
Am. J. Hum. Genet. 59:135-139, 1996

A Gene for Familial Paroxysmal Dyskinesia (FPD1) Maps
to Chromosome 2q
Gameil T. Fouad,' 2'3 Serenella Servidei,5 Simon Durcan,1'3 Enrico Bertini,6 and
Louis J. Ptacek, 1,23,4

Departments of 'Neurology and 2Human Genetics and 3Program in Human Molecular Biology and Genetics, University of Utah, and
'Program in Neuroscience, University of Utah School of Medicine, Salt Lake City; 'Department of Neurology, Universita Cattolica
Del Sacro Cuore, and 6Bambino Gesu, Rome

Summary

Dyskinesias are hyperkinetic and involuntary move-
ments that may result from any of a number of different
genetic, infectious, and drug-induced causes. Some of
the hereditary dyskinetic syndromes are characterized
by paroxysmal onset of the abnormal movements. The
classification of the familial paroxysmal dyskinesias
(FPD) recognizes several distinct, although overlapping,
phenotypes. Different forms of the disorder include at-
tacks that are (1) induced by sudden movement (kinesio-
genic); (2) spontaneous (non-kinesiogenic); and (3) in-
duced by prolonged periods of exertion. Linkage
analysis was pursued in a family segregating an autoso-
mal dominant allele for non-kinesiogenic FPD. The dis-
ease allele was mapped to a locus on chromosome 2q31-
36 (LOD score 4.64, 0 = 0). Identification of distinct
genetic loci for the paroxysmal dyskinesias will lead to
a new genetic classification and to better understanding
of these disorders.

Introduction

Dyskinesia is a term used to describe hyperkinetic invol-
untary movements. These include movements that are
brisk, small in amplitude, and "dancelike" (chorea);
slower and writhing (athetosis); large in amplitude and
flailing (ballismus); and fixed posturing (dystonia).
These abnormal movements may always be present or
may occur only during wakefulness, but in some patients
occur paroxysmally.
Paroxysmal dyskinesias can be classified clinically as

either familial or acquired conditions (Goodenough et
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al. 1978). Familial paroxysmal dyskinesias include cho-
reoathetotic, dystonic, and mixed forms. Within the fa-
milial form, both kinesiogenic (movement-induced) and
non-kinesiogenic types have been noted (Mount and Re-
back 1940; Kertesz 1967; Goodenough et al. 1978; Fahn
1994; Demirkiran and Jankovic 1995). These disorders
can be further classified on the basis of attack length,
short (seconds to minutes) or long (5 min to hours).
Both autosomal dominant and recessive forms are seen.
Despite the clinical heterogeneity, the phenotype in any
particular family generally breeds true. The classification
of these disorders is confusing; whether this clinical het-
erogeneity reflects underlying genetic heterogeneity is
not known. Characterization of this classification awaits
genetic approaches that will help to characterize under-
lying pathogenetic mechanisms resulting in these dis-
eases.
A genetic linkage approach was undertaken in a large

Italian family with familial paroxysmal dyskinesia (FPD)
in order to localize the disease-causing gene. The strat-
egy was to pursue a general linkage search with particu-
lar attention to regions of the genome harboring known
ion channel genes. Ultimately, localization of FPD loci
will allow identification and characterization of the dis-
ease-causing genes. This knowledge will eventually lead
to a genetic classification of the familial dyskinesias,
availability of molecular diagnosis, and, it is hoped, to
better treatments for patients with these diseases.

Subjects and Methods

Family Studies
Observations are based on an Italian family (K2688)

of five generations with 40 members (see fig. 1). Twenty-
seven of these family members were examined by two
of the authors (S.S. and E.B.). Family members under-
went a complete history and physical and neurological
exam, with particular attention to the nature of the dys-
kinetic movements, age at onset, precipitating factors,
and response to therapies. A detailed family history was
obtained through personal interviews with available
family members. Anticoagulated venous blood samples
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Figure 1 Pedigree of kindred 2688, with shaded symbols representing affected individuals. Each patient was examined by two of the
authors (S.S. and E.B.). The pedigree structure has been altered by changing birth order and sex of selected individuals to protect patient
confidentiality. Genotypes are listed under each individual in the following order: D2S128, UT6232, UT1459, D2S102, D2S126. The haplotype
segregating with the disease allele in the right branch of the family is enclosed in a rectangle. Two recombinations that flank the disease allele
occur, such that the segregating haplotype in the left branch is shorter (small rectangles). An additional recombination can be noted between
markers D2S128 and UT6232 in individual 20661 (arrow). Segregation of nearly 100 markers in the family support reported paternity. Ovals
mark two genotypes where misinheritance is suggested. However, these appear to represent a spontaneous mutation in individual 20663 (an
expansion of one of the "9" alleles to a "10," for example), and either a null allele or expansion of the repeat (4 to 5) in individual 20666.
An asterisk (*) marks one asymptomatic individual (22064) who carries the disease haplotype.

obtained from the examined individuals were used for
direct DNA preparations and to establish lymphoblas-
toid cell lines by Epstein-Barr virus transformation as
described elsewhere (Ptacek et al. 1991). All human tis-
sue samples used in this project were obtained with the
approval of the institutional review board at the Univer-
sity of Utah Health Sciences Center.

DNA Isolation and Marker Analysis
High-molecular-weight genomic DNA was isolated

from whole blood lysate with a phenol/chloroform ex-
traction followed by isopropanol precipitation. Genetic
evaluation was undertaken in kindred 2688 by using
markers that either flanked candidate genes or were ap-
propriately spaced throughout the genome for a general
linkage search. End-labeled primers were prepared as
follows: 25 pmol of primer, 50 mM Tris HCl, 10 mM
MgCl2, 5.0 mM DTT, 8.4 U of T4 polynucleotide ki-
nase, and 6.0 1 of [y-32P] ATP (5 mCi/ml), in a total
volume of 10 p1. This mixture was incubated at 370C

for 1 h and was then heated to 940C for 3 min to inacti-
vate the T4 polynucleotide kinase.
PCR was used to amplify total genomic DNA by using

primers flanking polymorphic regions. The reaction
mixture contained 50 ng of genomic DNA, 10 pmol of
each primer, 1 pmol of the end-labeled primer, 2.5 nmol
of each deoxynucleoside triphosphate, 10 mM Tris HCO
(pH 8.4), 40 mM NaCl, 1.5 mM MgCl2, and 0.5 U Taq
DNA polymerase in a volume of 25 ,l. PCR was carried
out under the following conditions: (1) one cycle at 94°C
for 3 min; (2) 30 cycles, each at 94°C for 1 minm Tanneai
for 1 min, and 72°C for 1 min; and (3) cooling to 4°C.
After PCR, 10 p1 of stop dye (98% formamide, 0.05%
bromphenol blue, 0.05% xylene cyanol, and 20 mM
EDTA) were added. Four microliters of each sample
were then loaded on a 7% acrylamide gel that contained
5.6 M urea, 32% formamide, 90 mM Tris borate (pH
7.5), and 2 mM EDTA. Pre-electrophoresis of gels (1 h
prior to loading) and electrophoresis were performed at
room temperature and at constant power (80 W/gel)
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with 90 mM Tris borate (pH 7.5) and 2 mM EDTA
running buffer. Gels were placed on filter paper and
exposed to x-ray film overnight at -20'C. Autoradio-
grams were analyzed for genotypes of the polymorphic
alleles.

Statistical Analysis
Using maximum-likelihood methods, we performed

pairwise linkage analysis with the MLINK program of
the LINKAGE system (Lathrop et al. 1985). A gene fre-
quency of .001 was assigned to the disease allele, and
.999 was assigned to the normal allele. We calculated
two-point analysis of the markers to the disease locus
at a penetrance of .95. In addition, LOD scores were
also calculated with penetrances ranging from .7 to .99.

Results

Families
Kindred 2688 includes 40 members, ofwhom 27 were

examined. Of these, 14 have had paroxysmal attacks
with onset between birth and the 7th year of life. In
untreated infants, the attacks occur several times per
week (minimum, one per year; maximum, several per
day) and last from 5 min to 12 h but taper in frequency
into old age. The episodes begin with dystonic posturing
of upper and/or lower extremities, face, neck, and oro-
mandibular muscles and are usually followed by choreo-
athetosis. The episodes are frequently precipitated by
stress, fatigue, coffee, chocolate, and alcohol, but not
by sudden movement. Treatment with carbamazepine
and phenobarbital did not alter the frequency or severity
of episodes in these patients and valproic acid had only
modest effects, but low doses of clorazepate led to nearly
complete resolution of attacks. The penetrance in the
kindred appears to be high, although expression is vari-
able. Two individuals (20669 and 22054) have a history
of only four or five mild attacks each but no longer
experience such episodes. Interictal neurological exam
was normal in all patients. Several patients underwent
electroencephalography (EEG) between attacks. All
were normal except in one patient (22057); the abnor-
mal EEG showed 4 Hz bilateral and synchronous spike-
wave complexes with prevalence in the central brain
region.

Linkage to Chromosome 2
Genotypes were generated in kindred 2688 for 99

markers uniformly distributed throughout the human
autosomes. Approximately 25% of the genome was ex-
cluded before positive scores were noted for marker
D2S102 on the distal long arm of chromosome 2 (table
1). Additional markers in the region were genotyped in
the family to define the smallest possible region within

which the FPD gene must reside (table 1). A maximum
LOD score (4.64) was calculated for marker D2S102 at
o = 0 by using an assumed penetrance of .95. There
were no obligate recombinants with this marker, but
one asymptomatic individual (22064) is an 8 year old
who carries the disease haplotype. When analysis was
performed with the penetrances of .7 and .99, the LOD
scores were 4.86 and 4.31, respectively. Obligate recom-
binations were noted with markers D2S128 (proximal)
and D2S126 (distal), thereby limiting the FPD1-con-
taining region to -10 cM (table 1, fig. 2).

Discussion

Paroxysmal dyskinesias are a clinically heterogeneous
group of movement disorders that may be acquired, spo-
radic, or familial. Genetic mapping of these disorders
will lead to identification of disease genes and a classifi-
cation based on genetic and molecular defects. We re-
port the identification of the FPD1 locus on chromosome
2q in a family with infantile-to-early childhood onset of
a non-kinesiogenic paroxysmal dystonia with choreo-
athetosis that responds dramatically to very-low-dose
benzodiazepines. Penetrance appears high, although one
individual (22064) carries the disease haplotype but has
had no episodes suggestive of this disorder. This individ-
ual is only 8 years old, and so it is not possible to discern
whether she is a nonpenetrant gene carrier or is too
young to manifest the phenotype.

Paroxysmal disorders include such rare familial disor-
ders as the periodic paralyses, episodic ataxias, long QT
syndrome, startle disease, and FPD. More common par-
oxysmal diseases such as epilepsy also have genetic com-
ponents. It is interesting that an increased incidence of
epilepsy is present in families with FPD (Fahn 1994;
Demirkiran and Jankovic 1995), but the question of
whether paroxysmal dyskinesias represent forms of epi-
lepsy has never been resolved.
Work in the periodic paralyses has elucidated the ge-

netic and molecular basis of these disorders and has
served as a paradigm for other paroxysmal disorders
such as long QT syndrome (cardiac dysrhythmia) and
periodic ataxia. The periodic paralyses were found to
be caused by mutations in voltage-gated sodium (Ptacek
et al. 1991, 1992, 1993; Rojas et al. 1991; McClatchey
et al. 1992) and calcium (Jurkat-Rott et al. 1994; Ptacek
et al. 1994) channels. Subsequently, one form of periodic
ataxia and the long QT syndrome were shown to be
caused by mutations in voltage-gated potassium and so-
dium channels (Browne et al. 1994; Curran et al. 1995;
Wang et al. 1995, 1996). Startle disease is a disorder
of excessive startle in response to sudden, unexpected
stimuli and results from mutations in the glycine recep-
tor a-1 subunit (Shiang et al. 1993).

137



Am. J. Hum. Genet. 59:135-139, 1996

Table 1

LOD Scores for FPD Kindred 2688 with Chromosome 2q Markers

LOD ScORE AT 0 =

.00 .01 .05 .10 .20 .30 .40 Zmax Omax

D2S128 -00 .07 1.12 1.30 1.06 .61 .21 1.30 .10
UT6232 -co .39 .87 .91 .73 .46 .20 .92 .09
UT1459 4.22 4.20 4.02 3.69 2.83 1.83 .80 4.22 .00
D2S102 4.64 4.62 4.42 4.06 3.15 2.08 .94 4.64 .00
D2S126 -00 2.25 2.76 2.73 2.20 1.41 .57 2.79 .07

On the basis of this knowledge, voltage-gated ion
channels in the CNS are good candidates as the site
of defect in FPD. Ligand-gated ion channels such as y-

aminobutyric acid (GABA) and glutamate receptors are

important for modulation of neuronal excitability and
also need to be considered as potentially having a role
in causing these disorders.

Notably, movement-induced choreoathetosis can

sometimes be seen in the patients with episodic ataxia
and mutations in the KCNA1 potassium channel gene

(Browne et al. 1994). Furthermore, a locus for a form of
paroxysmal choreoathetosis with spasticity has recently
been mapped to a potassium channel gene cluster on

chromosome ip (Auburger et al. 1996).
Genes encoding ion channels and other proteins that

modulate membrane excitability are excellent candi-
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Figure 2 Genetic map of the region containing the FPD1 locus.
Recombination distances between markers are given in centimorgans.
The candidate gene AE3 (SLC2C) has been mapped between markers
D2S128 and D2S126.

dates for the pathogenesis of FPD. One such gene maps
near the FPD1 locus (fig. 2). AE3 encodes a sodium-
independent anion exchanger that functions as an alkali
extruder (Kopito et al. 1989; Linn et al. 1992; Su et al.
1994; Yannoukakos et al. 1994). It is widely expressed
with above-average hybridization in the deep pontine
gray matter, tegmentum of the midbrain, and the me-
dulla (Kopito et al. 1989). Despite the role of GABAA
receptors as the principle mediators of synaptic inhibi-
tion in the brain, dendritic GABAA receptors depolarize
neurons when intensely activated. Under these condi-
tions, there is greater movement of HCO3- out of a cell
than inward Cl- current. Staley et al. (1995) proposed
that this GABA-mediated, activity-dependent depolar-
ization could account for collapse of the chloride gradi-
ent, depolarization of the cell, and modulation of synap-
tic N-methyl-D aspartate-receptor activation. In such a
model, mutations in AE3 might alter the regulation of
this phenomenon and lead to hyperexcitability of neu-
rons.
No consensus exists on the subject of whether parox-

ysmal dyskinesias represent a form of epilepsy
(Goodenough et al. 1978; Fahn 1994; Demirkiran and
Jankovic 1995). Abnormalities have been noted on EEG
of patients with these disorders (Hirata et al. 1991; Lom-
broso 1995), but whether this represents a causal or
coincidental relationship remains unknown. It is of note
that one patient in K2688 demonstrated EEG abnormal-
ities interictally.

Further study of kindred 2688, and other chromo-
some 2q- linked families will lead to identification of
this FPD gene and the potential for molecular diagnosis.
Characterization of the mutant protein may then shed
light on the pathogenesis of these disorders and their
relationship to epilepsy, and suggest new avenues for
treatment of these patients.
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