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A Pseudolikelihood Approach to Correcting for Ascertainment Bias

in Family Studies
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Summary

The Cannings and Thompson approach to correcting
for ascertainment bias in family studies is extended to
settings with multiple ascertainment. The extension is
based on maximizing a pseudolikelihood. Two ap-
proaches to computing standard errors for the maxi-
mum pseudolikelihood estimate are described. One is
especially simple to compute, while the other is more
generally applicable. Simulation experiments suggest
that the standard-error computations can be quite accu-
rate.

Introduction

In genetic epidemiology, it is common for the collection
of family data to occur in stages. In the first stage, indi-
viduals or portions of pedigrees come to the attention
of investigators. In the second stage, related individuals
are chosen sequentially for enrollment. When a pedigree
comes to the attention of the investigators through an
individual, that individual is usually termed a proband.
The events that bring a pedigree to the attention of inves-
tigators are sometimes termed the ascertainment events.

The factors that influence ascertainment events may
include phenotypes of pedigree members. When this is
the case, the pedigrees included in a study may not be
representative of the population of interest. It has long
been known that this discrepancy must be corrected for
during data analysis, if ascertainment bias is to be
avoided (see, for example, Fisher [1934] or Morton
[1959)).

Methods for avoiding ascertainment bias have been a
subject of considerable interest (e.g., see Elandt-Johnson
1971; Elston and Stewart 1971; Cannings and Thomp-
son 1977; Elston and Sobel 1979; Thompson and Can-
nings 1979; Boehnke and Greenberg 1984; Ewens and
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Shute 1986; Hodge and Boehnke 1986; Hodge 1988;
Shute and Ewens 19884, 1988b). Several methods based
on conditioning have been advocated. One is to condi-
tion on the phenotypic information that influenced the
selection of the pedigrees (see Cannings and Thompson
1977). Another is to condition on all the phenotypic
information in a pedigree that is relevant to whether the
pedigree could be included in the data (see Ewens and
Shute 1986). Elston and Sobel (1979) describe an alter-
native conditioning approach that requires both a model
for the probability of becoming a proband and that the
population may be divided into nonoverlapping pedi-
grees.

Vieland and Hodge (1995) suggest that the applicabil-
ity of the first of the conditioning approaches is limited
to situations in which no individual is included in pedi-
grees from separate ascertainment events. They also
point out that the second approach may not be applica-
ble in cases where the conditioning event is not well
defined or in cases where the marginal likelihood of the
conditioning event is not observed. The purpose of this
note is to propose an extension of the Cannings and
Thompson approach that is applicable to multiple ascer-
tainment.

Correcting for Ascertainment

The approach proposed here involves the construction
of a pseudolikelihood. The pseudolikelihood contains a
term for each ascertainment event. The contribution
from each ascertainment event to the pseudolikelihood
is the term that would be included in the conditional
likelihood of Cannings and Thompson (1977), had the
sequential enrollment choices been made blinded to the
other ascertainment events and their sequentially en-
rolled pedigrees: even if individuals associated with one
ascertainment event are related to individuals associated
with another, the terms in the pseudolikelihood must
depend only on the data that would have been collected
had sequential enrollment been made without awareness
of the relatedness.

With single ascertainment, the pseudolikelihood is
identical to the conditional likelihood of Cannings and
Thompson (1977). The pseudolikelihood approach pre-
sented here may therefore be thought of as an extension
of the Cannings and Thompson (1977) approach. Elston
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(1995) suggests a pseudolikelihood approach to estima-
tion. Implicit in the suggestion is that some form of
correction for ascertainment is applied to each term in
the pseudolikelihood. The approach presented here may
therefore also be thought of as an implementation of
Elston’s (1995) suggestion. Each term in the pseudolike-
lihood behaves, by itself, as in the case of single ascer-
tainment. Therefore, as with the conditional likelihood
of Cannings and Thompson (1977), the gradient of the
log of each term has expectation zero. This ensures that
the maximum pseudolikelihood estimate is asymptoti-
cally unbiased (e.g., see Gong and Samaniego 1981;
Gourieroux et al. 1984; Kalbfleisch 1986; Davidian and
Carroll 1988; Heyde 1989; Barndorff-Nielsen 1991).

Just as in the case Cannings and Thompson’s ap-
proach with single ascertainment, for traits that are not
associated with patterns of mating or family size, a suf-
ficient condition for the pseudolikelihood approach to
produce asymptotically unbiased estimates is that the
enrollment choices made during the sequential data col-
lection are influenced by phenotypic information only
through the phenotypic information that has been pre-
viously observed. Recall that the terms in the pseudolike-
lihood are defined to be what would have been the result
of sequential sampling, had the sequential sampling as-
sociated with each ascertainment event been blinded to
the data collection associated with the other ascertain-
ment events. The enrollment choices referred to in the
sufficient condition are to be interpreted as the choices
defined implicitly by the construction of the pseudolike-
lihood. In order to apply the pseudolikelihood approach,
the phenotypic information that influences the occur-
rence of each ascertainment event must be available to
the data analyst. The requisite information may be char-
acterized in terms of an independence condition. Associ-
ated with each ascertainment event is phenotypic infor-
mation I, available to the analyst, with the property that
the conditional probability of the ascertainment event,
given all phenotypic information, is the same as the con-
ditional probability of the ascertainment event, given
the information 1. The information I is the information
that is to be conditioned on when computing a term in
the pseudolikelihood. Availability of the information I
is determined (just as in the case of single ascertainment)
by the kinds of data that are recorded during sampling:
unless these data about the ascertainment events are
available to the investigator, they cannot be used to
adjust for the ascertainment process.

The example discussed by Vieland and Hodge (1995)
can be used to illustrate the construction of the pseudo-
likelihood. In that example, a universe of sibships each
with three sibs was assumed, and it was assumed that
the three sibs were ordered by age and that each sib
could be affected or unaffected. It was assumed that
every affected sib had equal probability, %, of becoming
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a proband, independently of all other sibs. Unaffected
sibs could not become probands, so the affected status
of the proband is the phenotypic information that
should be conditioned on. If more than one sib were
affected, then each of the affected sibs might separately
become a proband. The sequential sampling protocol
was to enroll all relatives immediately adjacent in age
to a proband. Therefore, if only the oldest or the youn-
gest sib were a proband, two family members would be
enrolled. If the middle sib were the proband, however,
all three sibs would be enrolled. Similarly, if either two
or three sibs separately were probands, then all sibs
would be enrolled.

The following notation will facilitate examination of
the example. Let p, denote the marginal probability that
no sibs are affected. Let p; denote the probability that
the youngest sib is affected but the others are not. p, is
also the probability that the middle sib is affected but
the others are not, and it is also the probability that the
oldest is affected but the others are not. Let p, be the
probability that the youngest sib is not affected but that
the others are. p, is also the probability that the middle
is not affected but the others are, and also the probabil-
ity that the oldest is not affected but the younger two
are. Finally, let p; denote the probability that all three
sibs are affected. Note that py + 3p; + 3p, + ps = 1.
Although the notation does not reflect any particular
genetic model, the p; should be thought of as functions
of the parameters of the relevant model. This section
concludes with an examination of two different scenar-
ios in the context of the example. Suppose that, in a
family with all three sibs affected, only the youngest
becomes a proband. Since the sampling protocol is to
include only sibs immediately adjacent in age to the
proband, the data observed for the sibship would be that
the youngest and middle sib are affected. The marginal
probability of the observed data would thus be p, + ps.
The conditioning event is that the youngest sib is af-
fected. The conditioning event thus has probability p,
+ 2p;, + p3. The contribution of the sibship to the likeli-
hood would thus be (p, + p3)/(p1 + 2p2 + p3).

Suppose that, in a family with the youngest and mid-
dle sibs affected, both the youngest and the middle sibs
become probands. In this case, each proband would con-
tribute a term to the pseudolikelihood. Consider first
the term associated with the middle sib. The sampling
protocol is to include all sibs adjacent in age, so the data
associated with the middle sib being a proband would
be that the youngest and middle sibs are affected and
that the oldest is not. The contribution to the likelihood
associated with the middle sib would thus be p./(p,
+ 2p, + p3). Consider now the term associated with the
youngest sib. The data associated with the youngest sib
being a proband would be that the youngest and middle
sibs are affected. Note that, even though it would be
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Table 1
Quantiles of the Empirical Distribution of the Normalized Estimate, Using the Uncorrected
Standard Error

QUANTILE
N n .05th .10th 25th .50th .75th .90th 95th
200 .8 -2.11 -1.65 -.86 0 .85 1.60 2.05
400 .6 -2.00 -1.55 -.82 0 .80 1.52 1.96
800 ) -1.94 -1.51 -.79 0 .78 1.50 1.93

known through the other proband in the family that the
oldest sib is not affected, that information would not be
used in computing the term for the youngest sib. This
is because the sampling protocol, when the youngest sib
is a proband, requires that only the middle sib be en-
rolled. The contribution to the likelihood for the youn-
gest sib would thus be (p, + p3)/(p1 + 2p2 + p3).

Standard Errors

Elston (1995) points out that, in computing standard
errors for the maximum pseudolikelihood estimate, it is
not valid to proceed exactly as if the pseudolikelihood
were a likelihood. As in the usual likelihood theory, an
information matrix may be defined as the expected ma-
trix of mixed partials of the log pseudolikelihood. How-
ever, unlike as in the usual likelihood theory, the inverse
of the observed information matrix is not asymptotically
unbiased for the variance of the parameter estimates.
This is because the information matrix does not account
for correlation induced by the same or related individu-
als being associated with more than one ascertainment
event. The usual expansions applied to the log pseudo-
likelihood can be used to show that the covariance ma-
trix of the maximum pseudolikelihood estimate is
asymptotic to the covariance matrix of the gradient of
the log pseudolikelihood, pre- and postmultiplied by the
inverse of the information matrix. The covariance of the
gradient is equal to the sum of the covariances of terms
corresponding to each of the ascertainment events plus
the sum of the cross-covariances between correlated

Table 2

terms. The observed information matrix is asymptoti-
cally unbiased for the sum of the covariances alone.
Accurate standard error calculations must take into ac-
count cross-covariances.

These considerations suggest that one approach to
computing standard errors for the estimates obtained
from the pseudolikelihood is to inflate the inverse infor-
mation matrix by (1 + k/n), where k is the number of
ordered pairs of ascertainment events whose associated
pedigrees share relatives, and # is the number of ascer-
tainment events. The inflation factor reflects that the
variance of the score is not just the sum of » ascertain-
ment event—specific variance terms but that it also in-
volves k ascertainment event pair-specific covariance

* terms. An appealing aspect of the correction factor is its

simplicity. The approach will be most accurate when
covariances between terms in the gradient of the log
pseudolikelihood are equal on average to the average of
the variances of the terms in the gradient.

An alternative approach to computing standard errors
is to pre- and postmultiply an estimate of the covariance
of the gradient of the log likelihood by the observed
information matrix. The estimate of the covariance can
be computed by first forming partial sums of correlated
terms in the gradient evaluated at the maximum pseudo-
likelihood estimate. The estimate of the covariance is
then computed as the sum of the cross-products of the
partial sums. That is, if S; are the terms in the gradient
of the log likelihood, where i indexes the ascertainment
events, and if T;,7 = 1, 2, . .., m is the partition of the

Quantiles of the Empirical Distribution of the Normalized Estimate, Using the Correction Factor

QUANTILE
N n .05th .10th .25th .50th .75th .9[2ex]0th .95th
200 .8 -1.69 -1.32 —.69 0 .67 1.26 1.60
400 .6 -1.68 -1.30 —.69 0 .66 1.25 1.61
800 5 -1.67 -1.30 -.68 0 .67 1.28 1.64
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Table 3
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Quantiles of the Empirical Distributions from the Second Set of Simulations

QUANTILE
CORRECTION .05th .10th .25th .50th .75th .90th .95th
No correction -1.94 -1.50 -.79 0 .78 1.49 1.91
Simple correction -1.58 —.65 -.36 0 .64 1.22 1.56
Second correction —1.66 —.68 -.39 0 .67 1.29 1.64

indices of the ascertainment events into subsets so that
the indices of ascertainment events associated with the
same or or related individuals are all together in the
same subset, then the estimate of the covariance is
given by

)y

£(25)(zs).

The basis for the second approach to standard-error
calculation is that with the true parameters substituted
for the maximum pseudolikelihood estimates, the sum
of cross-products has expectation equal to the variance
of the gradient of the log likelihood.

Although the second approach is more computation-
ally involved than the first, it is accurate in a broader
class of settings. The first approach to standard-error
calculation treats covariances between terms in the gra-
dient of the log pseudolikelihood as if they were equal
on average to the average of the variances of the terms
in the gradient. This is appropriate in settings where
pedigrees that share related individuals usually overlap
completely and overlapping pedigrees do not differ sys-
tematically from the other pedigrees in the data set. In
settings where these conditions do not hold, the second
approach to variance calculations is advisable.

Simulation Results

Two sets of simulation experiments were performed,
to examine the accuracy of the approaches to computing
standard errors. Each of the experiments in both sets
consisted of 50,000 replications.

In the first set of experiments, the family structure
and sampling scheme were taken to be as in the example
of Vieland and Hodge (1995). The data were generated
as if all matings were between an affected heterozygote
and an unaffected homozygote for an autosomal domi-
nant trait with complete penetrance. The model was
parameterized as by Khoury et al. (1993, p. 237): po,
P15 P2, and p; were thus (1 — 0)3, (1 — )%, 6%(1 — 0),
and 0% respectively, where 8 represents the marginal
probability that a given offspring is affected. In each

experiment, in each replication, for a population of N
sibships, affected status was assigned independently
with the probability 8 = Y, to all of the sibs. Then,
proband status was assigned to the affected sibs, each
with probability . The maximum pseudolikelihood esti-
mate, the observed information, and the correction fac-
tor were then computed. Only the first approach to stan-
dard-error calculations is considered.

The difference between the estimate and %, the true
value of the parameter, was normalized by the square
root of the observed information and by the corrected
observed information. Quantiles of the normalized esti-
mates for three experiments are recorded in tables 1 and
2 for (N, m) equal to (200, 0.8), (400, 0.6), and (800,
0.5). Table 1 reports the quantiles for the statistics with
the uncorrected standard error. Table 2 reports the
quantiles for the statistics with the the correction factor.
The empirical quantiles in the tables should be compared
to the corresponding quantiles of the standard normal
distribution, —1.64, —1.28, —0.67, 0.00, 0.67, 1.28,
and 1.64. The simulation experiments indicate that us-
ing the observed information matrix can be significantly
anticonservative and that the simple approach to stan-
dard-error calculations can be accurate.

The genetic model used in the second set of experi-
ments was as in the first: @ was %, and the (n, ) pairs
were (200, 0.8), (400, 0.6), and (800, 0.5). All sibships
had 11 sibs, however, and only the youngest and oldest
sib could be probands. When the oldest sib was a pro-
band, affected status of the oldest eight sibs was ob-
served, and when the youngest sib was a proband, af-
fected status of the youngest eight sibs was observed.
All affected oldest and youngest sibs became probands,
and no other sib could become a proband. In each itera-
tion, there were 400 sibships that could give rise to
ascertainment events.

Note that the ascertainment events lead to overlap-
ping pedigrees whenever both a youngest and oldest sib
are probands. Note also that the pedigrees do not over-
lap completely. It is expected therefore that the uncor-
rected standard error is anticonservative but that the
simple correction would be conservative. These results
were observed in the simulations. The first and second
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rows of table 3 report the quantiles from the empirical
distribution from the simulations of the standardized
estimates using the uncorrected standard error and the
simple correction, respectively. The third row of table 3
reports the quantiles from the empirical distribution
when the more computationally intensive standard-error
calculation was used. The quantiles in the third row are
close to the quantiles of a standard normal.
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