
Am. J. Hum. Genet. 59:1149-1162, 1996

Consanguinity and the Sib-Pair Method: An Approach Using Identity
by Descent Between and Within Individuals
Emmanuelle Genin and Fran~oise Clerget-Darpoux

Unite de recherche d'Epidemiologie Gknetique, INSERM U155, and Institut National d'Etudes D6mographiques, Paris

Summary

To test for linkage between a trait and a marker, one
can consider identical marker alleles in related individu-
als, for instance, sibs. For recessive diseases, it has been
shown that some information may be gained from the
identity by descent (IBD) of the two alleles of an affected
inbred individual at the marker locus. The aim of this
paper is to extend the sib-pair method of linkage analysis
to the situation of sib pairs sampled from consanguine-
ous populations. This extension takes maximum advan-
tage of the information provided by both the IBD pat-
tern between sibs and allelic identity within each sib of
the pair. This is possible through the use of the con-
densed identity coefficients. Here, we propose a new test
of linkage based on a x2. We compare the performance
of this test with that of the classical X2 test based on the
distribution of sib pairs sharing 0, 1, or 2 alleles IBD.
For sib pairs from first-cousin matings, the proposed
test can better detect the role of a disease-susceptibility
(DS) locus. Its power is shown to be greater than that
of the classical test, especially for models where the DS
allele may be common and incompletely penetrant; that
is to say for situations that may be encountered in multi-
factorial diseases. A study of the impact of inbreeding
on the expected proportions of sib pairs sharing 0, 1,
or 2 alleles IBD is also performed here. Ignoring inbreed-
ing, when in fact inbreeding exists, increases the rate of
type I errors in tests of linkage.

Introduction

A possible way to detect linkage between a trait and a
marker consists in showing a positive correlation be-
tween the concordance for the trait and the concordance
for the marker in sib pairs (Penrose 1935). In other
words, this method, referred to as the "sib-pair
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method," detects linkage when affected sibs share alleles
identical by descent (IBD) for the marker more often
than expected by chance (Haseman and Elston 1972;
Day and Simons 1976; Suarez 1978). Under the hypoth-
esis of independence between trait and marker, affected
sibs are expected to have 0, 1, and 2 marker alleles IBD
in the respective proportions of 1/4, 1/2, and 1/4. If a
departure from these proportions in the proper direction
is found, we can suspect linkage. Several tests have been
proposed to detect a statistically significant departure
(for a review, see Blackwelder and Elston 1985). The
method does not require the specification of the mode
of inheritance of the disease and can be applied to multi-
factorial diseases. In particular, it has been used to study
linkage with markers in the HLA region. Because this
genetic system is highly polymorphic, inferences con-
cerning the IBD relations between the observed alleles
among sibs are easy and typing of the parents is generally
not necessary. For instance, linkage with HLA was
found in leprosy (De Vries et al. 1976) and in insulin-
dependent diabetes mellitus (Cudworth and Woodrow
1975). In light of the IBD distribution of haplotypes
among affected sibs, it is also possible to make some
inferences concerning the mode of inheritance of the
disease. Thomson and Bodmer (1977) derived the ex-
pected proportions of affected sibs sharing 0, 1, and 2
alleles IBD under a dominant and a recessive biallelic
model. These proportions depend on the frequency of
the disease-susceptibility (DS) allele and permit discrimi-
nation between a recessive and a dominant model, given
data on a marker located close to the DS locus. Under
some assumptions, the frequency of the DS allele can be
estimated.
One major assumption in these studies is that the

population from which affected sib pairs are sampled
is in Hardy-Weinberg proportions. In particular, it is
supposed that there is no inbreeding. The possibility of
IBD for the two homologous alleles at a locus within
an individual (i.e., the possibility of autozygosity at a
locus, is excluded). However, as illustrated by homozy-
gosity mapping (Lander and Botstein 1987), this possi-
bility of autozygosity can be revealing in the study of
rare recessive diseases. For this reason, we propose to
extend the affected-sib-pair method to assess not only
at the IBD pattern between sibs but also within each sib
of the pair.
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We use the concept of identity states (Gillois 1964;
Jacquard 1972; Karigl 1982). These define the possible
IBD states between the four alleles at a locus of two
individuals. This concept permits a complete description
of the IBD relationships between and within individuals.
Identity states should not be confused with the term
"identity by state" (Lange 1986), which denotes the fact
that two alleles are identical but not necessarily by de-
scent (i.e., it is possible that they are not copies of the
same ancestral allele). In this paper, we are concerned
only with IBD relationships among alleles between indi-
viduals (noted "IB state") and within individuals (noted
"IW states"). When considering jointly IBD between
and within individuals, we will use the notation "IBW
states" instead of "identity states," to avoid confusion.
We first use the concept of IBW states to study the

impact of inbreeding on linkage analyses performed by
the sib-pair method. We derive the expected IB propor-
tions under the null hypothesis of no linkage and show
the departure from the expected proportions of 1/4,
1/2, and 1/4 for sharing, respectively, 0, 1, and 2 alleles
IBD when there is inbreeding. In the second part of the
paper, we show the gain in the power for linkage detec-
tion when jointly taking into account the identity of
alleles between and within individuals.

Definition of IBW States

For two individuals I, and I2, - 15 IBW states can be
defined to specify the IBD relationships between the four
alleles of these individuals at a given locus. Following
the method of Thompson (1974), let a = (a1l, a12, a21,
a22) be the set of genes of these two individuals, the first
subscript indicating the maternal or paternal gene and
the second subscript indicating the sibling. The first
gene, a11, is labeled 1 and the next three genes are labeled
so that two IBD genes are given the same label. If mater-
nal and paternal genes are not distinguishable, then sets
(1, 2, 1, 2) and (1, 2, 2, 1) are not distinguishable, and
there are nine distinct states (Si, 1 - i - 9) (see table
1). The probabilities of these IBW states (pi, 1 - i - 9)
depend on the genealogical relationship between the pair
of individuals.

Derivation of the Expected IB-State Probabilities
for Two Sibs in a Consanguineous Population:
Impact for Tests of Linkage

In the following section, we will consider only pairs
of sibs. The probability of IBW states for pairs of sibs
depends on the kinship and inbreeding coefficients of
their parents. For example, if one considers two sibs
whose parents are not related, only three of the nine
states have probabilities >0, and these three states corre-
spond to the three IB states: S9, 0 allele IBD (IB = 0)
with probability 1/4; S8, 1 allele IBD (IB = 1) with prob-

Table 1

Probability of IBW States for a Pair of Sibs Sampled from a
Population with a Mean Inbreeding Coefficient a

IBW State Probability

S (1, 1, 1, 1) (518)cL3 + (1/4)a2 + (1/8)a
S2(1, 1, 2, 2) (1/8)a4 - (1/4)a3 + (1/8)ac2
S3(1, 1, 1, 2) -(1/4)a3 + (1/4)a
S4(1, 1, 2, 3) -(1/8)a4 + (3/8)a3 - (3/8)a2 + (1/8)a
55(1, 2, 2, 2) -(1/4)&3 + (1/4)cx
S6(1, 2, 3, 3) -(1/8)a4 + (3/8)a3 (3/8)a2 + (1/8)a
S7(1, 2, 1, 2) (1/8)&4 (7/8)a3 + (1/8)aC2 + (3/8)a + (1/4)
S8(1, 2, 1, 3) -(1/4))a4 + (5/4)a3 - (5/4)a2 _ (1/4)a + (1/2)
S9(1, 2, 3, 4) (1/4)a4 a3 + (312)a2 a + (1/4)

ability 1/2; and S7, 2 alleles IBD (IB = 2) with probability
1/4. If the parents of the sibs are related, some more
states are possible and in particular states where both
alleles of an individual are IBD (states S1, S2, S3, S4, S5,
and S6). Table 1 gives the probability of IBW states for
two sibs as a function of the mean inbreeding coefficient
a of the population (Jacquard 1970, 1972) from which
these sibs are sampled (for derivation, see appendix A).
To obtain the probabilities of IB states, IBW-state proba-
bilities have to be pooled, clearly illustrating that infor-
mation is lost when reducing the nine configurations to
three. Two sibs share zero alleles IBD (IB = 0) if they
are in the IBW states S2, S4, S6, or S9 and the probability
is Z = P2 + P4 + P6 + pg. Two sibs share one allele (IB
= 1) if they are in the IBW states S3, S5, or S8 and the
probability is Y = p3 + PS + P8. The probability for two
sibs of sharing two alleles IBD (IB = 2) (states S and
S7) is then X = Pi + P7.
When comparing the IB state proportions X, Y, and

Z with the ones expected without inbreeding, 1/4, 1/2,
and 1/4, we note that inbreeding leads to a decrease in
the proportion of pairs with zero alleles IBD and to an
increase of pairs with two alleles IBD (see table 2). If the
mean inbreeding coefficient a is <0.1, the proportion of
sib pairs with one IBD allele stays approximately equal
to 0.5.
We studied the impact of ignoring inbreeding, when

it exists, on linkage tests based on sib pairs. We consid-
ered the three statistical tests of linkage studied by Black-
welder and Elston (1985) and derived their statistic un-
der the hypothesis Hoa, of no linkage and presence of
inbreeding.
The t1 test is based on the proportion of sib pairs with

two marker alleles IBD (IB = 2). This test consists in
comparing the observed proportion (X) of sib pairs
among the N sib pairs of the sample with IB = 2 with
the expected proportion (E[X] = 1/4) under the null
hypothesis Ho of no linkage and no inbreeding. The
statistic t1 = (X - E(X) )/ 3116N is tested as a standard
normal deviate.
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Table 2

Expected Number of Sib Pairs in the Three lB Categories at the Marker Locus in a Sample of N Sib Pairs

Expected No. of Pairs, Expected No. of Pairs,
Assuming Inbreeding Assuming No Inbreeding

IB Category (a >0 ) (ac = 0)

IB = 0 (N/4)[(1/2)X4 - 2a3 + (7/2)a2 - 3a + 1] N/4
IB = 1 (N/2)[-(1/2)a4 + (3/2)a3 - (5/2)a2 + (1/2)a + 1] N/2
IB = 2 (N/4)[(112)a4 - a3 + (3/2)a2 + 2a + 1] N/4

NOTE. -These expectations are given under the hypothesis of no linkage between the marker and a
disease-susceptibility locus, assuming that the population from which sib pairs are sampled is consanguineous
(first column) or not (second column).

Under Hoa, t1 follows a normal distribution with mean

^.$( a4 - cc + 2 a2 + 2a)

and variance

2 1 (1a4 -a33+ 2+2a+1)

x (- a4 +a3 _3a2-2a+ 3).

The type I error of the test for a nominal value of 5%
may be obtained by computing the probability for t1 to
exceed 1.645 under Ho,. It is thus the probability for the
standard normal distribution to exceed (1.645 - )/a.
The mean test t2 is a test based on the mean number

of marker alleles shared IBD by the two sibs. This test
compares the observed mean number of alleles shared
IBD by the sibs (m = 2X + Y) with the expected mean
number (E[m] = 1) under Ho (no linkage and no inbreed-
ing). The statistic t2 = (m - E(m))/ 1/2N is tested as a
standard normal deviate.
Under Ho,, t2 follows a normal distribution with mean

= N(4a3-j24a2 + a)

and variance

114 1 3 1 2 9
2= -cc- ac +-ac + -a+ 3)2 2 2 2

(1 ~~~5 2

- 2 (2ca3- a2 + - a + 2).
- 2

As for the t1 test, the type I error of the t2 test can be
evaluated as a function of a by computing the probabil-

ity for the standard normal distribution to exceed (1.645

The third test is a X2 goodness-of-fit statistic (test IB)
(with 2 df) that consists in comparing the observed num-
ber of sib pairs in each of the three categories (IB = 0,
1, and 2) and the expected number under Ho (N/4,
N/2, and N/4). Under the hypothesis Hoa, the LB statistic
follow a noncentral X2 with 2 df and noncentral parame-
ter k. The noncentral parameter depends on the sample
size N and on (X:

X = Na2(209 - 250a + 391a2
- 320&3 + 179a4 - 54c( + 9a6)

For each of these tests, type I errors have been re-
ported on figure 1 as the function of the mean inbreeding
coefficient a of the population, considering sample sizes
N of 100 and 30 sib pairs. The type I errors of the three
tests increase rapidly with a. The increase is greater for
samples of N = 100 sib pairs than for samples of
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Figure 1 Type I errors of three tests of linkage, based on affected
sib pairs as a function of the mean inbreeding coefficient for a nominal
value of 5%. The type I error is derived for samples of 100 sib pairs
and 30 sib pairs.
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N = 30 sib pairs. If a is 0.005, type I errors are 5.6%,
5.9%, and 5.1% for the tj, t2, and IB tests, respectively,
if N = 100, and 5.4%, 5.5%, and 5.0%, if N = 30. If
a is 0.01 and N = 100, they are 6.4%, 7.0%, and 5.2%,
respectively. For values of a <0.01, type I errors may

be considerably increased so that ignoring inbreeding
when it exists may lead to a false claim of linkage. The
IB test appears to be more robust than the two other
tests.

Use of the IBW States When Testing for Linkage on

Data of Affected Sib Pairs with Related Parents

Data on Affected Sib Pairs with Related Parents
Above, we considered sib pairs sampled from a con-

sanguineous population with mean inbreeding coeffi-
cient a. In this sample, there was a mixture of sibs whose
parents were related to different degrees. Here, our aim
is to take maximum advantage of inbreeding to detect
linkage. For this purpose, we will restrict our attention
to the case of sib pairs whose parents have a given rela-
tionship, namely, first-cousins. We assumed a sampling
scheme focusing on such inbred sib pairs. Illustrations
will be given for the case of sib pairs from a first-cousin
marriage, but derivations can be performed with the
formula, whatever the degree of relationship between
the parents of the sibs. The choice of first-cousin mar-

riages was motivated by the fact that, in some countries,
in particular Muslim countries, such data may be easily
collected. Moreover, it was the sampling scheme consid-
ered by Lander and Botstein (1987) for homozygosity
mapping. Since inbred sib pairs are expected to be found
in populations where mating between relatives is fre-
quent, there may exist in the population a remote con-

sanguinity. We considered that sib pairs from first-
cousin matings are sampled from a population with a

mean inbreeding coefficient a. First, we studied the
power of tests when concerned with such inbred sib
pairs. In the last part of the paper, we study the impact
of ignoring the remote consanguinity on the tests.

Model
Assume that the presence of an allele D with frequency

q increases the susceptibility to a disease. The penetrance
of the genotype DD, Dd, and dd are fl, f2, and f3, respec-

tively. Information on a marker locus located at a negli-
gible recombination fraction from the DS locus is as-

sumed to be available. This marker locus is supposed to
be highly polymorphic so that two identical alleles are

IBD. Considering pairs of individuals with a given gene-

alogical relationship, we can calculate the observed pro-

portions of each IBW state and compare them to the
proportions expected under the null hypothesis of no

linkage. These expected proportions depend only on the
genealogical relationship between the individuals and

can be computed using the algorithm of Karigl (1981).
However, in this algorithm, the remote consanguinity
in the population is ignored. We have extended this
algorithm to take it into account (see appendix B). In
table 3, the expected IBW-state probabilities are given
for the case of a sib pair from a first-cousin marriage
sampled from a population with mean inbreeding coef-
ficient a.

Expected IBW-State Probabilities for Pairs of Affected
Individuals under a Genetic Model

If we consider a pair of individuals (Ii, I2) affected by
the disease, we can derive the probability pi' of each IBW
state Si at the marker locus, given that the individuals are
affected.

pi = P(Si I, and I2 affected)
P(j1 and I2 affected Si)p

P(j1 and I2 affected)

Taking into account all the possible genotypes G1 and
G2 of individuals I, and I2 at the disease locus, we obtain

2 P(G1,G2 Si)piP(I, affected G,)P(I2 affected GA)
G1,G2

P; = 9
2 P(Ij affected G1)P(I2 affected G2) E P(G,,G2 Si)Pi

Gj,G2 l

(1)

The probabilities P(G1,G2 Si) are given in table 4. They
depend on the frequency q of the DS allele D.

In light of the genealogical relationship between the
two members of the pair, it is possible to derive the
respective probabilities of each IBW state under different
disease models. In table 5, the IBW-state probabilities
pi' are given as a function of the parameters at the DS
locus. Note that the probabilities pi' do not depend on
the penetrances (fl, f2, f3) but on the ratio of penetrances
(x = f2/fi and s = f3/fi). The probability for the two
individuals to share 0, 1, or 2 alleles IBD (probability
of IB states) may also be obtained by summing the IBW-
state probabilities (see appendix B).

For different frequencies q of the DS allele, Thomson
and Bodmer (1977) derived the expected proportion of
affected sib pairs sharing 0, 1, and 2 alleles IBD in the
case of a recessive or a dominant disease. To obtain
these probabilities, in a first step, the possible genotypes
of the parents of the sibs were determined, and computa-
tions were made conditionally on these genotypes. Here,
we can obtain the same results by using the probabilities
of the sibs genotypes conditionally on their IBW states.
With this conditioning, more general cases can be con-
sidered than were discussed by Thomson and Bodmer
(1977). The expected proportions of each type of af-
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Table 3

Probabilities of IBW States for a Pair of Sibs from a First-Cousin Marriage in a Population with Mean
Inbreeding Coefficient a, under the Null Hypothesis of No Linkage

IBM State Probability No. of Alleles

S,(1, 1, 1, 1) p, = (1/4)a3 + (1/2)&2 + (15/64)a + (1/64) 1
S2 (1, 1, 2, 2) P2 = -(1/4)a3 + (7/32)a2 + (1/32)a 2
S3(1, 1, 1, 2) P3 = -(l/2)a3 + (15/32)a + (1/32) 2
S4(1, 1, 2, 3) P4 = (l/2)a3 (23/32)&2 + (13/64)a + (1/64) 3
S5(1, 2, 2, 2) P5 = _(1/2)X3 + (15/32)a + (1/32) 2
S6(1, 2, 3, 3) P6 = (1/2)a3 - (23/32)&2 + (13/64)a + (1/64) 3
S7(1, 2, 1, 2) p7 = -(1/2)a3 (1/32)a2 + (19/64)ac + (15/64) 2
S8(1, 2, 1, 3) P8 = 2a3 (31/16)a2 (17/32)a + (15/32) 3
Sg(1, 2, 3, 4) pq = -(312)a3 + (43/16)a2 - (11/8)a + (3/16) 4

NOTE.-In the last column, the number Na of different alleles is given for each state.

fected sib pairs can be derived for various disease param-
eters, and not only for dominant or recessive models,
without tedious computations. Moreover, data on sib
pairs sampled from nonpanmictic populations, as well
as data concerning affected individuals with different
genealogical relationships, can be dealt with.

Application
Consider sib pairs whose parents are first-cousins in

a population with mean inbreeding coefficient a = 0.01.
Their IBW-state probabilities are reported in table 5 (for
the IB-state probabilities, see also appendix C). In table
6, IB probabilities are given for a recessive disease (table
6A, x = s =0) and a dominant disease (table 6B, x = 1,
s = 0) with no phenocopies for various values of the DS
allele frequency, q. Results in italics in these tables were
obtained by Thomson and Bodmer (1977) for pairs of
sibs whose parents are not related. A comparison shows
that inbreeding leads to a departure in the expected
probabilities of IB states under both the recessive and
dominant models. The departure is higher for small fre-

quencies q of the DS allele. Ignoring inbreeding can bias
the estimate of q, leading to an overestimation.

Test of Linkage with IBW States
Tests of linkage based on sib pairs usually look at the

identity of alleles between individuals (IB states). When
data on inbred sib pairs are available, it can, in addition,
be more efficient to take into account the identity of
alleles within individuals (IBW states). In particular, for
a rare recessive disease, we expect sibs to have both
alleles at the DS locus IBD and information concerning
this within-identity could be used to detect linkage. In
such a situation, one can compare the observed numbers
of pairs in each of the nine IBW states with the expected
numbers of pairs, on the assumption of no linkage, by
a X2 statistic. However, when one looks at the nine IBW
states, expected numbers of pairs may be small in each
category. For instance, considering pairs of sibs from
first-cousin marriages, the expected probabilities of each
of the nine IBW states under the null hypothesis of no

linkage are given in table 3. In table 5, the IBW-state

Table 4

Conditional Probabilities of Genotypes at the Disease-Susceptibility Locus, Given the Identity State for Two Individuals at a Marker Locus
Tightly Linked to That Locus

ID State Si S2 S3 S4 S5 s6 S7 S8 S9
Genotype (1, 1, 1, 1) (1, 1, 2, 2) (1, 1, 1, 2) (1, 1, 2, 3) (1, 2, 2, 2) (1, 2, 3, 3) (1, 2, 1, 2) (1, 2, 1, 3) (1, 2, 3, 4)

DD, DD q q2 q2 q3 q2 q3 q2 q3 q4
DD, Dd 0 0 q(1 - q) 2q2(1 - q) 0 0 0 q2(1 - q) 2q3(1 - q)
DD, dd 0 q(1 - q) 0 q(1 -q)2 0 q2(1 - q) 0 0 q2(1 q)2
Dd, DD 0 0 0 0 q(1 - q) 2q2(1 - q) 0 q2(1 - q) 2q3(1 -q)
Dd, Dd 0 0 0 0 0 0 2q(1 - q) q(1- q) 4q2(1 q)2
Dd, dd 0 0 0 0 q(1 - q) 2q(1 q)2 0 q(1 q)2 2q(1 -q)3
dd, DD 0 q(1-q) 0 q2(1-q) 0 q(1 - q)2 0 0 q2(1q)2
dd, Dd 0 0 q(1 - q) 2q(1 - q)2 0 0 0 q(1 - q)2 2q(1 -q)3
dd,dd 1 - q (1 - q)2 (1 - q)2 (1 - q)3 (1 - q)2 (1 - q)3 (1 -q)2 (1 - q)3 (1 - q)4
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Table 5

Probabilities of IBW States for a Pair of Affected Sibs as a Function of the Parameters at the Disease-
Susceptibility Locus (q Frequency of the Susceptibility Allele and Penetrances x =421fi; s = f3/f,)

State Probability q, = p' x A

S1 p1[q + (1 - q)s2]
S2 P2[q2 + 2q(1 - q)s + (1 - q)2s2]
S3 p3[q2 + q(1 -q)(x + s) + (1 - q)2s2]
S4 p4[q3 + 2q2(1 - q)x + q(1 - q)s + 2q(1 - q)2xs + (1 - q)3s2]
Ss ps[q2 + q(1 - q)(x + s) + (1 - q)2s2]
S6 P6[q3 + 2q2(1 -q)x + q(1 - q)s + 2q(1 - q)2xs + (1 - q)3s2]
S7 p7[q2 + 2q(1 - q)x2 + (1 - q)2s2]
S8 p8[q3 + 2q2(1 - q)x + q(1 - q)x2 + 2q(1 - q)2xs + (1 - q)3s2]
S9 p9[q4 + 4q3(1 - q)x + 2q2(1 - q)2s + 4q2(1 - q)2x2 + 4q(1 - q)3xs + (1 - q)4S2]

NOTE. -For sib pairs from first-cousin matings, the probabilities pi (i = 1,9) are those reported in table
3. The factor A is the probability for the sib pair to be affected: A = 2i qi'.

probabilities are given under the alternative hypothesis
of linkage as a function of the genetic model at the DS
locus. The states S3 and Ss, as well as S4 and S6, always
have the same probabilities when sibs of first-cousins
are considered and thus can be pooled. Our purpose is
to find an efficient pooling scheme for the nine IBW
states. Instead of categorizing on the basis of the number
of alleles shared IBD by the two sibs, we propose to
categorize the data on the basis of the total number of
different alleles Na (see last row of the table 3). The
following categories will be considered:

* Category 1: Na= 1: IBW state S,
* Category 2: Na =2: IBW states S2, S3, Ss, and S7
* Category 3: Na = 3: IBW states S4, S6, and S8
* Category 4: Na = 4: IBW state S9
The test of linkage will consist in comparing the ob-

served number of pairs in each of these categories with
the expected number under the null hypothesis of no
linkage. Under Ho (no linkage) and for large sample
sizes, the statistic follows a X2 distribution with 3 df.
This test is denoted the "NNa test." This categorization
is not the only one possible and different ones could be
proposed depending on the DS model. For a rare reces-
sive disease, we expect sib pairs to be in the category 1
(Na = 1) more frequently than expected at random,
whereas for a dominant disease, we expect the third
category (Na = 3) to be more frequent.
To compare the power of our Na test to the power of

the IB test, we determined analytically for a sample ofN
sib pairs from first-cousin marriages (from a population
with mean inbreeding coefficient a = 0.01) the expected
probabilities in the Na and IB categories under hypothe-
sis H1 of linkage and genetic model Gm at the DS locus
(see appendix C). Under H1, the IB and the Na statistics
follow a noncentral X2 with, respectively, 2 and 3 df and
with noncentrality parameters 2IB and XNa that depend

on the model Gm. We computed the noncentrality pa-
rameters for different models at the DS locus and deter-
mined the power of the two tests for these models. The
power was studied as a function of the values of the
relative penetrances, the number of sib pairs N and the
frequency of the DS allele.

In figure 2, the power for 30 sib pairs is given as
a function of x, the ratio of the penetrances f2/fl (no
phenocopies are assumed: f3 = 0) and assuming a DS
allele frequency q of 0.2. For x < 0.5, the Na test appears
to be the more powerful of the two tests. For x = 0.2,
the power of the Na test is -0.95, whereas it is -0.65
for the IB test. This gain in power of -25% may not
be negligible in terms of the number of sib pairs neces-
sary to detect linkage. For x = 0, that is to say, for a
recessive model with no phenocopies (ft * 0; f2 = ft3
= 0), the gain in power is not perceptible, since the
power of the three tests is approximately equal to 1 for
the sample sizes considered. In this figure, the power of
the IBW test where six categories are considered: S1, S3
+ 55, S4 + S65 S7, S8, and S9 are also reported. We can
see that the pooling of categories in the Na test does not
lead to a significant loss of power. For x - 0.8, the Na
test even has a slightly greater power than the IBW test.
We have reported in figure 3 the power of the two

tests (Na and IB) when sporadic cases are allowed for
(N = 30 sib pairs). The penetrance f2 was set to 0.2ff
and f3 to s X fl, with s varying from 0 to 0.2 (q = 0.2).
The test based on Na is the more powerful of the two
tests, whatever s. The 30% gain in power appears to be
almost constant with respect to s.

Results are also reported for different sample sizes
N, considering a DS allele frequency q of 0.2 and the
penetrances f2 and f3 equal to 0.2fi and 0.1ff, respec-
tively. It can be seen in figure 4 that, on average, 40 sib
pairs are required for the power of the Na test to exceed
0.80 and that this power is not reached with 100 sib
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Probabilities for an Affected Sib Pair from First-Cousin Marriages
(in a population with a = .01) to Share Both (X), One (Y), or No
(Z) Alleles Identical by Descent for Various Values of the Disease-
Susceptibility Allele Frequency q in Recessive and Dominant Cases

q X Y Z

A. Recessive Cases

1.000 1.000
.859 .907
.771 .827
.703 .756
.647 .694
.598 .640
.556 .592
.519 .549
.485 .510
.456 .476
.428 .445
.404 .416
.381 .391
.361 .367
.342 .346
.324 .326
.309 .309
.294 .292
.280 .277
.267 .263
.255 .250

.000 .000

.137 .091

.219 .165

.278 .227

.325 .278

.363 .320

.394 .355

.420 .384

.442 .408

.460 .428

.476 .444

.488 .458

.499 .469

.508 .478

.515 .484

.521 .490

.525 .494

.529 .497

.532 .499

.534 .500

.535 .500

.000 .000

.004 .002

.010 .008

.019 .017

.028 .028

.039 .040

.050 .053

.061 .067

.073 .082

.084 .096

.096 .111

.108 .126

.120 .140

.131 .155

.143 .170

.155 .184

.166 .198

.177 .211

.188 .224

.199 .237

.210 .250

B. Dominant Cases

.00

.05

.10

.15

.20

.25

.30

.35

.40

.45

.50

.55

.60

.65

.70

.75

.80

.85

.90

.95
1.00

.500

.448

.421

.397

.377

.360

.345

.331

.320

.309

.300

.292

.285

.278

.273

.268

.264

.261

.258

.256

.255

.500

.460

.428

.401

.377

.358

.341

.326

.313

.302

.293

.284

.277

.271

.265

.261

.257

.254

.252

.250

.250

.500 .500

.518 .495

.517 .491

.517 .488

.517 .487

.517 .486

.517 .485

.518 .485

.519 .486

.520 .487

.522 .488

.523 .489

.525 .490

.527 .492

.528 .494

.530 .495

.531 .497

.533 .498

.534 .499

.535 .500

.535 .500

.000 .000

.034 .045

.062 .081

.086 .111

.106 .136

.123 .156

.138 .174

.151 .189

.161 .201

.171 .211

.178 .219

.185 .227

.190 .323

.195 .237

.199 .241

.202 .244

.205 .246

.206 .248

.208 .249

.209 .250

.210 .250

NOTE.-In italics, results of Thomson and Bodmer (1977) for non-
inbred sib pairs.

pairs for the IB test. In this situation, we can expect to
obtain a significant result with less than half the number
of sib pairs when using the Na test.

In figure 5, the power is given as a function of the
frequency q of the DS allele. The sample size was set to

0
IL

1.0

.9

.8

.7

.6

.5

.4

.3

.2

.1
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Figure 2 Comparison of the power of the Na and lB tests for a

nominal value of 5% as a function of x, the ratio of the penetrances

f2/fl. f3 is set to 0 (no phenocopies) and q to 0.2. Samples of 30 sib pairs
from a first-cousin marriage, in a population with mean inbreeding
coefficient a = 0.01, are considered. The power is also reported in
the case where IBW categories are not pooled (IBW test).

60 sib pairs (it is the size that leads to a power for the
Na test of -0.95) and the penetrances were set to fl,
f2 = 0.2fi, and f3 = 0.1ff. For this set of penetrances,
the power is maximum for the Na test when q is 0.15
(it is 0.97 for the Na test and -0.40 for the IB test). For
larger values of q, the power decreases; for instance, if
q = 0.4, the power is 0.67 for the Na test and 0.42 for
the IB test. The power also decreases for values of q

<0.15. This can be explained because the ratio s is con-
stant and thus the proportion of sporadic cases increases
with decreasing values of q.

To study the power of tests, we have considered a

population with mean inbreeding coefficient a = 0.01.
This was, for instance, the average inbreeding coefficient
reported in the Egyptian population (Hafez et al. 1983).
In figure 6, the power of the two tests has been reported
for different levels of remote consanguinity. Power cal-
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3 .5
0.
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.3

.2
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| Na test
|---IB test

.u
0 .05 .10

s=f3/ft

.15 .20

Figure 3 Comparison of the power of the Na and IB tests for a

nominal value of 5% as a function of s, the ratio of the penetrances

[3/fl. [2 is set to 0.2ff and q to 0.2.
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Na test
---IB test
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Number of sib pairs N

Figure 4 Comparison of the power of the Na and lB tests for a

nominal value of 5% as a function of the size N of the sample of sib
pairs. f2 is set to 0.2fi, f3 to 0.1lf, and q to 0.2.

culations have been performed, considering a sample of
30 sib pairs, and the parameters at the DS locus were

set to the same values as in figure 4 (q = 0.2; x = 0.2;
and sp = 0.1). When the level of remote consanguinity
increases, the power of the IB and Na tests is increased.
For the IB test, the increase in power is very small, from
0.26 for a = 0 to 0.27 for a = 0.05. The increase in
power for the Na test is greater: from 0.67 for a = 0 to
0.78 for a = 0.05.

Robustness of Tests in Presence of Remote
Consanguinity
The presence of a remote consanguinity in the popula-

tion where sib pairs are sampled will lead to the possibil-
ity for the parents of the sibs to be more related than
expected by their known first-cousin relationship and
to be inbred themselves. This remote consanguinity is
usually very difficult to evaluate, and for this reason it
is very often ignored. In this section, we studied whether
the ignorance of the remote consanguinity may bias the
tests. Comparing the distribution of IBW states for sib

e.

0

1.0*
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.2

.1

/
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Na test o
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:I%

_ N N C) U )C1 co It

Frequency q of the DS allele

Figure 5 Comparison of the power of the Na and IB tests for a

nominal value of 5% as a function of the frequency q of the DS allele.
[2 is set to 0.2ff, f3 to 0.1fh, and the sample size N of sib pairs from
a first-cousin marriage is 60.

3
0.

.9

.8 -
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.6 -

.5 -

.4 -

.3 -

.2 --
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.0
0 o o o o9 -:

| Na test
---.-- IB test

Mean inbreeding coefficient

Figure 6 Comparison of the power of the Na and lB tests as a

function of the level of remote consanguinity in the population (mean
inbreeding coefficient) for a nominal value of 5%. Power are calculated
considering samples of 30 sib pairs and the same model as in figure
4 (q = 0.2; f2 = 0.2fA; f3 = 0.lfi).

pairs from first-cousin marriages without accounting for
the remote consanguinity (Ho) (a = 0) and accounting
for it (Ho,), we can see the impact of the remote consan-

guinity on the IB and the Na tests. Indeed, since the Na
and the IB statistics are expected to follow a noncentral
x2 under Hoa, we were able to compute analytically the
type I error of these two tests for samples of N sib pairs
from first cousins as a function of a. In figure 7, results
are given for a nominal value of 5% for N = 30 and N
= 100 sib pairs. We can see that the Na test is less robust
to the presence of an ignored remote consanguinity than
is the IB test. This could be expected, since the Na test
takes into account the within-identity that may be in-
creased by the remote consanguinity. For a = 0.01, the
type I error is increased from its nominal value of 5%
to 5.1% and 5.3% for the IB and the Na tests, respec-

1.0

.9

.8

.7

.6

.5

.4

.3

.2

.1

.0

Na test (N=100)
------ IB test (N=100)
-x- Na test (N=30)
- - + - IB test (N=30)

N X) -t uL F Go 0)

Mean inbreeding coefficient

Figure 7 Type I errors of the IB and Na tests as a function of
the level of remote consanguinity in the population (mean inbreeding
coefficient) for a nominal value of 5%. The type I error is derived for
samples of 100 sib pairs and 30 sib pairs.
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tively, if N = 30. If the sample size is 100, type I errors
are 5.4% and 6.1%, respectively.

If the population is highly consanguineous, the igno-
rance of the remote consanguinity may increase the type
I error of the tests dramatically. For a = 0.05 and N
= 30, the type I error is increased from its nominal value
of 5% to 7.8% and 14.3% for the IB and the Na tests,
respectively. For N = 100, type I errors become 15.2%
and 40.4%, respectively.

Discussion

To test for linkage between a marker locus and a
disease, one usually looks for identical marker alleles
in related affected individuals. When data on affected
children from consanguineous marriages are available,
one can also look for regions of their genome that are
homozygous by descent (or autozygous) (Lander and
Botstein 1987). This method of homozygosity mapping
was shown to be very efficient in the study of recessive
diseases. We have combined both approaches in this
article by using IBW states for affected sib pairs. These
IBW states give a complete description of the IBD rela-
tionships between alleles of individuals at a locus.

In this paper, we first used the IBW states to derive
the expected proportions of sib pairs sharing zero, one,
or both marker alleles IBD when sibs are sampled in a
consanguineous population. A departure from the pro-
portions of 1/4, 1/2, and 1/4, expected when assuming
no inbreeding, was found in a consanguineous popula-
tion in the absence of linkage. For inbreeding coefficients
>0.01, the type I errors of the classical tests of linkage
based on sib pairs may largely be greater than their
nominal values. Thus, it seems that ignoring inbreeding
can lead to a false conclusion of linkage. It may also
lead to false estimates of the genetic parameters at the
DS locus. In particular, we showed here that the DS
allele frequency may be overestimated by using the IBD
distribution (Thomson and Bodmer 1977) when in-
breeding is not taken into account.

In the second part of the paper, we show how to
better use the information provided by data from con-
sanguineous populations. We categorized the data in
another way than the usual number of alleles shared
IBD between two affected sibs. When concerned with
pairs of inbred sibs, we can look at the four alleles of
these sibs at a locus and categorize the data on the basis
of the number of different alleles Na in this set of four
alleles. We showed that this proposed Na test is more
powerful to detect linkage between a marker and a DS
locus than the usual test based on the number of alleles
shared IBD by the sibs (IB test) if the ratio x of the
penetrances f2/fl is <0.5. The gain in power the Na test
is used has been investigated for different DS allele fre-
quencies q and for different sets of penetrances at the

DS locus. The higher power of the Na test compared to
the IB test is especially perceptible for intermediate mod-
els where the penetrance of the heterozygote f2 is -0.2
times that of the homozygote DD, fl. In the presence of
sporadic cases (f3 * 0), the Na test is still the most power-
ful. In these situations, we can expect to detect linkage
with smaller samples of sib pairs from first-cousin mar-
riages. For instance, if q = 0.2, f2 = 0.2fi, and f3 = 0.1ft,
an average sample size of 40 is needed to obtain a power
>0.80 for the Na test, and this sample size is >100 for
the IB test and for the IB sib test. The situations where
the use of the Na test may be interesting are situations
we can expect when considering multifactorial diseases.
Indeed, in such diseases, genetic factors that are not
necessarily rare in the population may play a role and
interact with each other and with environmental factors.
Although the Na test is more powerful than the IB

test where inbred sib pairs are concerned, it is less robust
to the presence of remote consanguinity. If the mean
inbreeding coefficient of the population where inbred
sibs are sampled is ignored, the type I error of the Na
test may be considerably increased. Accurate estimates
of inbreeding coefficients are thus necessary to ensure
that type I errors of tests remain close to their nominal
value. This is especially true in highly consanguineous
populations or subpopulations with mean inbreeding
coefficients >0.01. Moreover, in this case, we have
shown that accounting for the remote consanguinity can
increase the power of the Na test.
Although the concept of IBW states proposed by Gil-

lois (1964) (who used the terminology "identity states")
did not have many practical applications in human ge-
netics, it has been often used in animal genetics, where
genealogical relationships are easier to establish thanks
to controlled breeding (Chevalet et al. 1984). We show
here that, because IBW state give a complete description
of the IBD relationships between a set of genes, it may
also be a useful tool in genetic epidemiology. It allows
us to extend the sib-pair method to data concerning
individuals who are not sibs (for instance, a pair of first-
cousins) without tedious computations. Indeed, IBW
states are a way to deal with complex genealogical rela-
tionships and to better take into account genealogical
knowledge. Jacquard (1972) used IBW states to derive
the genotype structure of an individual given genotypic
information concerning one of his relatives. Thompson
(1983) used IBW states to infer the ancestral origin of
the genes of an individual from a pedigree. In the field
of linkage analysis, IBW states have also given rise to
some interesting methods. In particular, the affected-
pedigree-member method of Weeks and Lange (1988)
takes advantage of the IBW states to derive a statistic
that permits an investigator to determine whether af-
fected members from a pedigree share more marker al-
leles IBD than is expected by their genealogical relation-
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ships. More recently, Whittemore and Halpern (1994)
have also proposed pedigree-linkage tests based on the
IBW states. These examples illustrate that the computa-
tion of the probabilities of IBW states may be a major
step in the analysis of pedigree data. However, neither
the approach of Weeks and Lange (1988) nor the ap-
proach of Whittemore and Halpern (1994) takes full
advantage of IBW states, since they only use a part of
the information that concerns IBD between individuals.
Contrary to our approach, no attention is given to the
IBD within individual, although this may be an im-
portant information, as illustrated by our study.
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Appendix A
IBW-State Probabilities for Two Sibs in a
Consanguineous Population

Let us consider that the population from which sib pairs
are sampled is consanguineous with mean inbreeding
coefficient a (probability to be IBD for the two alleles
at a locus of a randomly selected individual in the popu-
lation). We assume that this population is stable so that
the mean inbreeding coefficient stays the same across
generations. The mean kinship coefficient in this popula-
tion (probability to be IBD for two alleles taken at ran-
dom at a locus from two randomly selected individuals
in the population) is then also a. Thus, a is the probabil-
ity to be IBD for two alleles taken at random in the
population (either in the same or in two different indi-
viduals).

Let consider the parents of the sib pair. It is possible
to compute their probability to be in one of the nine
IBW states as a function of a.

S, (1 1 1 1)

S2 (1 1 2 2)

S3 (11 1 2)

S4 (1 123)

S5 (1 2 2 2)

S6 (1 2 3 3)

S7 (1 2 1 2)

S8 (1 2 1 3)

a3

a2(1 - a)

a2(1 - a)

a(l - a)2

a2(1 - a)

a(l - a)2

a2(1 - a)2

2a(1 - a)3

S9 (1 2 3 4) (1 - a)4

Table Al

IBW-State Probabilities of Parents and Sib Pairs

IBW STATE OF PARENTS
IBW STATES
OF SIBS S1 S2 S3 S4 S5 S6 S7 S8 S9

Si 1 0 1/4 0 1/4 0 1/8 1/16 0
S2 0 0 0 0 0 0 1/8 0 0
S3 0 0 1/4 0 1/4 0 1/4 1/8 0
S4 0 0 0 0 0 0 0 1/16 0
S5 0 0 1/4 0 1/4 0 1/4 1/8 0
S6 0 0 0 0 0 0 0 1/16 0
S7 0 1 1/4 1/2 1/4 1/2 1/4 3/16 1/4
S8 0 0 0 1/2 0 1/2 0 3/8 1/2
S9 0 0 0 0 0 0 0 0 1/4

Once the IBW-state probabilities of parents are
known, the IBW-state probabilities for the sib pair can
be obtained by using the matrix MPS in table Al.
The IBW-state probabilities for the sib pair are thus:

S1 (1 1 1 1) (5/8)cx9 + (1/4)c2 + (1/8)a

S2 (1 1 2 2) (1/8)a4 - (1/4)a3 + (1/8)a2

S3 (1 1 1 2) -(1/4)a3 + (1/4)a

S4 (1 1 2 3) -(1/8)a4 + (3/8)a3 - (3/8)a2 + (1/8)a

S5 (1 2 2 2) -(1/4)a3 + (1/4)a

S6 (1 2 3 3) -(1/8)a4 + (3/8)a3 - (3/8)a2 + (1/8)a

S7 (1 2 1 2) (1/8)a4 - (7/8)a3 + (1/8)a2 + (3/8)a + (1/4)

S8 (1 2 1 3) -(1/4)a4 + (5/4)a3 _ (5/4)aC2 _ (1/4)a + (1/2)
S9 (1 2 3 4) (1/4)a4 - a3 + (3/2)a2 - a + (1/4)

Appendix B

Accounting for Remote Consanguinity in the
Computation of IBW-State Probabilities for
Two Sibs from First-Cousin Matings

IBW-state probabilities can be computed on the basis of
genealogical information by using the algorithm of Kar-
igl (1981). In this algorithm, it is assumed that individu-
als outside the pedigree are neither related nor inbred.
Thus, it is assumed that the mean inbreeding and the
mean kinship coefficient are negligible in the population.
Since this may not be the case in populations where
inbred sib pairs may be collected, we try to take into
account this remote consanguinity. As in appendix A,
we suppose that the population is characterized by a
mean inbreeding coefficient equal to the mean kinship
coefficient and equal to a. We introduce this mean in-
breeding coefficient in the computation of IBW states
for first cousins, using the algorithm of Karigl (1981).
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7 8

Figure B1 Pedigree, showing individuals (7 and 8) as first cous-
ins, to compute IBW states.

Let consider the following pedigree in figure B1, where
individuals 7 and 8 are first cousins. To deduce the nine
IBW states, Karigl (1981) introduced generalized kin-
ship coefficients. Six kinship coefficients, 4, need to be
computed to obtained the IBW-state probabilities of in-
dividuals 7 and 8. These kinship coefficients can be ob-
tained by using the recursion rules given by Karigl
(1981).

4)78 = 487

= (1/4)()35 + 436 + 045 + 446)

= (1/4)()35 + 3a),
since 4)36 = )45 = )46 = a

= (1/16)(41) + 412 + 421 + 422) + (3/4)a
= (1/16)[(1/2)(1 + a) + 2a + (1/2)(1 + a)]
= (1/16) + (15/16)a

= 488 = (1/2)(1 + q34) = (1/2)(1 + a)

4778 = 4887

= (1/2)(078 + 4348)
= (1/2)478 + (1/4)()345 + 4346)
= (1/2)478 + (1/4)[(1/2)(4145 + 4245) + a2]

= (1/2)478 + (1/4)[(1/4)(411s + 4125
+ 4214 + 4224) + a2]

= (1/2)478 + (1/4)[(1/4)(4a2) + a2]
= (1/32) + (15/32)a + (1/2)a2

4)7788 := (1/2)(0788 + 43488)
= (1/2)4)788 + (1/4)(+348 + 43456)
= (1/2)4788 + (1/4)4348

+ (1/4)(1/2)()1456 + 42456)
= (1/2)4)788 + (1/4)4348

+ (1/8)(1/2)(41416 + 01426 + 02416 + 42426)

= (1/64) + (15/64)a + (1/4)a2

+ (1/4)a2 + (1/16)(4a3)

= (1/64) + (15/64)a + (1/2)a2 + (1/4)a3

77,88 = 2(1/2)(488 + 034,88)

= (1/2)488 + (1/2)(1/2)(434 + 034,56)
= (1/2)488 + (1/4)034 + (1/4)a2

= (1/4)(1 + a) + (1/4)ca + (1/4)a2

= (1/4) + (1/2)a + (1/4)a2

)78,78 = (1/4)(24)78 + 2438,48)

= (1/2)4)78 + (1/2)(1/4)(2)348 + 453,64 + 463,54)
= (1/2)478 + (1/4)4348 + (1/8)+53,64 + (1/8)a2
= (1/2)478 + (1/4)4348

+ (1/8)(1/4)(011,64 + 412,64 + 021,64 + 022,64)
+ (1/8)a2

= (1/64) + (15/64)a + (1/4)a2 + (1/4)a2

+ (1/32)[2(1/2)(a + a2) + 2a2] + (1/8)a2
= (1/64) + (17.64)a + (23/32)a2.

The IBW-state probabilities for individuals 7 and 8 can
be deducted from these extended kinship coefficients as
shown by Karigl (1981).

For first cousins in a population with mean inbreeding
coefficient a, IBW states have probabilities

P(S1) = 447788 - 20778 - 24788 + 4)78 = a3

P(S2) = -447788 + 4077,88 + 24778 - 24)77 + 24788

- 2088 - 478
= -a3 + a2

P(S3) = -847788 + 84778 + 44788 - 4477
= -2a3 + 2a2

P(S4) = 84)7788 - 4477,88 - 80778 + 4478

- 44)788 + 2488 + 4478 - 2

= 2a3 - 3a2 + a

P(S5) = -847788 + 4X778 + 8)788 - 4478
= -2a3 + 2a2

P(S6) = 847788 - 4)77,88 - 44778 + 2477
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- 84788 + 4088 + 4478 - 2

= 2a3 - 3a2 + a

P(S7) = -84)7788 + 8)78,78

= -2a3 + (7/4)a2 + (1/4)a

P(S8) = 324)7788 - 164778 - 160788

- 16078,78 + 16478

= 8a3 - (23/2)a2 + (13/4)a + (1/4)

P(S9) = -2447788 + 4477,88 + 164778 - 4477

+ 164)788 - 4488 + 8478,78 - 16078 + 4

= -6a3 + (43/4)a2 - (11/2)a + (3/4) .

The use of the matrix Mp6, defined in appendix A, allows
derivation of the IBW-state probabilities for sib pairs
from first-cousin marriages in this population:
S1 (1 1 1 1) (1/4)a3 + (1/2)a2 + (15/64)a + (1/64)

S2 (1 1 2 2) -(l/4)a3 + (7/32)a2 + (1/32)a

S3 (1 1 1 2) -(1/2)a3 + (15/32)a + (1/32)

S4 (1 1 2 3) (1/2)a3 - (23/32)a2 + (13/64)a + (1/64)

Ss (1 2 2 2) -(1/2)a3 + (15/32)a + (1/32)

S6 (1 2 3 3) (1/2)a3 - (23/32)a2 + (13/64)a + (1/64)

S7 (1 2 1 2) -(1/2)a3 - (1/32)a2 + (19/64)a + (15/64)

S8 (1 2 1 3) 2a3 - (31/16)a2 - (17/32)a + (15/32)

S9 (1 2 3 4) -(3/2)a3 + (43/16)a2 - (11/8)a + (3/16)

Appendix C
lB and Na States Distribution for Affected Sib Pairs
under the Hypothesis H1 of Linkage between the
Marker and the DS Locus (0 is assumed to be 0)
In table 5, the IBW-state probabilities have been given
as a function of q (DS allele frequency) and of the ratios
of penetrances (x = f2/f1 and s = f3/f1) for sib pairs. By
using this table, it is possible to determine the expected
distribution of IB and Na states, as shown in table C1,
where
A = q(p8 + q(p2 + P3 + P5 + P7)

+ q2(p4 + P6 + P8) + q3pg) + q(1 - q)

X(p3 + ps + 2q(p4 + P6 + P8) + 4q2p,) + S(p4 + P6 + 2P7 + 4q(1 - q)p9)

x +xs(p3 + p5 + 2(1 - q)(p4 + P6 + P8) + 4(1 q)2p,)

+x2(2p7 + P8 + 4q(1 - q)p,)
+ (1 - q)s2(pl + (1 - q)(P2 + P3 + P5 + P7)

+ (1 - q)2 p4 + P6 + P8) + (1 - q)3p8) .

By using the probabilities of IBW states (pi, i = 1-9)
given in table 3, the IB-state distribution may be ob-
tained for sib pairs from first cousins sampled in a popu-
lation with mean inbreeding coefficient a. For the Na
states, see table C2.
Under the hypothesis H1, the Na and IB statistics fol-

low noncentral X2's with, respectively, 2 and 3 df. The
noncentral parameters XIB and XNa can be computed
from the above distribution:

3(pi-_pi,) 4(pi -pi,)XIB = N and XN, = N
8=1 Pi i=1 Pi

where pi and p' are the probabilities of state i under Ho
and H1, respectively.
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Table C1

Expected Distribution of IB States

IB State

IB = 0

Under Ho

P2 + P4 + P6 + P9

7 30 +47 2 24 3
32 - 32a+ 32 32

1
A

IB = 1 P3 +Ps +P8

17 13 62 2 3
32 32 32

a + a
1

Under H,

q2(P2 + q(p4 + P6) + q2ps
/2qx(p4 + P6 + 2qp9)

+ s(2p2 + P4 + P6 + 2q(l - q)p9)
+ q(1 - q)

+ 2(1 - q)XS(p4 + P6 + 2(1 - q)p9)
. 4q(1 - q)x2p9 /

+ (1 q)2s2(p2 + (1 -q)(P4 + P6) + (1 q)2ps)

q2(P3 + Ps + qP8)
x(p3 + Ps + 2qp8)

+ q(l - q) + xs(p3 + p5+ 2(1 - q)P8
+ x2P8

+ (1 q)2s2(p3 + Ps + (1-q)P8)

IB = 2 Pi +P7 1 rq(Pi + qP7)
83 + 17a + 15 a2 _ 8j 3 A + 2q(1 - q)x2p7 + (1 - q)s2(pl + (1 - q)p7)
32 32 32 32

NOTE.-A1l cases are sibs from first cousins.

Table C2

Expected Distribution of Na States

Na State Under Ho Under H1

Na = 1 Pi

1 15 1 2 1 3
-+-ax+-cx +-a

64 64 2 4

Na = 2 P2 + P3 + Ps + P7
19 81 3 2 7 3

64 64 16 4

Na = 3 P4 + P6 + Ps

32 1 727 3C3

64 8 8

Na = 4 Ps

12 11 432 3 3
64 8 16 2

A [q + (1 - q)s2]pi

q2(P2 + P3 + P5 + P7)
q(l q)(x(l 2P7X2)

E+ (1 - q)2s2(p2 + P3 + P5 + P7)

q3(P4 + P6 + P8)

1 2xq(p4 + P6 + P8) + s(p4 + P6)

A t+ 2xs(1 - q)(P4 + P6 +P)+x2p8
+ (1-q)2S2(p4 + P6 + Ps)

1 q4 +2q(1 (2q2x+q(1 q)s )
+ 2q(1 - q)x2 + 2(1-q)2XS Ps

+ (1- q)4S

NOTE.-A1 cases are sibs from first cousins.

I

I
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