
Am. J. Hum. Genet. 58:201-212, 1996

Statistical Models for Trisomic Phenotypes
Neil E. Lamb,1 Eleanor Feingold,2 and Stephanie L. Sherman1
Departments of 'Genetics and Molecular Medicine and 2Biostatistics, Emory University, Atlanta

Summary Introduction

Certain genetic disorders are rare in the general popula-
tion but more common in individuals with specific triso-
mies, which suggests that the genes involved in the etiol-
ogy of these disorders may be located on the trisomic
chromosome. As with all aneuploid syndromes, how-
ever, a considerable degree of variation exists within
each phenotype so that any given trait is present only
among a subset of the trisomic population. We have
previously presented a simple gene-dosage model to ex-
plain this phenotypic variation and developed a strategy
to map genes for such traits. The mapping strategy does
not depend on the simple model but works in theory
under any model that predicts that affected individuals
have an increased likelihood of disomic homozygosity
at the trait locus. This paper explores the robustness
of our mapping method by investigating what kinds of
models give an expected increase in disomic homozygos-
ity. We describe a number of basic statistical models for
trisomic phenotypes. Some of these are logical exten-
sions of standard models for disomic phenotypes, and
some are more specific to trisomy. Where possible, we
discuss genetic mechanisms applicable to each model.
We investigate which models and which parameter val-
ues give an expected increase in disomic homozygosity
in individuals with the trait. Finally, we determine the
sample sizes required to identify the increased disomic
homozygosity under each model. Most of the models
we explore yield detectable increases in disomic homo-
zygosity for some reasonable range of parameter values,
usually corresponding to smaller trait frequencies. It
therefore appears that our mapping method should be
effective for a wide variety of moderately infrequent
traits, even though the exact mode of inheritance is un-
likely to be known.
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As with all syndromes due to aneuploidy, live-born tri-
somy 21, leading to Down syndrome (DS), is character-
ized by considerable variation within its phenotype. For
example, 40% of all DS individuals are born with some
type of heart defect (Ferencz et al. 1989), while 8% of
the DS population exhibits some form of congenital gut
abnormality (Bergsma 1979, p. 215). Even mental im-
pairment, the only constant finding, varies in its expres-
sivity and severity. Such variation has previously been
ascribed to genetic, stochastic, and environmental fac-
tors (Epstein 1993). From a genetics standpoint, some
unknown proportion of the variable expression may be
caused by specific effects of different alleles at one or a
few genetic loci on the trisomic chromosome. The red
cell acid phosphatase gene is a classic example of an
allelic effect on a quantitative system in a normal euploid
environment. Various combinations of alleles of the red
cell acid phosphatase gene result in different levels of
total enzymatic activity (Hopkinson et al. 1963). In a
trisomic cell, such differences would be magnified. Thus,
it has been hypothesized that certain trisomic genotypes
may lead to greater liability or susceptibility for a pheno-
typic trait, because of various causes, such as (1) differ-
ent levels of gene regulation; (2) altered enzymatic activ-
ity; (3) altered molecular structural arrangements; (4)
different physiological or metabolic responses by the
body to a trisomic product; or (5) varying reactions to
an environmental insult.
We have elsewhere described a method to map genes

involved in the etiology of phenotypic traits that appear
in only a subset of trisomic individuals (Feingold et al.
1995). We proposed that susceptible trisomic genotypes
are likely to arise in cases where the two chromosomes
inherited from the nondisjoining parent are partially identi-
cal, resulting in the inheritance of double copies of "suscep-
tibility" alleles at some specific locus. For this reason, these
traits are much more frequent in the trisomic population
than in the population at large. Traits that behave domi-
nantly (i.e., require only a single copy of a susceptibility
allele) are not included in this model; such traits should
occur with equal frequency in both the trisomic and diso-
mic populations. Our gene-dosage model bears resem-
blance to previous models described by Engel (1980) and
Carothers (1983). The identical chromosomal regions are
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examples of disomic homozygosity, defined as homozygos-
ity by descent of the two alleles inherited from the parent
in whom the nondisjunction event occurred (i.e., the non-
disjoining parent). Thus, a subset of the DS population
(i.e., those affected with a specific phenotypic trait) can be
screened for shared regions of disomic homozygosity to
identify a candidate chromosomal region that may contain
genes that are involved in the trait etiology. Recently, DS
individuals with transient leukemia or acute megakaryo-
blastic leukemia (ANLL subtype M7) were collected and
screened for increased disomic homozygosity (Shen et al.
1995). For both leukemic subgroups, levels of disomic
homozygosity were found to be increased when compared
with nonleukemic DS individuals. This increase was most
notable in the proximal region of chromosome 21. Much
of the increase was attributable to unusual numerical or
structural abnormalities leading to reduction to homozy-
gosity at all loci. Increased disomic homozygosity screen-
ings have also been initiated for DS individuals affected
with duodenal atresia; sufficient sample sizes, however,
have yet to be attained (Lamb et al. 1994).
Although Feingold et al. (1995) described a simple

two-allele model, the mapping method can be applied
to any trait for which excess disomic homozygosity is
expected. While the method does not require specifica-
tion of the model, it is likely to be more or less successful
according to how much excess disomic homozygosity
can be expected.

In this paper, we explore the utility of disomic homozy-
gosity mapping by examining which models of trait etiol-
ogy yield detectable levels of excess disomic homozygosity.
There is, of course, a rich literature of statistical models
of phenotypic variation in disomic individuals, but, to our
knowledge, there has been no systematic extension of these
models to trisomic individuals. Thus, we begin by describ-
ing a number of basic statistical models for trisomic pheno-
types. These include (1) a general single locus, two-allele
model, (2) models that incorporate heterogeneity and envi-
ronmental effects, (3) a model that takes into account the
high level of selection against the trisomic fetus with the
trait, and (4) a model that describes allele loss yielding
disomy in a particular tissue or cellular subset of interest
(mosaicism). Although the models presented are assumed
to cause the presence or absence of a trait (all-or-none
traits), some are also applicable to quantitative traits. We
investigate which models and which parameter values for
each model yield excess disomic homozygosity and
whether that excess is sufficient to be detected with a rea-
sonable sample size.

Models
Single-Locus Models

In order to investigate the power of our mapping
method, we need to describe traits by associating a pene-

trance, f, with each genotype, G. These penetrances,
along with allele frequencies, are the parameters that
will determine whether a particular trait can be mapped.
Various formulas for the penetrances imply different
characteristics of the trait etiology, such as dominance,
phenocopy prevalence, etc.
One historic approach to modeling penetrances of all-

or-none traits has been to treat the penetrance itself as
a quantitative character (e.g., James 1971; Suarez et al.
1978; Risch 1990) and to apply standard linear models
for quantitative traits (Kempthorne 1957, p. 316). This
type of model is more mathematically than genetically
motivated and has been useful for genetic linkage analy-
sis because it provides tractable expressions for pene-
trances that often are good approximations to important
genetic models. In this approach, the model for the pene-
trance of a one-locus disomic trait with alleles A1 ...
A, is that the genotype AA, (where i may equal j) has
penetrance

f4i = j + ai + a, + di,. (1)

The parameter ,u is the overall mean penetrance, ai is
the contribution of allele Ai to the penetrance, and di, is
the interaction between alleles Ai and Ai-the "domi-
nance" contribution. The trisomic extension of this is

fijk = + ai + al + ak + dij + dik + djk+ rijk, (2)

which includes additive contributions of all three alleles,
all two-way interactions, and the three-way interaction.
It is clear that this model is too complex to explore in
practice (at least for an arbitrary number of alleles),
though the additive version of it, 4iik = m + ai + as
+ ak, may be of some interest.
An alternative modeling approach (e.g., that of Elston

and Stewart [1971] and Morton and MacLean [1974])
has been to assume that each genotype is associated with
a quantitative trait value, gij (or gik in the trisomic case),
that underlies the all-or-none trait. This quantitative trait
value could be biological, such as a level of enzymatic
activity, or clinical, such as a score on a screening test
for schizophrenia; in either case, it can be modeled as an
equation of the form (1) or (2), possibly with the addition
of a random term representing a polygenic or environmen-
tal component. The quantitative trait value is added to an
independent random (usually normally distributed) envi-
ronmental effect for each individual, yielding that individu-
al's "liability." The liability of an individual is thus a ran-
dom variable, normally distributed with mean equal to
gijk. Individuals whose liability exceeds a threshold, t, are
affected with the all-or-none trait. The penetrance of geno-
type AiAAk can be written as

4k = 1 - ([(- gijk9)/], (3)
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where is the usual distribution function of a standard
normal random variable and a is the standard deviation
of the environmental noise. This type of model has been
very useful for segregation analysis but is somewhat less
useful for linkage mapping because expressions for pen-

etrances are not simple functions of model parameters.
For many all-or-none traits, it is sufficient to model

two alleles, with A representing all "normal" alleles and
B representing all "mutant" or extreme-acting alleles.
With two alleles, a disomic individual can have just three
genotypes, AA, AB, and BB, with penetrances fo, fi, and
f2. The trisomic extension has genotypes AAA, AAB,
ABB, and BBB, with penetrances fo, fi, [2, and f3, respec-

tively. The subscript on the penetrance indicates the
number of B alleles in the genotype. The penetrances
can be thought of as having form (2) or form (3), if
desired. In our investigations of the robustness of our

mapping method, we rely primarily on two-allele mod-
els. While two-allele models cannot describe all traits,
they do provide enough variety to explore the power of
the mapping method under a wide range of assumptions
about trait etiology.

Multilocus Models
Both approaches described above, the linear model

and the threshold model of penetrance, can be extended
to describe effects of additional loci and specific environ-
mental exposures. Let G., i = 1, . . . , n, be the genotypes
at locus 1 and Hi, j = 1, . . ., m, be the genotypes at
locus 2. In the linear model of penetrance, we define u,,

to be the penetrance of the genotype combination GHj.
In the threshold model, we define vi, to be the quantita-
tive trait value associated with the genotype combina-
tion GiH,. Various formulas for the values u,, or vi, can

then be given to describe different kinds of interactions
between the loci. In both models, environmental compo-
nents can be modeled in the same way as genetic loci.
(When looking at a single individual, an effect due to an

environmental exposure is statistically indistinguishable
from an effect due to an additional genetic locus, though
in family studies the distinction is generally more rele-
vant). For our purposes, it is most useful to work in the
framework of the linear model of penetrance, because
of the more easily interpretable penetrance formulas.
One of the most interesting cases is heterogeneity,

which we define as two or more loci or environmental
effects, each of which causes the trait in a separate subset
of the population. (If the cause is environmental rather
than genetic, one generally refers to "phenocopies"
rather than to "heterogeneity," but, as mentioned
above, the two are equivalent for modeling purposes).
Approximate penetrance formulas under heterogeneity
are straightforward, as long as the trait is rare enough
that we can essentially neglect the probability of an indi-

vidual having more than one of the causative agents
(genes or environmental exposures). Risch (1990)
showed that a good approximation to heterogeneity is
the additive model u,, = xi + y,, where xi and y, are the
marginal penetrances for the two loci. The marginal
penetrances can take the form of (1) or (2), or also of
(3). This additive approximation for heterogeneity has
an important implication: if only one locus is being ex-
amined in the presence of heterogeneity, the penetrance
of genotype Gi still has the same form as the one-locus
model we initially described. The average contribution
of other loci is absorbed into ji. This means that the
one-locus models discussed above are appropriate for
describing the effect of a single locus even for a heteroge-
neous trait that may be caused by other loci or environ-
mental effects. In the trisomy case, we may also be inter-
ested in the possibility that trisomy per se adds a certain
risk, independent of genotype. Again, this can be mod-
eled in the same way, with the extra risk due to trisomy
absorbed into ji, as long as the risk due to trisomy per
se is small.
Models that allow for interaction between loci (or

between genetic and environmental effects) are a more
complex matter and have not even been thoroughly dis-
cussed in the disomic case. Risch (1990) presents a
multiplicative model that describes specific kinds of in-
teractions. A somewhat more general model is given by
Dupuis et al. (1995). Extending these general models to
the trisomic case would yield models that are too com-
plex to be of much interest. However, it is certainly
feasible to construct models of specific interactions; for
example, the interaction between loci on chromosomes
13 and 21 in the development of Hirshprung disease that
is suggested by the work of Puffenberger et al. (1994).

Fetal Death Models
The high rate of spontaneous abortion of trisomic

fetuses (reviewed by Bond and Chandley [1983]) sug-
gests that the majority have specific defects severe
enough to prevent viability. Thus, it is important to
examine models that explicitly incorporate fetal death
associated with the defect being studied. Fetal death due
to general trisomy effects is covered under the general
two-allele model above. We consider a model with two
thresholds: exceeding the first, lower, liability threshold
represents expression of the trait; exceeding the second,
higher, liability threshold represents the more severe
phenotype (i.e., fetal death due to a more severe manifes-
tation of the trait). Trisomic individuals can then be
divided into three groups: unaffected live-borns, affected
live-borns, and unrecognized fetal deaths. A general sta-
tistical model for this situation associates with each ge-
notype, Gi, a probability of survival, wi, and a pene-
trance of the trait, f, = P [affected survival}.
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Allele-Loss Models
This model explores the concept of "allele loss" (i.e.,

the loss of one of the trisomic chromosomes among a
subset of the cellular population). Such a mechanism
has been discussed before (Pangalos et al. 1994) and is
thought to account for 60% of chromosome 21 mosa-
icism. It is assumed that this chromosomal loss occurs
during the early divisions of the zygote into blastomeres
and happens randomly, with no preference for cell type
or chromosomal origin. In this case, the statistical model
must consider disomic and trisomic genotypes together,
because the trisomic population consists of some indi-
viduals who are trisomic for the gene of interest and
some who are disomic. For a two-allele locus, there are
a total of seven genotypes to consider: AA, AB, BB,
AAA, AAB, ABB, and BBB. In the most general case,
each of these can be assigned a penetrance. Additionally,
we define a new parameter, z, equal to the probability
that an allele is lost. Thus, for example, a trisomic indi-
vidual who starts out as ABB has probability 1 - z
of staying ABB, probability z/3 of becoming BB, and
probability 2z/3 of becoming AB. It is mathematically
useful to think of the "apparent penetrance" of an indi-
vidual who starts out ABB as the appropriately weighted
average of the penetrances of the genotypes that a person
can become. Then this model becomes, for mathematical
purposes, a special case of the general two-allele model.
For example, if the locus behaves recessively, so that
only BB and BBB individuals are affected, the apparent
penetrances are fo = (z)(O) + (1 - z)(0) = 0 (since an
AAA individual cannot become a BB or BBB); fi = 0;
f2 = (z)(1/3) + (1 - z)(0) = z/3; and f3 = 1.

Methods

For a number of special cases of the models described
above, we have investigated whether the trait can be
mapped by the methods of Feingold et al. (1995) and
for which parameter values. Table 1 lists the cases we
considered for each model.
As previously mentioned, we propose that the suscep-

tible trisomic genotypes are likely to arise in cases where
the two chromosomes inherited from the nondisjoining
parent are partially identical, resulting in the inheritance
of double copies of "susceptibility" alleles at a specific
locus. These identical chromosomes are examples of di-
somic homozygosity. Evidence of disomic homozygosity
can be detected only at markers that are heterozygous
in the parent in whom the nondisjunction event oc-
curred. If the alleles contributed by that parent are ho-
mozygous at the markers in the trisomic offspring (i.e.,
have been reduced to homozygosity), they are homozy-
gous by descent.
The mapping method is applicable to any trait for

Table 1

Models Examined

PENETRANCE (P[survival]), BY GENOTYPE

MODEL AAA AAB ABB BBB

I A A 2 f3
IA 3a 2a + b a + 2b 3b
IB g g f f
IC 0 0 f f
ID 0 0 [2 f3
IE g g g f
IF g f f f
II fo (WO) fi (WI) f2 (W2) f3 (W3)
IIA 0 (Wo = 1) 0 (W =1) f (W2 = W) f (W3 = W)
IIB 0 (WO = 1) 0 (W =1) f (W2 = 1) f (w3 = W)
IIC 0 (WO = 1) 0 (W =1) f (W2 = W) 1 (W3 = O)
IID 0 (WO = 1) 0 (W =1) 1 (W2 = W) 1 (W3 = O)
III 0 0 z/3 1

which trisomic individuals with a particular defect are
expected to show greater-than-normal levels of disomic
homozygosity in the chromosomal region containing the
gene involved in the etiology of the defect; in other
words,

P (homozygosity at the trait locus trait)
> P{homozygosity at the trait locus) .

For brevity, we will denote homozygosity and hetero-
zygosity at the trait locus with a minus sign (-) and a
plus sign (+), respectively. Using Bayes theorem, this
inequality can be rewritten as:

P{traitl-P{-} > PI-)
P{traitl-)P{-) + P{traitl +)PI+}

A bit of algebra shows that this is equivalent to

P{traitj - > P {trait l +}

Thus, our mapping method can be applied when the
probability of having the defect given disomic homozy-
gosity at the trait locus is greater than the probability
of having the defect given disomic heterozygosity at the
trait locus.

For example, consider model IC, a single locus model
with penetrances of 0 for trisomic genotypes AAA and
AAB and penetrances of f for trisomic genotypes ABB
and BBB. Let the population frequencies of A and B be
p and q, with p + q = 1. If there is reduction to homozy-
gosity at the trait locus, the nondisjoining parent contri-
butes either AA or BB with probabilities p and q. The
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other parent contributes either A or B with probabilities
p and q. Then, the offspring has the genotype AAA,
AAB, ABB, or BBB with probabilities p2, pq, pq, and
q2, respectively. The probabilities that the trait is ex-
pressed are (p2)(0), (pq)(0), (pq)(f), and (q2)(f ). So,

P{traitl- =(pq)(f) + (q2)(f)

=qf(p + q) (4)
=qf.

If there is not reduction to homozygosity (i.e., at the
trait, locus heterozygosity is maintained) the nondis-
joining parent contributes AA, AB, or BB with probabili-
ties p2, 2pq, and q2, respectively. This gives the offspring
genotypes AAA, AAB, ABB, or BBB with probabilities
p3, 3p2q, 3pq2, and q3, respectively, with probabilities
of expressing the trait of (p3)(0), (3p2q)(0), (3pq2)(f)
and (q3)(f). So,

Pttraitl+) = (3pq2)(f) + (q3)(f) (5)

Setting up the inequality yields the following:

P (trait I -} > P {trait l +}

X qf > (3pq2)(f) + (q3)(f)
q < 0.5

Therefore, under model IC when the frequency of the B
allele is <.5 (i.e., q < .5), any value of penetrance will
yield excess disomic homozygosity.

In some applications, it may be more informative to
describe such results in terms of trait frequency (i.e., the
frequency of trisomic individuals with the trait). The
trait frequency is referred to as K, where,

K = P{traitl-)P{-} + P~traitl+)P{+1 .

Elsewhere, we determined the probability of disomic
homozygosity along the long arm of chromosome 21
from the empirical data, using our DS study population
of >600 individuals (Feingold et al. 1995). This value
varies between .2 and .3. For the following conversions,
we use the approximate value P(-) = .25. Using model
IC again as an example,

K = (qf)(0.25) + (3pq2f + q3f )(0.75) .

Thus, for the boundary value q = .5, the corresponding
K value is

K = [(0.5)f](0.25)
+ [3(0.5)(0.5)2(f) + (0.5)3(f)](0.75)

= fl2 .

Thus, model IC predicts excess disomic homozygosity
for 0 < K < f/2.
Using this same scheme, we have examined each

model described in table 1 to find the parameter values
that meet these conditions. In addition, sample sizes
have been calculated for each model. This was done by
calculating the amount of excess disomic homozygosity
that is expected under each model (see Feingold et al.
1995) and then determining the sample size necessary
to detect that much excess with 80% power, using a
significance level for the test of .01.

Results

Model 1: General Two-Allele Models
As mentioned earlier, model I assumes a one-locus,

two-allele system. Allele A contributes a low-liability
product, while allele B contributes a high-liability prod-
uct. The penetrance variables are labeled fo, fi, [2, and
f3 for the genotypes AAA, AAB, ABB, and BBB, respec-
tively, where each subscript identifies the number of B
alleles present in the genotype. Each trisomic genotype
has some probability of expressing the abnormal pheno-
type. In and of itself, trisomy at the trait locus may carry
some small risk of affection, but this risk increases with
the number of B alleles present in the genotype ([3 > [2
: fi 3 fo). For example, suppose the gene of interest
encodes a rate-limiting enzyme involved in a metabolic
pathway. As Epstein et al. (1981) point out, the increase
in enzyme levels could alter both metabolic flux and the
size of the metabolite pool. Suppose allele B produces a
protein with higher activity levels than the protein en-
coded by allele A. Disomic AB individuals will produce
more total activity than AA individuals and disomic BB
individuals will produce more total activity than AB
individuals. Trisomic individuals will also exhibit in-
creased activity levels with AAA < AAB < ABB < BBB.
Under this model, trisomy in and of itself (i.e., the pres-
ence of three active alleles) increases the liability to de-
velop some phenotypic defect. This liability is further
increased as a result of allelic variations and interactions.

Instead of encoding an enzymatic protein, the gene of
interest could produce a structural protein. For example,
suppose the gene encodes protein "1," one strand of a
heterotrimeric structural protein like collagen. Strands
"2" and "3" are encoded by other genes. If "1" is pro-
duced by a trisomic genotype, increased levels of protein
"1" could lead to altered concentrations of the normal
collagen and the formation of abnormal collagen homo-
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trimers consisting of three "1" chains. A similar model
has been discussed in terms of collagen type VI, where
two of the three chains of the heterotrimeric collagen
fiber are encoded by genes on chromosome 21 (Duff et
al. 1990). If allele B produces a protein strand that is
more likely to form abnormal homotrimers than that
produced by allele A, the level of homotrimers will in-
crease with the number of B alleles present in the triso-
mic genotype. This, in turn, increases the liability of
developing a phenotypic defect.
Under the assumptions of this model, equations (4)

and (5) can be written:

P (trait homozygosity at trait locus)
= P2fo + pqfl + pqf2 + q2f3,

P {trait heterozygosity at trait locus)
= Ptfo + 3p2qf1 + 3pq2[2 + q3f3v

In its most general form, this model contains too many
parameters and possible penetrance combinations to
yield informative results. Thus, submodels have been
examined by fixing penetrance parameters to specific
values, simplifying these equations. These submodels are
discussed below.

Case A.-Model IA represents the classic additive
model of penetrances. It considers a trait locus with two
alleles, A and B, where each A allele contributes some
value a to the overall susceptibility and each B allele
contributes some value b. Here, the penetrances for ge-
notypes AAA, AAB, ABB, and BBB are as follows: fo
= 3a, f' = 2a + b, f2 = a + 2b, and f3 = 3b, respectively.
In disomic individuals, the additive model is a good
approximation for rare dominant traits because the BB
genotype is rare (Kempthorne 1957, p. 316), but this is
not true in the trisomic case because the ABB genotype
will have relatively high prevalence. Under this case,
equations (4) and (5) can be written:

P (trait homozygosity at trait locus) = 3ap + 3bq,

P (trait heterozygosity at trait locus)
= 3ap3 + 6ap2q + 3bp2q + 3apq2 + 6bpq2 + 3bq3

These two expressions can be shown to be equal. There-
fore, a trait with purely additive penetrances cannot be
mapped by looking for excess disomic homozygosity.
With a bit of algebra, this result can be extended for an
arbitrary number of alleles with additive penetrances.

Case B.-Under model IB, only two penetrance values
are used; g, the probability of affection given genotypes
AAA and AAB (i.e., g = fo = fi), and f, the probability

Figure 1 Sample sizes for model IB

of affection given genotypes ABB and BBB (i.e., f = [2
= [3). It is assumed that f> g. The above genetic scenar-
ios can be used as examples. Each disomic and trisomic
genotype produces a range of enzyme activity levels or
concentration of homotrimers. As mentioned earlier,
this can also be visualized as a range of cellular responses
to a fixed enzyme level or homotrimer concentration for
each genotype. Like the general model, case B assumes
that simple trisomy at the trait locus carries some risk of
affection, g. This risk does not, however, incrementally
increase with each additional B allele. Instead the pene-
trance increases from g to fwhen the genotype contains
a majority of the higher activity or greater "self-affinity"
B alleles. The parameter g can also include risk due to
some other locus or environmental effect, thus modeling
heterogeneity. For this case, equations (4) and (5) are:

P (trait homozygosity at trait locus) = qf + pg.

P (trait heterozygosity at trait locus)
= p3g + 3p2qg + 3pq2f + q3f .

This model gives excess disomic homozygosity for all
values of q <.5. This is equivalent to g - K - (f + g)/
2. Figure 1 shows the sample sizes for model IB. Sample
sizes remain <200 when f is at least 10 times greater
than g and as long as .05 - q < .3. Sample sizes are
<100 when either f is at least 100 times greater than g
and .05 - q - .2.

Case C.-Case C assumes that there is no risk for
affection for genotypes AAA and AAB (fo = fi = 0). It
is further assumed that the penetrances of genotypes
ABB and BBB are equal ([2 = f3 = f ). In our previously
published paper (Feingold et al. 1995), a simplified ver-
sion of this case was presented, where f = 1. In terms
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of the genetic examples previously discussed, a moderate
increase in enzyme activity or a relatively low concentra-
tion of homotrimers presents no risk of affection to the
individual. If however, the enzyme activity is greatly
increased, or high levels or homotrimers are present,
the possibility exists that the phenotype will be present.
Under the parameters of this case, equations (4) and (5)
are:

P (trait homozygosity at trait locus} = qfv

P (trait heterozygosity at trait locus} = 3pq2f + q3f.

Here, as in case B, excess disomic homozygosity is given
for all values of q < .5. This corresponds to 0 S K
s f/2. Sample size, shown in figure 2, is dependent only
on values of q and not on the values of K or f. Sample
sizes are <100 when q < .3. In general, any mapping
method that examines only affected individuals will
erase a single penetrance parameter (or, equivalently,
trait frequency) from the power calculation for a given
sample size. Rather, these factors play a role in determin-
ing how difficult it is to collect a sample of the desired
size. For example, if q = .3, the trait frequency is 28%
if f = 1 but drops to 18% when f = .5.

Case D.-Case D assumes that the liabilities of geno-
types AAA and AAB fall below the threshold. Thus the
penetrance fo = ft = 0. In this case, individuals with the
ABB genotype are less likely to be affected than their
BBB counterparts (i.e., f3 > f2). When our two examples
are used, low to moderate activity or homotrimer levels
fall within the normal range and are tolerated by the
system. Higher levels of activity or homotrimers can lead
to some developmental or metabolic disorders. At this
point, the higher the activity or homotrimer concentra-

Figure 2 Sample sizes for model IC

Figure 3 Sample sizes for model ID

tion, the greater the liability and the more likely the
disorder will appear. Under this model, equations (4)
and (5) give:

P (trait homozygosity at trait locus) = pqf2 + q2f3,

P (trait heterozygosity at trait locus} = 3pq2f2 + q f3.

Excess disomic homozygosity depends on the f2/f3 ratio.
When 0

- f2/f3 - .5, excess disomic homozygosity is
predicted for all values of 0 - q < 1. This corresponds
to 0 - K - f3. When .5 - f2/f3 < 1, excess disomic
homozygosity is predicted for 0 S q < [f2/f3]1/[3(f2/f3)
- 1], which corresponds to 0 < K s [4(f2)3(f3)2]1/[(3(f2/
f3) - 1)]2. The sample sizes for this model are shown in
figure 3. Sample size is dependent on q and f2/f3. Sizes
are generally <100 when f2/f3 - .2 and q < .6 or when
q - .3.

Case E.-Case E predicts that the A allele confers
some "protective" effect against trait expression. Al-
though in and of itself trisomy holds some small proba-
bility of affection (fo = ft = [2 = g), as long as the
trisomic genotype contains at least one A allele, the risk
of affection remains low. Individuals who possess no A
alleles at the trait locus (BBB) have a higher probability
of affection, f. As mentioned above, g could also repre-
sent heterogeneity. This is, in many respects, the trisomic
extension of a recessive trait. Under this case disomic
BB individuals have a probability of affection f - g. If
g represents heterogeneity, these individuals would have
a probability of affection f. Equations (4) and (5) can
be written:

P (trait homozygosity at trait locus}
p2g + pqg + pqg + q2f,

1000000

0.4 0.6
value ofq
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Figure 4 Sample sizes for model IE

P (trait heterozygosity at trait locus)
= p3g + 3p2qg + 3pq2g + q3f.

Here, all values of q (O - q - 1) give excess disomic
homozygosity. This corresponds to all g - K - f. The
sample sizes for model IE are shown in figure 4. As in
model IB, sample size depends on the f/g ratio as well
as on q. Sample sizes are <100 when f is at least 10
times greater than g and q is roughly between .2 and .7.

Case F.-Case F presents the converse of case E (i.e.,
the trisomic extension of a dominant trait). The B allele
is dominant to A. AAA individuals have some low prob-
ability of affection, g, because of trisomy per se or heter-
ogeneity. The other genotypes have a greater probability
of affection, f, because of the presence of at least one B
allele. Thus, to = g, and f, = [2 = [3 = f. As in the
previous case, a subset of the disomic population may

also express the trait. The AB and BB disomic individu-
als have probability f - g of affection, or simply f, if g
represents heterogeneity. Equations (4) and (5) can be
written:

P (trait homozygosity at trait locus)
p2g + pqf + pqf + q2f,

P (trait heterozygosity at trait locus)
= p3g + 3p2qf + 3pq2f + q3f.

Under this case, no values of q will yield excess homozy-
gosity. Thus, a trait of this type cannot be mapped by
our methods. As previously discussed, this result is ex-

pected, because inheriting an extra copy of a dominant
"mutant" allele via disomic homozygosity would not
increase the likelihood of developing the trait.

Model 11: The Fetal Death Model
Model II also describes a single-locus, two-allele sys-

tem but incorporates two distinct activity thresholds.
Genotypes with liabilities below the first threshold do
not express the abnormal trait, genotypes with liabilities
between the two thresholds are phenotypically affected,
and genotypes with liabilities above the second thresh-
old do not survive to birth. Therefore, in addition to a
penetrance parameter, each genotype is assigned a sur-
vival parameter, w (O < w < 1) defined as the probabil-
ity of survival given that genotype. Following our earlier
notation, the survival parameters are labeled wo, w1,
w2, and W3, for genotypes AAA, AAB, ABB, and BBB,
respectively. Under this general model, equations (4) and
(5) can be expressed as:

P (trait homozygosity at trait locus)
= p2fowo + pqfiwl + pqf2w2 + q2f3w3,

P (trait heterozygosity at trait locus)
- p3fowo + 3p2qfiw1 + 3pq2f2W2 + q3f3w3.

We have examined four specific cases. The genetic sce-
narios described previously are still applicable, with the
addition of the second threshold resulting in death dur-
ing the fetal stage.

Case A.-Under model IIA, individuals with geno-
types AAA and AAB are phenotypically normal (fo = fi
= 0, and wo = w, = 1). ABB and BBB individuals,
however, display both reduced penetrance ([2 = f3 =

f) and reduced survival (W2 = W3 = w). Thus, some
proportion of ABB and BBB individuals have liabilities
that exceed both the affection and survival thresholds.
When these parameters are used, equations (4) and (5)
yield:

P (trait homozygosity at trait locus)
= pqfw + q2fw,

P (trait heterozygosity at trait locus)
= 3pq2fw + q3fw.

and all values of q < .5 predict excess disomic homozy-
gosity. This corresponds to all values of K - (fw)12.
Here also, sample sizes are dependent solely on q (fig.
5). Sample sizes remain <100 when q - .3.

Case B.-Under case B. AAA and AAB individuals are
phenotypically normal (to = fi = 0) and have survival
parameters equal to 1 (wo = w= 1). ABB individuals
are at risk for affection ([2 = f ) but always survive (w2
= 1). It is assumed that the mean liability of genotype
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BBB is higher than that for ABB but that the same pi
portion of individuals are affected given survival (i.e.,
= f3= f ). The increased mean liability of BBB is reflect
by some proportion of affected individuals exceedi
the second threshold and therefore not surviving (a
= w). Under these assumptions, equations (4) and
simplify to:

P{traitIhomozygosity at trait locus) = pqf + q2fw

P [trait heterozygosity at trait locus) = 3pq2f + q3fu

All values of q between 0 and 1/(3 - w) give exce
disomic homozygosity. This is equivalent to all valu
of K between 0 and (2f )/(3 - W)2. The sample sizes f
model IIB are shown in figure 6. Sample sizes are < 1
when q < .25. While q < .3, w has little effect on samj

Figure 5 Sample sizes for model IIA

Figure 6 Sample sizes for model IIB
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size. This effect does, however, increase as q increases
to .5.

Case C.-As in the previous cases, AAA and AAB
individuals are phenotypically unaffected (fo = fl = 0;
to= w1 = 1). ABB individuals exhibit both reduced
penetrance ([2 = f ) and reduced survival (w2 = w). BBB
individuals are fully penetrant (f3 = 1), and do not sur-
vive (W3 = 0). Thus, BBB individuals are never observed
in the live-birth sample. Under this model, equations (4)
and (5) are

P {trait homozygosity at trait locus) pqfw,

P [trait heterozygosity at trait locus) = 3pq2fw.

All values of q < .333 predict excess disomic homozy-
gosity. This is equivalent to K - (2/9)(fw). Sample sizes,
shown in figure 7, depend on only q and remain <200
when q - .25.

Case D.-Case D differs from case C in that the pene-
trance of ABB is complete ([2 = 1) and, as before, only
some proportion survive (w2 = w). As in case C, fo =
f, = 0, wo = w, = 1, and BBB individuals are not ob-
served in the live birth population (W3 = 0).Equations
(4) and (5) can be rewritten as:

P {trait homozygosity at trait locus) = pqw,

P (trait heterozygosity at trait locus) = 3pq2w.

As in model IIC, all values of q < .333 predict ex-
cess disomic homozygosity. This is equivalent to K
- (219)(fw). The results for sample size are also identical
to those for model IIC, because they are independent of
penetrance f (fig. 7).
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Figure 8 Sample sizes for model III

Model Ill: The Allele-Loss Model
As previously discussed, model III examines the con-

cept of chromosome loss during early embryonic devel-
opment or in some tissue type. Thus, this model exam-

ines the consequences of allele loss resulting in a disomic
recessive genotype. We have chosen to examine an ex-

ample where the trait locus behaves recessively so that
only BB and BBB individuals are affected. The apparent
penetrances under this model are fo = 0, fi = 0, [2 = Z/
3, and f3 = 1, where z is the probability of losing any

allele. It is interesting to note that, although genetically
distinct, model III is mathematically equivalent to model
ID, with [2 = z/3 and f3 = 1. Equations (4) and (5) can

be written for this model as:

P [trait homozygosity at trait locus) = q2 + l/3(zpq) ,

P {trait heterozygosity at trait locus) = q3 + zpq2 .

All values of q (0< q < 1) give excess disomic homozy-
gosity. This corresponds to 0 - K - 1. The sample size
is dependent on q and z and is shown in figure 8. As a

general rule, sample size remains <100 when q < .5.
In addition, lower values of z correspond to smaller
sample sizes.

Discussion

The trisomic mapping method to detect a susceptibil-
ity gene involved in the etiology of a specific trait among
trisomic individuals can be effective, in theory, for any

trait, when the following condition exists: the probabil-
ity of having the trait given disomic homozygosity at

the susceptibility locus is greater than the probability
of having the trait given disomic heterozygosity at the
susceptibility locus. We have explored the robustness of

the mapping method by investigating the kinds of mod-
els that give this expected increase in disomic homozy-
gosity. We have examined several cases of a general two-
allele model, incorporating various heterogeneity and
environmental effects. We have also described a model
that examines fetal death among trisomic individuals as
well as a model that explores the development of cellular
mosaicism. In each case, we have determined the rele-
vant parameters that yield excess disomic homozygosity.
These parameters were expressed in terms of both allelic
and trait frequency. In addition, we have identified the
sample sizes necessary to detect increased disomic ho-
mozygosity under each model. The models under which
our method does not work at all are those of additive
penetrance (IA) and dominance of the susceptibility al-
lele (IF), essentially models in which the additional B
allele gained by disomic homozygosity does not appreci-
ably increase the risk for affection. The remaining mod-
els we have examined, however, have predicted excess
disomic homozygosity for some subset of parameter val-
ues, generally corresponding to lower trait frequencies.
Thus, it should be feasible to map any moderately infre-
quent trait, without knowing the specific trait etiology,
as long as it is believed that a second or third copy of
a "susceptibility" allele contributes an increment to the
total risk that is greater than the increment contributed
by the first copy. In the appendix we describe this condi-
tion more rigorously, although it is more theoretically
interesting than genetically practical, since it is unlikely
such precise information about trait etiology would be
known during the early stages of trait mapping.
One area for future work is the examination of the

robustness of the linkage parameter, y, used to estimate
the distance from any marker to the trait locus. For the
purposes of this paper, the trait locus and the marker
being studied were assumed to be identical (y = 0). It
will be interesting to incorporate other values of y into
future model calculations as well as examine the effects
of model misspecification on the outcome of y. An addi-
tional area for future study concerns examining more
complex models of heterogeneity and determining their
usefulness in homozygosity-by-descent mapping.
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Appendix
We begin with the general inequality P(trait -1

> P(trait +) as described under model I:
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P2fo + pqf1 + pqf2 + q2f3

> P3fo + 3p2qf1 + 3pq2f2 + q3f3.

The penetrances can be rewritten in terms of the incre-
mental risk added by each successive B allele present in
the genotype. Some base risk value, fo = f exists for the
AAA genotype. The presence of a single copy of the
susceptibility allele (AAB) increases the risk of affection
by some value a (i.e., ft = f + a). A second copy of the
susceptibility allele adds an additional risk of b, so that
f2 = f + a + b. In the same manner, the third copy of
the susceptibility allele increases the risk by some value
c (i.e., f3 = f + a + b + c). Substitution of these values
into the inequality yields:

p2f + pq(f + a) + pq(f + a + b)

+ q2(f + a + b + c) > p3f + 3p2q(f + a)
+ 3pq2(f + a + b) + q3(f + a + b + c),

which can be simplified to

(b - a) + q(a - 2b + c) > 0.

Using this, general conditions can be identified for a, b,
and c that are necessary and sufficient to yield a true
inequality for various ranges of q. We have examined
three such ranges, 0 < q < .5; 0 < q < 1; and 0 < q
< , where e represents an arbitrarily small value of q.

O< q < .5

To obtain disomic homozygosity for all values of 0
< q < .5, it is necessary and sufficient to have b > a
and c > a, with at least one of the inequalities strict
(i.e., either b > a or c > a). Rewriting this in terms of
the penetrance parameters used throughout the paper
yields the following: f2 - fi : ft -fo and f2 - fi - fi
- fo, with at least one of the inequalities strict.

O< q < 1

To observe excess disomic homozygosity for all 0
< q < 1, one of the following conditions must be met:

1) b = a and c > a,
2) b > a and a - 2b + c > 0, or
3) b > a and a - 2b + c < 0 and c > b.

Substituting into the previous penetrance parameters
yields the following:
1) f2 - fi = fi - fo and f3 - f2 > fi - fo
2) f2 - fi > fi - fo and 3ft - fo - 3f2 + f3 : 0

3) f2 - f > fA - fo and 3f - fo - 3f2 + f3 < 0 and f3
-f2 f2 -f.

0 < q< £,

To identify excess disomic homozygosity for some
small value of q, one of the following conditions must
be true:

1) b=aandc>a, and
2) b > a.

This is equivalent to:

1) f2 - f = f, - fo and f3 - f2 > fA - fo, and
2) [2 - fA > fA - fo.

Model II can be examined in a similar manner; however
the addition of w, the survival parameter, greatly increases
the complexity of the equations. For this reason, the model
is not discussed here. As mentioned earlier, model III is
mathematically equivalent to model ID with a = 0, b = zi
3, and c = (2z)/3. So, b > a, c > b, and a - 2b + c =0,
meeting the conditions for 0 < q < 1.
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