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Using the Expectation or the Distribution of the Identity by Descent
for Mapping Quantitative Trait Loci under the Random Model
Damian D. G. Gessler and Shizhong Xu

Department of Botany and Plant Sciences, University of California, Riverside, Riverside

Summary

We examine the ability of four implementations of the
random model to map quantitative trait loci (QTLs).
The implementations use either the expectation or the
distribution of the identity-by-descent value at a putative
QTL and either a 2 x 1 vector of sib-pair traits or their
scalar difference. When the traits of both sibs are used,
there is little difference between the expectation and
distribution methods, while the expectation method suf-
fers in both precision and power when the difference
between traits is used. This is consistent with the predic-
tion that the difference between the expectation and
distribution methods is inversely proportional to the
amount of information available for mapping. We find,
though, that the amount of information must be very
low for this difference to be noticeable. This is exempli-
fied when both marker loci are fixed. In this case, while
the expectation method is powerless to detect the QTL,
the distribution method can still detect the presence (but
not the position) of the QTL 59% of the time (when
using trait values) or 14% of the time (when using trait
differences). We also note a confounding between esti-
mates of the QTL, polygenic, and error variance. The
degree of confounding is small when the vector of trait
values is used but can be substantial when the expecta-
tion method and trait differences are used. We discuss
this in light of the general ability of the random model
to partition these components.

Introduction

There is considerable interest in mapping quantitative
trait loci (QTLs). Because the contributions of distinct
quantitative loci cannot be directly observed, the map-
ping of QTLs is done by inferring their presence from the
correlation between linked marker loci and individuals'
measures for the quantitative traits (Sax 1923; Haseman
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and Elston 1972; Lander and Botstein 1989). Most QTL
mapping has proceeded by using variations of this tech-
nique under the framework of the general linear model
(GLM).
The GLM can test either fixed or random effects, de-

pending on whether the inference space corresponds to
only and exactly the effects tested or to a universe of all
possible effects. While it may seem desirable in QTL
mapping always to use the expanded inference space of
the random model, the necessary use of inbred lines
in much QTL methodology has dictated a fixed model
approach. Both linear regression (Haley and Knott
1992; Martinez and Curnow 1992) and maximum-like-
lihood methods (Lander and Botstein 1989; Knott and
Haley 1992) have been used to solve fixed model GLMs.
In the regression method, a best-fit is achieved by min-
imizing the squared deviation between the predicted and
observed values for the trait as a function of the mean
probability that a given allele at a putative QTL is shared
among sibs, given the observed marker information. In
a full-sib model, this mean probability reflects a
weighting of the presence or absence of a shared allele;
this weighting, denoted xti for the ith family, is an esti-
mate of the mean identity-by-descent (IBD) value at the
putative QTL. For example, if there is a 25% chance
that two sibs share no alleles, a 50% chance that they
share exactly one, and a 25% chance that they share
two, then7i = 1/4 0 + 1/2.* /2 + 1/4 1 = 1/2.

Alternatively, the maximum-likelihood method does
not use the expectation xti, but uses the distribution of
Ri, i.e., it incorporates the discrete probabilities that sibs
may share exactly zero, one, or two alleles at the putative
QTL. Haley and Knott (1992) showed that in a fixed
model both methods can produce similar results, though
the regression method as defined above may overesti-
mate the true residual error (Xu 1995).

If parents are arbitrarily outbred, then matings neces-
sarily involve a sampling of alleles, and thus the relevant
inference space presupposes the random model. Krug-
lyak and Lander (1995) used the distribution of ni in a
multipoint sib-pair analysis and noted its advantages in
terms of the amount of information extracted and its
adherence to a strict maximum-likelihood model. Yet it
is unclear whether the advantages of this method will
be large enough to warrant its exclusive adoption, or,
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as in the fixed model case, most situations will yield
similar results when either the expectation or the distri-
bution of ni is used. We refer to these two methods
as the expectation and distribution methods. For the
random model, both the expectation and the distribu-
tion method can be incorporated into a single maxi-
mum-likelihood model by an appropriately defined log-
likelihood function.

In this paper, we examine the consequences of using
the expectation or the distribution method under a gen-
eral maximum-likelihood methodology. We do this for
two models, one where we use traits from each of two
full sibs and the other where we use only the difference
between the trait values of each sib pair (Haseman and
Elston 1972; Fulker and Cardon 1994). We choose to
work in a parameter space that is particularly relevant
to human genetics. For example, it is known that maxi-
mum-likelihood estimates often require large sample
sizes and that the selection of discordant sibs and the
use of inbred lines and can increase the power of QTL
mapping (Paterson et al. 1988; Lander and Botstein
1989; Risch and Zhang 1995). In human populations,
unknown pedigrees and relatively small family sizes can
restrict the use of these options. We concentrate on using
no more than 1,000 families, exactly two full-sibs per
family with no selection, and we restrict ourselves to
randomly constituted parental populations. It is im-
portant to note that we assume our data to consist of
only a list of quantitative measures and fully expressive,
codominant marker genotypes. We exclude the possibil-
ity of manipulative mating schemes or pedigree analysis.

The Model

We consider a model similar to that described by
Goldgar (1990) and Schork (1993):

yij = 1 + gi + ai + £-j, (1)

where yij is the observed effect (the measured value of
the trait) for the jth sib (i = 1, 2) of the ith family (i
= 1, 2, . . . n), g is the grand mean, gi is the contribution
at the putative QTL, ai is the contribution of all other
(and presumably unlinked) QTLs, and eii is the error

term. We will sometimes refer to ai as the "polygenic
contribution." In the formulation of (1), the parental
populations of individual Yij may be arbitrarily outbred,
and thus (1) is treated as a random model. Because of
this, testing for the significance of effects gi and ai in (1)
is equivalent to testing for significant variance compo-

nents:

var(Y) = &2= cyg + sa + ah 5

where Y is a random variable for Yij. We follow the

standard technique of Lander and Botstein (1989) and
test successive putative QTLs against the null hypothesis
of no QTL, i.e., Yij = ju + ai + 8i,.
To test model (1) we construct the bivariate normal

probability density function

1
f(yi) = 2HIa2 Ci 1 1'2 (2)

X exp{-
1

(yi - 1i)'Ci71(yi - 1P)}

for observing effects y, = [YiIY,2]' from family i (Xu and
Atchley 1995). In the above equation 1 = [1,1]' and C
is defined such that

var(yi) = 2Ci = a2[ 1 Jf

where ri = ding + 1/2ha, h9 = a2/62, and ha = qa/&2. To
model the expectation method, we replace ?ci (the IBD
value at the putative QTL) by its expectation Xc = xi
= Opo + 1/2p1,2 + 1pi, where po, P/2, and Pi are the
probabilities of sharing zero, one, or two alleles. For
clarity, we omit the subscript i from Po, p',2, and Pi and
present formulas for them in the next section. We then
employ the usual method of solving for ji, (&2 h9, and
h2 by numerically estimating the log-likelihood function

n

L, = 1; In f(yi) .

i=l
(3)

For the distribution method, we incorporate the distri-
bution of ni and define a new log-likelihood function as

n

L2= n[pofo(yi) + pi,2fi,2(yi) + plfj(yi)], (4)
i= 1

where f,(yi) is f(yi) evaluated at x = ItE = 0, 1/2, or 1.
If there is no variance in itE then (3) and (4) are equal.

This condition is approached in fixed-effect models with
inbred lines, but it is rarely attained (i.e., it is only a
limiting case) in outbred populations.

Simulation Methods

All simulations follow a similar procedure. We con-
struct canonical alleles with constant frequencies from
one common grandparent population. These alleles con-
stitute all marker loci and the specific QTL we are inter-
ested in mapping. From this population, we generate
four gametes, and from these gametes we construct two
parents. Separate from the marker loci and QTL, in
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some simulations each parent segregates an additional
12 unlinked, biallelic loci as a polygenic contribution to

the trait. The effect of each polygenic allele is distributed
as a normal variate with mean zero and variance
ac/24. From these parents, we generate two full sibs,
each sib being the product of an independent meiotic
event. We conducted runs using both randomly placed
chiasmata and Haldane's (1919) mapping function to

determine the probability of recombinants, but here re-

port results using only the mapping-function technique.
We use the above algorithm to generate n families,

with parents for each family being picked anew from
the invariant infinite-size grandparent population. Using
the mean and variance of the QTL effect in the grand-
parent population, we transform the QTL effect in each
sib so that the population of sib effects is distributed
normally with mean zero and variance cg _12.5. The
total effect for each sib is the sum of this effect, its
polygenic contribution, and any environmental effect.
Environmental effects are distributed as normal variates
with mean zero and variance acs. From these values, we
generate a phenotype for each sib as Yij = gij + aij + ei,.
As each sib is made, we look at its and its parents'

marker alleles and try to infer its genotype. To do this,
we assume knowledge of the linkage phase of each indi-
vidual. Knowledge of the linkage phase restricts the
number of possible offspring types, and, by decreasing
the variance in estimating each sib's IBD value, it in-
creases the amount of information extracted. Since in-
creased information reduces the variance in Ai,, assuming
knowledge of the linkage phase is conservative with re-

spect to identifying a difference between the expectation
and distribution methods. Concurrently, though, the ad-
ditional knowledge increases the chance of detecting a

QTL if one is segregating at a site and therefore yields
a procedure that is upwardly biased in detecting the
presence of a QTL.

Formulas for the probability of IBD based on two

flanking markers have been published elsewhere, and,
using our notation,

Po = Pr(ni = 0) = [p'(1 - P2) + P2(1 -pr)]

x [(1 - Pf2) + Pf2(1 - PO)]

Pi Pr(ni
= [P P' P1)(1 p2)]

x [(Pf2 + P1pf(1 - P2)]

P1/2= Pr(i = 1/2) = 1 Po -p

where px is the probability that an allele at the QTL
comes from the mother's or father's (x = m, f) first or

second homologue (y = 1, 2), conditional on the ob-
served marker genotype. These probabilities are a func-
tion of the recombination distance between the marker

loci and the QTL and are shown in table 1. If the
parents' genotypes are (ATQTB )/(A 'QTBT) and
(AfQ B()/(AfQfBf)then p = Pr (Q' marker genotype).
With arbitrarily outbred parental populations, not all
genotypes can be uniquely determined from the off-
spring's marker alleles, and one cannot unequivocally
determine Po, pi,2, and Pi. In these cases, we use a
weighted average for Po, pi,2, and Pt taken over all possi-
ble parent-offspring combinations.
From the vector of trait values y, the above formulas,

and table 1, we then maximize the log-likelihood func-
tions (3) and (4), using an implementation of the simplex
algorithm of Nelder and Mead (1965). For each putative
position, we calculate the log-likelihood ratio LR =
-2(LO - LA), where LO is the value of the log-likelihood
function under the null model and LA (A = {1,2)) is the
log-likelihood function under the alternative model. The
position with the highest LR is deemed the estimate of
the position of the QTL. For some positions, the max-
imizing algorithm found spurious local maxima, as
noted by a substantially negative LR. If this happened,
we restarted the search with a different set of initial
conditions; if this continued to happen more than five
times for a single position, we abandoned the run. The
likelihood of the numerical failure of the algorithm var-
ied across different parameter combinations, but in no
case did it constitute more than a few percentage points
of all attempted runs.
To examine the differences between the expectation

and distribution methods, we construct four parameter
classes, each with three levels of resolution. With ha
= 0, we examine (1) QTL heritabilities of h2 = 0.25,
0.50, and 0.75; (2) low, medium, and high levels of
marker informativeness; (3) population sizes of 250,
500, and 1,000 families; and (4) interval sizes of 10,
20, and 40 cM. For low marker informativeness, each
marker locus in the grandparent population has two
alleles at frequencies of 0.9 and 0.1, respectively. For
medium marker informativeness, each has two alleles at
equal frequency, and, for high informativeness, there are
six alleles, all at equal frequency. In all cases, six equally
frequent alleles segregate at the QTL. While testing each
level, we hold all other parameters at their intermediate
value. We examine additional cases with zero marker
informativeness and/or nonzero polygenic heritability-
the details of which we describe below. Each class of
simulations is repeated 300 times.
To determine the critical test statistic for a particular

parameter class, we performed 1,000 simulations each
with no QTL segregating. We then created a list of the
largest LR found from each run, and used the 50th (5%)
largest value as the critical LR. When removing the
QTL, we maintained all other variances constant, thus
reducing the overall variance for the trait. Alternatively,
we could have changed the environmental and/or poly-
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Table 1

Conditional Probability of a QTL Allele, Given the Flanking Marker Genotype

MARKER QTL ALLELE
OFFSPRING 4 x
GENOTYPE PROBABILITY PM = Pr(Q`IM) pI = Pr(Q`'IM) P$ = Pr(Q IM) P2 = Pr(QIM)

(1 -rA)(l - rB)/(1
(1 rA)(l - rB)/(l
(1 rA)(1 - rB)/(l
(1 - rA)(l - rB)/(l
(1 - rA)rB/r
(1 - rA)rB/r
(1 rA)rB/r
(1 - rA) rB/r
rA(l - rB)/r
rA(l - rB)/r
rA(l- rB)/r
rA(l - rB)/r

rArB/(l - r)
rArB/(l - r)
rArB/(l - r)
rArB/(A - r)

r)
r)
r)

-r)

TArB/(l r)

rArB/(l -r)
rArB/(l -r)
rArB/(1 -r)
rA(l -B)/rrA(l - rB)/rrA(l -rB)/r
rA(l -rB)/r
A(l TrB)/r

(1 rA)rB/r
(1 rA)rB/r
(1 rA) rB/r
(1 - rA)rB/r

(1 -rA)(l -
(1 -rA)(l-
(1 -rA)(l-
(1-TA)(1-

rB)/( I

rB)/( 1

rB)/(1

rB)/(1

r)
r)
r)

- r)

(1 -rA)(l -rB)/(l
(1 -rA) rB/r
rA(l -rB)/r
rArB/(1 -r)
(1 -rA)(l -rB)/(l
(1 -rA)rB/r
rA(l -rB)/r
rArB/(l -r)
(1 -rA)(l -rB)/(l
(1 - rA)rB/r
rA(l -rB)/r
rArB/(l -r)
(1 -rA)(l -rB)/(l
(1 -rA)rB/r
rA(l - rB)/r
rArB/(l -r)

r) rArB/(l -r)
rA(l -rB)/r
(1 -rA)rB/r
(1 -rA)(1 -rB)/(1 r)

r) rArB/(l - r)
rA(l -Tr)/r
(1 rA)rB/r
(1 rA)(l -rB)/(1 -r)

r) rArB/(l -r)
rA(l - rB)/r
(1 -rA)rB/r
(1 -rA)(1 -rB)/(1 -r)

r) rArB/(l -r)
rA(l -rB)/r
(1 -rA)rB/r
(1 TA)1 -rB)/(1 -r)

NOTE.-r is the recombination fraction between the two flanking markers A and B; rA and rB are the recombination fractions between each
marker and the QTL. The marker probability is the relative likelihood of observing the marker genotype given the recombination distance
between them.

genic variance to maintain the overall variance or genetic
heritability. In terms of the critical LR, we found little
difference between the two null hypotheses.

Finally, we differentiated between using a vector of
sib-pair values and their difference by implementing one

as the sib-pair model defined above and the other as a

sib-pair-difference model. For the sib-pair-difference
model, we used the one-dimensional normal probability
density function

e

f( 2)(yn2' 2t 22}

where = yi - Yi2 + 2[2(1 - fti)h + 2h2 + hi],
and h2 + y2/c2. The maximum-likelihood functions for
the expectation and distribution methods are applied
analogously as before to Ati.

Results

Sib-Pair Model
Table 2 reports the estimated QTL position, the coef-

ficient of variation for the position, the total phenotypic
variance, and the heritabilities h2 and h2 for the first
four parameter classes for the sib-pair model. In no case

is there any significant difference between the expecta-
tion and distribution methods.
Some trends are evident in the table, although in gen-

eral the effects are weak. In all cases, the position and

total phenotypic variance are successfully predicted,
while the observed estimates of h' + h' only slightly
exceed their expectation. In general, the sums h' + h'
= 0.25, 0.50, or 0.75 are conserved, implying a success-
ful partitioning of the genetic and residual variances.
Because the modeled polygenic heritability is zero, any
partitioning into h2 under a conserved sum tends to re-
duce h2, and thus the QTL heritability estimates are
biased low.
There is a strong effect of the level of heritability,

informativeness, number of families, and interval size
on decreasing the coefficient of variation (CV) in the
estimate of the QTL position, although there is no differ-
ence between the expectation and distribution methods.
In general, increasing the information content reduces
the CV in the QTL position from -0.8 to -0.5.
The partitioning of hg + ha2 is correspondingly sensi-

tive to the information content. A reduction in marker
informativeness leads to an increase in the confounding
of hg and h 2 although we do not observe a reciprocal
increase at the higher level of informativeness. A similar
effect is seen with population sizes, where 250 families
show a greater confounding between hg and h 2 than do
500 families, while there is no significant benefit in in-
creasing the size to 1,000. As expected, both increasing
the informativeness and the family size reduces the vari-
ance of the various estimates. The preceding is inversely
true for interval sizes, where increasing the interval to
40 cM significantly compromises the precision and abil-

AlMA fB7B f
I 1Af1 2

AMA fB1B f
A1

2 1~ BAlMA fB2 B f

A7lAfBTB fAlAfB2Bf

AlA 'B2 B

AMA fBMB f

AMA fBMB f2 2 2 1

AMA fB1B f
AMA fBTB f
AmA fBmBf
AM'A fB2 B f
AmA fB~MB fA2 22 1 2

(1 -r)2
r(1 -r)
r(1 -r)
(1 - r)2
r(1 - r)
r2
r2
r(1 -r)
r(1 -r)
r2

r2
r(1 - r)
(1 - r)2
r(1 - r)
r(1 - r)
(1 - r)2
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Table 2

Estimates of the Position, Coefficient of Variation in the Position (CV), Total Phenotypic Variance (a2), and QTL (h.) and Polygenic (h.)
Heritabilities for the Expectation and Distribution Methods

EXPECTATION METHOD DISTRIBUTION METHOD

Position CV h ha Position CV 9h ha

Standard 10.25 (6.43) .63 25.04 (1.21) .43 (.1174) .09 (.1220) 10.24 (6.57) .64 25.04 (1.21) .43 (.1141) .09 (.1207)
h2 = .25 10.66 (7.63) .72 49.87 (2.42) .21 (.1030) .06 (.0969) 10.72 (7.61) .71 49.87 (2.42) .20 (.1055) .07 (.0990)
h2 = .75 10.28 (5.05) .49 16.72 (.72) .69 (.1094) .08 (.1194) 10.28 (4.99) .49 16.73 (.72) .68 (.0963) .09 (.1122)
Low 9.50 (7.46) .79 24.92 (1.09) .39 (.1641) .12 (.1662) 9.57 (7.44) .78 24.92 (1.09) .38 (.1607) .13 (.1606)
High 9.86 (5.17) .52 25.02 (1.11) .44 (.1047) .08 (.1081) 9.91 (5.31) .54 25.02 (1.12) .44 (.1040) .08 (.1090)
N = 250 10.25 (7.21) .70 24.94 (1.55) .41 (.1611) .11 (.1605) 10.39 (7.34) .71 24.94 (1.55) .40 (.1609) .11 (.1622)
N = 1,000 9.80 (5.40) .55 24.96 (.75) .44 (.0878) .07 (.0886) 9.79 (5.59) .57 24.97 (.75) .44 (.0871) .07 (.0895)
10 cM 5.23 (2.92) .56 24.88 (1.13) .45 (.1123) .07 (.1084) 5.17 (2.95) .57 24.88 (1.13) .45 (.1113) .07 (.1105)
40 cM 19.43 (13.68) .70 24.96 (1.11) .37 (.1516) .12 (.1632) 19.54 (13.84) .71 24.96 (1.11) .37 (.1482) .13 (.1611)

NOTE.-The standard run is h' = .50, medium marker information as defined in the text, N = 500 families, and a 20-cM marker interval.
Each additional run differs from the standard run by the parameter change noted in the left-hand column. The true position of the QTL is in
the middle of the interval. The expected total phenotypic variance is 50, 25, and 16.67 for h2 = .25, .50, and .75, respectively. Standard errors
are in parentheses.

ity to partition the heritabilities, while reducing the in-
terval size to 10 cM has virtually no effect.

Sib-Pair-Difference Model
Table 3 reports analogous results for the sib-pair-

difference model. Here, there is a difference between
the expectation and distribution methods. Both methods
under both models produce comparable estimates of the
QTL position, but in the sib-pair-difference model the
distribution method is more accurate in estimating the
total phenotypic variance and partitioning h' and h . In
fact, the distribution/sib-pair-difference combination
produces the most accurate estimates of the polygenic
heritability (i.e., consistently the closest estimates for
h2 = 0). The expectation method consistently produces

upwardly biased estimates of the total phenotypic vari-
ance while failing to conserve the sum h2 + h .

Power
With one important exception, there is no significant

difference between the expectation and distribution
methods when examining the power to detect the QTL.
Table 4 reports the power in terms of the percentage of
runs with a LR at least as large as the critical LR. The
table includes a special class of runs with zero marker
informativeness. It is in this class that the distribution
method shows a substantial ability to detect the pres-

ence, though not the position, of the QTL.
In all except two cases, the sib-pair model is more

powerful than the sib-pair-difference model in detecting

Table 3

Estimates of the Position, Coefficient of Variation in the Position (CV), Total Phenotypic Variance (a2), and QTL (hg) and Polygenic (W.)
Heritabilities for the Expectation and Distribution Methods, Using the Sib-Pair Difference Model

EXPECTATION MODEL DISTRIBUTION METHOD

Position CV a2 h2 h2 Position CV a2 2 h2

Standard 10.29 (6.48) .63 26.48 (3.22) .45 (.1552) .12 (.1120) 10.31 (6.75) .65 24.94 (2.75) .45 (.1398) .03 (.0188)
h2 = .25 9.85 (7.50) .76 57.27 (6.98) .24 (.1627) .22 (.1419) 9.78 (7.66) .78 51.10 (6.08) .26 (.1635) .02 (.0081)
h2 = .75 10.00 (4.98) .50 17.93 (1.79) .70 (.1311) .13 (.1371) 9.92 (4.97) .50 16.81 (1.66) .71 (.0804) .04 (.0160)
Low 9.62 (7.24) .75 27.06 (4.14) .47 (.2286) .12 (.1216) 9.45 (7.57) .80 24.76 (3.48) .43 (.1866) .04 (.0264)
High 10.14 (5.39) .53 26.54 (3.17) .47 (.1183) .11 (.1144) 10.26 (5.60) .55 25.27 (2.74) .48 (.1098) .03 (.0156)
N = 250 9.29 (7.08) .76 26.93 (4.54) .46 (.2151) .12 (.1374) 9.33 (7.39) .79 25.22 (4.12) .45 (.1975) .04 (.0495)
N = 1,000 10.31 (5.56) .54 26.86 (3.00) .46 (.1214) .13 (.1178) 10.29 (5.69) .55 25.17 (2.26) .47 (.1075) .03 (.0099)
10 cM 5.15 (2.97) .58 26.70 (3.27) .48 (.1247) .11 (.1041) 5.09 (3.03) .60 25.40 (2.86) .48 (.1189) .03 (.0128)
40 cM 17.99 (12.64) .70 26.98 (3.91) .44 (.2139) .14 (.1382) 17.82 (13.37) .75 24.99 (3.45) .43 (.1829) .04 (.0346)

NOTE.-All information as is in table 2.
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Table 4

Power to Detect the QTL

METHOD

MODEL Expectation Distribution

Standard Parameters .96 .96
.67 .64

h2 = .25 .62 .60
.17 .15

h2= .75 1.00 1.00
1.00 .997

Marker Informativeness:
Zero 3.33 X 0-3 a .59

.05 .14
Low .79 .81

.40 .41
High .98 .98

.91 .91
N = 250 .86 .86

.42 .43
N = 1,000 1.00 1.00

.90 .92
10-cM interval .97 .97

.84 .85
40-cM interval .82 .81

.48 .50

NOTE. Each line reports the proportion of runs that had at least
one LR test statistic greater than the critical test statistic at the 95%
level. For each set of simulations, the upper line is for the sib-pair
model; the lower line is for the sib-pair difference model. The standard
model is described in the text and table 1.

a Only 1 case in 300.

the QTL. Of the two exceptions, one is equivalent to a
difference in the size of the observed type I error rate
for the expectation method (zero marker informa-
tiveness) and the other is where both models detect the
QTL in all 300 simulations (h2 = 0.75).
Nonzero Polygenic Heritability
We ran three x 300 additional simulations to determine

how some of the above conclusions apply when there is
nonzero polygenic heritability. For these simulations we
examined only the sib-pair model. The results are reported
in tables 5 and 6. In general, there continues to be a
relatively large variance around the estimate of the posi-
tion of the QTL, although the random model performs
well in estimating the total phenotypic variance and parti-
tioning the additive and QTL heritabilities. When there is
zero marker informativeness, the distribution method is
weaker in detecting the presence of the QTL than it is
without polygenic variance, yet it is still strong enough to
identify its presence 26% of the time.

Discussion
Our results extend the general conclusions of Haley

and Knott (1992) to the random model and show that

the expectation method can capture most of the infor-
mation available for QTL mapping. We find two im-
portant exceptions: (1) at the lower limit, when there
is zero information in the marker loci, the distribution
method can still successfully detect a QTL a high per-
centage of the time; and (2) the distribution method can
be superior in a sib-pair-difference model. The distribu-
tion method is able to detect a QTL with even zero
marker informativeness because, regardless of the
marker alleles, in some populations the variance is par-
tially explained purely by the decomposition of f(yi) into
fo(yj), fi/2(yi), and f1(yi). Under the sib-pair model the effect
is weak, and it manifests itself only when the amount of
information is very low. When there are no segregating
markers, the expectation method is identical to the null
hypothesis and is consequently powerless to detect the
QTL.
We did not find a parameter space where there was

nonzero marker informativeness yet still a significant
benefit to using the distribution method in the sib-pair
model. Despite this, it is feasible that there is a gradation
of increasing information content such that the distribu-
tion method retains an advantage. As genetic maps be-
come denser and the number of molecular markers in-
crease, this point may be academic. Still, other problems,
such as paternity assurance (i.e., cryptic half sibs in a
full-sib model), may contribute degrees of uninforma-
tiveness that will warrant further directed analysis in
light of the distribution-method approach.

Using the sib-pair model, the expectation method is
relatively robust to the amount of marker information,
although there is still a small problem in partitioning
the heritabilities h2 and h2. This tends to be a general
difficulty when either the sib-pair or the sib-pair-differ-
ence model is used (see, for example, Amos 1994; Amos
et al. 1996). The problem is central to the robustness
of the random model, since variance decomposition is
analogous to the separation of mean effects in the fixed
model. This is seen more clearly when information in
trait values is reduced, such as when using the sib-pair-
difference model. Here, the expectation method is con-
siderably worse than the distribution method in parti-
tioning the heritabilities. This means that there is an
interaction effect in how information in the trait and
marker loci is used. In the expectation/sib-pair-differ-
ence simulations, the sum h2 + h2 is no longer conserved,
implying a confounding with the residual error term.
We assume normally distributed error terms, and, al-
though the maximum-likelihood method can be rela-
tively robust to violations of this assumption, it is not
entirely insensitive to it. Amos et al. (1996) recommend
the quasi-likelihood technique when there is strong evi-
dence that the assumption does not hold.
The sib-pair-difference simulations show no benefit

in predicting the position of a QTL, nor in reducing

1387



Am. J. Hum. Genet. 59:1382-1390, 1996

Table 5

The Sib-Pair Model with Nonzero Polygenic Heritability

EXPECTATION MODEL DISMrBUnTON MODEL

Position CV h9 ba Position CV C& bg ba

Standard 9.92 (5.78) .58 24.94 (1.16) .48 (.1545) .26 (.1779) 10.03 (5.98) .60 24.94 (1.16) .46 (.1406) .28 (.1684)
Minimum 18.63 (16.05) .86 24.85 (1.66) .51 (.2769) .23 (.2692) 19.14 (16.71) .87 24.85 (1.67) .43 (.2381) .31 (.2531)
Zero ... (...) ... 25.01 (1.12) .55 (.1882) .20 (.1774) . . .( ) ... 25.02 (1.12) .37 (.2551) .38 (.2732)

NoTE.-The standard model is the same as in table 2, except that the non-QTL variance (12.5) is partitioned equally into polygenic and
environmental components (h2 = .50, h2 = .25). The minimum model retains these heritabilities but sets all other parameters to their minimum
information content (low marker informativeness, N = 250 families, 40-cM marker interval). The zero model is the same as the standard
model, but with zero marker informativeness. The ellipses indicate that the zero model cannot provide information on the QTL position.

the variance in the estimate. One benefit of a sib-pair-
difference procedure is its ability to compensate for
common family effects. Yet, without data collected to
isolate the effect by some differential contribution (e.g.,
by collecting data for both MZ and DZ twins), a com-
mon family effect will remain confounded with the other
terms. This problem is made somewhat more difficult
by the lack of analytical expressions for the distributions
of allele-sharing information without resorting to pedi-
gree analysis.
The problem of variance confounding is inherent in

the requirements that model (1) makes on data acquisi-
tion. Although (1) is the stated model, the data are not
appropriately organized to analyze it by, for example,
standard ANOVA techniques. Model (1) implies that
one can gather data separately by both QTL and poly-
genic effect (i.e., organize data appropriately for a two-
way ANOVA without interaction) and then test the be-
tween- and within-group variances. Yet we assume the
data consist solely of net effects Yij organized by family
and information on individuals' marker genotypes. As
such, the data are amenable to, at most, the model

Y1j= + fi + .,(5)

Table 6

Power to Detect a QTL when There Is Polygenic Variance

METHOD

SIB-PAIR MODEL Expectation Distribution

Standard .90 .90
Minimum 1.00 1.00
Zero .01 .26

NOTE.-Each cell reports the proportion of runs that had at least
one LR test statistic greater than the critical test statistic at the 95%
level. Runs are as described in table 4.

where f, is the ith family effect and 1,# is the error term.
Consequently, model (1) is overparameterized: there is
not enough information in just the trait values them-
selves to partition the variance. Knott and Haley (1992)
address this problem by constructing a maximum-likeli-
hood equation that integrates (1) over a,. Traditional
genetic analyses circumvent this problem by implement-
ing the probability of identity by descent as a covariate
term that attempts to partition 2f, into gj + a,. The factor
2 is incorporated because of' (the between-group compo-
nent) is equal to the total genetic component minus the
covariance among group members (sibs). The parti-
tioning of a, asi and ac is incorporated by the equality

COV(yiglYi2) = a12,i = RiCYg + /2aa a (6)

where ni is a random variable that takes values 0, 1/2,
and 1, depending on whether sibs Yii and Yi2 share zero,
one, or two alleles at the putative QTL.
As of yet, there is no formal theory that maps model

(5) into model (1) via (6). That is, there are methods of
using (1) and (6) to predicted QTL positions (for exam-
ple, Goldgar 1990; Schork 1993), but there is not a
formal QTL theory that generates a two-way ANOVA
model from a one-way ANOVA model via correlations
between effects (although, for a different approach to
the problem, seeJansen [1992]). The consequence is that
the practical ability to partition the variances ig and
a2 is dependent on the realized distribution of ni. The
relationship between these terms is incorporated in the
correlation coefficient

pi= 12i - 7[,lhg + '/2ha,

where a2 = ao + ai + ae2 includes the environmental
variance ae, which includes, perhaps solely, the error
variance as. When testing a specific putative position
for a QTL, uncertainty in ni for any given family reflects
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a lack of information. As the putative position departs
from either marker, the lack of information is reflected
by an increase in the variance in ni within families and
reduces the ability to partition c<, i, and a'. The quan-
tification of this is dependent on the magnitude of a,'
relative to cY and CS2 and confirms our biological intu-
ition that QTLs with low heritabilities are difficult to
map. While low heritabilities have a mapping cost that
is easy to understand in terms of a signal-to-noise motif,
high heritabilities also impose a cost. On the assumption
of constant population-wide heritabilities, the variance
of pi is equal to

var(pi) = (hb)2var(7i),

and, consequently, high heritabilities magnify the effect
of within-family variance on pi.

Across families, variance in ni makes it more likely
that regression, maximum likelihood, or other tech-
niques will be able to map the QTL and separate the
variance components. But even with adequate across-
family variance, a successful partitioning of (ag' + i3a)
and Ca does not guarantee an equally successful parti-
tioning of CTg2 and a2. By extension, this applies in analo-
gous ways to additional effects, such as common family,
dominance, and epistatic effects.

This problem is well appreciated in the field. There are
numerous statistical techniques to decompose variance
components (Searle 1971; Cornell 1990; Searle et al.
1992), isolate a common family effect from other genetic
variances (e.g., Elston 1988), and extend the GLM to
genetic structural equations (Carey 1986). Most ap-
proaches to variance decomposition have developed the-
ory in concert with experimental design so as to isolate
variance contributions and then test their significance.
Solutions of this sort are less applicable in the behavioral
and social sciences and econometrics, and, accordingly,
these fields have a long history of techniques for han-
dling under- and overidentified structural equations (see,
for example, the introduction by Goldberger [1973]).
All the same, geneticists have been cautionary in adopt-
ing these methods, in part because of a number of disad-
vantages (Martin and Eaves 1977). In human behavioral
genetics, this problem has long been recognized (Elston
1973), and various techniques have been used to esti-
mate variance components, e.g., by contrasting the vari-
ance explained by differing groups of relatedness (Jinks
and Fulker 1970; Fulker 1973; Loehlin 1978) or ex-
tending factor-analysis techniques to biometrical genetic
models (Martin and Eaves 1977). To date, QTL analysis
has not yet benefited from their implementation. While
current methods can produce acceptable behavior under
the random model, it seems that the real advances will
come with a ground-up development of the random

model that is sensitive to the data collection restrictions
of human populations.
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