34-10 [D15S9]

Figure 2 Mean percentage and range of cells in each part of interphase for patients with uniparental disomy (left) and biparental
inheritance (right). At each locus (SNRPN and D15S9), the proportion of cells in G1/G2 is significantly lower in cases with UPD than in cases
with BPD (P = .0001).

tional changes that affect hybridization efficiency (Han-
sen et at. 1995). Regardless of the underlying cause of
the phenomenology, this test provides a reliable way of
distinguishing patients with different recurrence risks.
Most deletions and UPDs are sporadic, and parents of
these patients have recurrence risks comparable to the
general population, while the recurrence risk may be
<50O% in families in which the BPD genotype is detected

(Clayton-Smith et al. 1993; Woodage et al. 1994; Wil-
liams et al. 1995; Webb et al. 1995).

This simple test can provide additional information
to the proband's family in a single physician visit. This
test, like DNA methylation testing (Dittrich et al. 1992),
does not require analysis of parental specimens for UPD
detection. It is advantageous, however, in that it can be
used simultaneously with routine cytogenetics and FISH
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Table 3

Principal Component Analysis

Variables Factor 1 Factor 2 Factor 3

G1/G2 .82056 .40174 -.15514
Methylation .90009 -.04363 .03747
Genotype .96918 .05335 -.01376
Scorer -.03788 .48256 .40579
Probe .05207 -.12100 .87355
Eigenvalue 2.75 2.44 1.05

NoTE.-The Procedure Factor (SAS Institute) was used to deter-
mine eigenvalues for each factor and loadings for the above variables.
These variables were selected because they showed significant contri-
butions to the GLM. Factor 1 has large positive loadings (or influence)
for genotype and methylation. Factor 2 has small loadings on geno-
type, methylation, and probe. Factor 3 has small loadings on genotype,
methylation, and scorer.

to distinguish between chromosomal deletions, familial
chromosomal rearrangements, UPD, and BPD with al-
tered methylation. This test does, however, rely on clini-
cal features to distinguish between AS and PWS.
From the practical point of view, cytogenetic testing

is currently the most widely available test for AS and
PWS, and therefore the application of this test would
benefit the maximum number of patients. Thus, (1) pa-
tient samples are already being examined for deletions
by FISH; (2) interphase FISH replication analysis utilizes
the same hybridized preparation as for metaphase analy-
sis; (3) it requires little additional effort to discriminate
between UPD and BPD (15-30 min/probe/score 100
nuclei); and (4) it can be performed on archived fixed
cell pellets. By combining the results of FISH analysis
from both metaphase and interphase analyses, the ge-
netic etiology in >95% of PWS patients and -75% of
AS patients can be determined.
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