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Abstract Infection of pancreatic necrosis with intestinal flora is accepted to be a main predictor of outcome during severe
acute pancreatitis. Bacterial translocation is the process whereby luminal bacteria migrate to extraintestinal sites. Animal
models were proven indispensable in detecting three major aspects of bacterial translocation: small bowel bacterial
overgrowth, mucosal barrier failure, and disturbed immune responses. Despite the progress made in the knowledge of
bacterial translocation, the exact mechanism, origin and route of bacteria, and the optimal prophylactic and treatment
strategies remain unclear. Methodological restrictions of animal models are likely to be the cause of this uncertainty. A
literature review of animal models used to study bacterial translocation during acute pancreatitis demonstrates that many
experimental techniques per se interfere with intestinal flora, mucosal barrier function, or immune response. Interference
with these major aspects of bacterial translocation complicates interpretation of study results. This paper addresses these and
other issues of animal models most frequently used to study bacterial translocation during acute pancreatitis.
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Introduction

Experimental models of acute pancreatitis exist for almost
150 years, with Claude Bernard first describing experimental
pancreatitis by injection of bile and olive oil into the pancreatic
duct of a rabbit.1 Ever since, animal experiments were
indispensable in providing insight in pathophysiology and
treatment of acute pancreatitis. Experimental studies have
major advantages over clinical studies, such as the availabil-
ity of study subjects, standardization of disease severity,
ability to perform invasive tests, extensive tissue sampling,
and the possibility to test prophylactic treatment strategies.2

Despite these advantages, some major aspects of the
pathophysiology of acute pancreatitis remain unclear, mor-
tality in severe acute pancreatitis is still as high as 5–28%,
and optimal treatment strategies remain a topic of debate.3,4
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In 1986, Beger et al. demonstrated a link between the
intestinal flora, infection of pancreatic necrosis, and clinical
outcome in patients with severe acute pancreatitis.5 At the
present time, infection of pancreatic necrosis is still
regarded to be a main predictor of outcome during severe
acute pancreatitis, and bacterial translocation of intestinal
flora is considered to be the cause.4

Changes in intestinal motility and the associated shift of
intestinal flora, mucosal barrier function, and the immune
system were identified as pivotal aspects of bacterial
translocation during acute pancreatitis.6–11 This has greatly
increased the understanding of bacterial translocation, but
better insight into the exact mechanism of bacterial
translocation and subsequent infection of pancreatic necro-
sis is needed to develop adequate prophylaxis and treatment
strategies for patients with severe acute pancreatitis.

A multitude of animal models were used to study the
mechanism of bacterial translocation, including radiolabel-
ing, plasmid-labeled bacteria, or fluorescent beads.12–15

Despite all these efforts, however, the exact origin, route,
and mechanism of bacterial translocation causing infection
of pancreatic necrosis are still unclear. The main reason for
this uncertainty is the lack of an “ideal” animal model of
acute pancreatitis to study pathophysiology of bacterial
translocation and its treatment. The ideal model should be
minimally invasive, standardized, reproducible, and resem-
ble etiology, pathophysiology, disease course, and outcome
of clinical acute pancreatitis, including response to treat-
ment.2 Experimental models used to study bacterial
translocation in acute pancreatitis and its treatment all seem
to have methodological restrictions that complicate the
interpretation of study results. In 2000, Foitzik et al.
reviewed the use of animal models of acute pancreatitis and
their suitability for evaluating therapy and concluded that
animal models should be designed to mimic etiology and
clinical course of human pancreatitis to increase their value.2

In addition, we would like to discuss the value animals
studies and experimental models of acute pancreatitis have
in face of their interference with one or more of the known
aspects of bacterial translocation: intestinal motility and
flora, mucosal barrier function, or the immune system.

The aim of this paper is to provide useful insights into
the use of animal models to study bacterial translocation
during acute pancreatitis, in the light of current knowledge
of pathophysiology.

Animal Species and Housing Conditions

Before the late 1970s, larger laboratory animals such as
dogs were predominantly used to study acute pancreatitis.
But since the introduction of models of acute pancreatitis in
small laboratory animals, mice or rats are generally favored

for financial and ethical or practical reasons. Because of
physiological and anatomical differences between species,
choice of laboratory animal has important implications on
the study results and extrapolation to the human situation.

Intestinal flora differs between animal species, largely
depending on dietary demands and anatomical differences
of the gastrointestinal tract and habits.16–18 The protein-rich
diet of dogs or cats results in lower counts of endogenous
lactobacilli and higher counts of potential pathogens (e.g.,
clostridia species), compared to rats or mice with fiber-rich
diets. Coprophagy, demonstrated by most rodents, also
influences intestinal flora, resulting in higher counts of
gram-negative bacteria in the proximal gastrointestinal
tract.19,20 Also, rats and mice are often bred and kept under
specific pathogen-free conditions, introducing modifica-
tions of intestinal flora.

Intestinal barrier function also differs between species. In
an experiment comparing small intestinal permeability be-
tween humans and rats, significant interspecies variation in
urinary recovery of orally delivered mannitol was observed.21

Anatomical differences between species should also be
considered. The relative size of the jejunum, ileum, cecum,
and colon of different laboratory animals can influence
origin and route of bacterial translocation during acute
pancreatitis. In humans, retroperitoneal connections be-
tween the intestines and pancreas can greatly affect the
clinical course of the disease.22 Similar to humans, the dog
pancreas is situated retroperitoneally. Rat and mouse
pancreata, however, are almost fully enveloped by perito-
neum, resembling a more intraperitoneal localization.
Variation in retroperitoneal connections between intestines
and the pancreas offers different routes for bacteria to
translocate without being exposed to intraperitoneal im-
mune cells.23

Experiments using small animals (e.g., mouse or rat)
usually incorporate a larger number of animals compared to
experiments with large laboratory animals (e.g., cat or dog).
The use of a larger number of small laboratory animals
improves statistical power of an experiment. On the other
hand, the use of larger animals could resemble human
pathophysiology better, but a smaller number of animals
means lower statistical power and increased potential false
negative or false positive results.

Models of Acute Pancreatitis

An abundance of animal models of acute pancreatitis is
used to investigate bacterial translocation. Only models
most frequently used for this purpose will be discussed.
Baseline characteristics of the discussed models and their
potential effects on intestinal flora, mucosal barrier, and
immune function are summarized in Tables 1 and 2.
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Duodenal Loop

Closing the duodenal lumen proximally and distally to the
papilla of Vater results in reflux of the duodenal contents
enclosed in the loop, including bile and pancreatic secretions,
into the biliopancreatic duct.24 In rats, this leads to acute
pancreatitis of varying severity.25 Discontinuation of the
gastrointestinal tract leads to mucosal atrophy and functional
changes to the mucosal barrier.26 Furthermore, obstruction of
bile flow into the intestine was shown to reduce intestinal
motility, causing small bowel bacterial overgrowth and
increased bacterial translocation.27–29 Another major down-
side is the occurrence of reflux of duodenal contents,
including bacteria, into the biliopancreatic duct. These
obvious drawbacks of this model in experiments concerning
bacterial translocation are the cause of its limited popularity.

Ethionine-supplemented Choline Deficiency

Lombardi et al.30 described severe acute pancreatitis in young
female mice after feeding a choline-deficient, ethionine-
supplemented (CDE) diet.31 Acute hemorrhagic pancreatitis

ensues, as well as diffuse intraperitoneal fat necrosis and
several systemic effects such as acidosis, hypoxia, and
hypovolemia. In this model, mortality ranges from 0 to
100% after 4 days and can be controlled by varying the
duration of the choline-deficient diet.32 To ensure homogene-
ity and reproducibility, sex, age, and weight of the mice have
to be closely matched, as well as food intake of all animals.32

Apart from these practical downsides of the model,
systemic complications unrelated to pancreatitis (e.g.,
parotitis and fatty liver disease) render the model less
useful for investigating systemic events (e.g., immune
response) of acute pancreatitis.31 Little is known of the
effect of ethionine suppletion or choline deficiency on
intestinal flora or mucosal barrier function. But the most
important drawback of this model to study bacterial
translocation is the low incidence of pancreatic infection
(3–8%), even in severe necrotizing pancreatitis.33

Biliopancreatic Duct Ligation

In the duct ligation model, the common biliopancreatic duct
is surgically clipped or tied at the sphincter of Oddi

Table 1 Characteristics of Several Animal Models of Acute Pancreatitis

Model Animal Species Pancreatic Necrosis Pancreatic Infection Mortality Invasiveness

Duodenal loop24,25 Rat No Considerable High Laparotomy
Choline-deficient diet30–32 Mouse Yes Little High Minimal
Duct ligation34–37 Rat/opossum No/Yes Little Low Laparotomy
Cerulein44 Mouse/rat Yes/No Little Low Minimal
Duct perfusion48 Rat/dog/pig Yes Considerable Moderate to high Laparotomy
Duct perfusion + cerulein52 Rat Yes Considerable Moderate Laparotomy

Table 2 Aspects of Bacterial
Translocation and Potential
Confounding Factors of Ani-
mal Models

Aspect Confounding Factor Model

Intestinal motility and flora Animal species Potentially all models
Housing conditions (SPF) Potentially all models
Diet CDE diet
Analgesics Invasive models
Laparotomy Invasive models
Bile flow Duct ligation
Cerulein Cerulein models
Intestinal manipulation Invasive models

Mucosal barrier function Stress Potentially all models
Diet CDE diet
Anesthetics Invasive models
Pancreatic proteases Duct ligation
Intestinal manipulation/puncture Duct perfusion

Immune system Stress Potentially all models
Diet CDE diet
Disease course/severity Species-dependent
Obstructive jaundice Duct ligation, duodenal loop
Intestinal manipulation Invasive models
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complex. The resulting obstruction of pancreatic secretions
and potential biliary reflux into the pancreatic duct produce
moderate pancreatitis, characterized by edema, moderate
inflammation and hemorrhage, fat necrosis, and minimal
acinar cell necrosis. Only in the American opossum does
biliopancreatic duct ligation leads to severe acute pancre-
atitis with considerable necrosis.34–37

This model of acute pancreatitis greatly interferes with
the pathophysiology of bacterial translocation. Obstruction
of bile flow into the intestine causes small bowel bacterial
overgrowth and bacterial translocation.28 Also, exclusion of
pancreatic proteases in the gut lumen alters intestinal
permeability.38,39 Apart from effects on the intestinal flora
and mucosal barrier function, obstruction-induced jaundice
also causes impairment of the immunesystem.40–42 These
effects complicate the interpretation of bacteriological
results to study bacterial translocation.

Cerulein Infusion

Infusion of low doses of cerulein, a cholecystokinin analog,
enhances production of pancreatic exocrine cell secretions
without cell necrosis. In most species, infusion of supra-
maximal doses results in a decrease of secretion and acute
pancreatitis with interstitial edema and inflammatory cell
infiltration.43 In mice, cerulein causes severe acute pancre-
atitis with necrosis of 40% of acinar cells.44 In rats and
other animals, however, cerulein-induced pancreatitis is
usually mild and generally self-limiting. Moreover, pigs are
reported to be insensitive to cerulein hyperstimulation.45 It
should be noted that cerulein is known to affect intestinal
motility. Studies investigating the use of cerulein in man
have shown absence of recognizable migrating motor
complexes with decreased colonic transit time.46 In general,
experimental acute pancreatitis is associated with reduced
small bowel motility, resulting in small bowel bacterial
overgrowth and increased bacterial translocation to extra-
intestinal sites.6,47 Thus, cerulein may interfere with
intestinal flora by altering intestinal motility. Investigators
should keep this in mind when designing a study and
interpreting study results.

Biliopancreatic Duct Perfusion

Duct perfusion models are currently the most popular
models of acute pancreatitis. Induction of acute pancreatitis
involves infusion of bile, bile salts with or without bacteria,
or activated pancreatic enzymes into the (bilio-)pancreatic
duct. Early experiments mainly involved dogs, but current-
ly, rats are used most frequently. Severity and reproducibil-
ity of acute pancreatitis and ensuing bacteriological results
strongly depend on infusate, infusion pressure, volume, and
time.48

The most commonly used infusates are solutions con-
taining various concentrations of bile salts of varying
hydrophobicity. Both chemical and pressure effects of
infusion were suggested to play a major role in the
pathogenesis of pancreatitis in perfusion models.48,49 In
both chemical- and pressure-induced pancreatitis, destruc-
tion of the pancreatic duct mucosal barrier is the key event.
This is followed by pancreatic edema, autolysis, reduction
of pancreatic blood flow, and, in severe cases, destruction
of pancreatic parenchyma and formation of pancreatic
necrosis.50 Uncontrolled pressure-related damage causes
variation in severity of the induced acute pancreatitis
between study subjects, and thus should be avoided.
Several experiments were performed to assess maximal
pancreatic duct pressure before rupture of the duct
epithelium causing increased and uncontrolled severity of
acute pancreatitis. Data are conflicting, with rupture
pressures varying from 15 to 82 mmHg.48,49,51,52 A
maximum infusion pressure of 30 to 50 mmHg is currently
accepted for rat models.

Perfusion is usually performed by puncturing the
duodenum and cannulating the papilla of Vater. The
introduction of duodenal bacteria, through the papilla of
Vater into the biliopancreatic duct could potentially be a
confounding factor in transduodenal duct perfusion models.
It was demonstrated, however, that significant bacterial
infection of the pancreas (>1×102 colony forming units per
gram) because of the surgical procedure does not occur.53

Advantages of this model are the quick procedure of
acute pancreatitis induction and the reproducibility of
results. Other than duodenal puncturing and intestinal
handling during surgery, both potentially affecting mucosal
barrier function, no direct effects on intestinal flora or
immune function are expected in this model.

Biliopancreatic Duct Injection and Cerulein
Hyperstimulation

The combination of retrograde infusion of bile salts with
superimposed cerulein hyperstimulation in rats was
introduced by Schmidt et al. and was advocated as “a
better model for evaluating therapy.” 52 Although the
disadvantages described for biliopancreatic duct injection
and cerulein hyperstimulation all apply to this model, it was
proven a very valuable model to examine bacterial
translocation and treatment strategies. The major advan-
tages are that histological and qualitative bacteriological
results as well as reaction to treatment and disease course
resemble human acute pancreatitis more closely than other
models.2,52 Although proven a very valuable model,
potential model-related confounding factors as described
above should always be kept in mind when interpreting
results.
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Disease Course

Especially in the severe form of acute pancreatitis, systemic
events can be divided into two phases: early proinflamma-
tory and late immunosuppressive.54 In severe acute pancre-
atitis, the early phase is associated with a systemic
inflammatory response syndrome (SIRS), potentially lead-
ing to multiple organ failure and early mortality. The late
phase is characterized by immunosuppression, providing
opportunity for infectious complications (e.g., infection of
pancreatic necrosis) associated with sepsis and late mortal-
ity.2,55 Laboratory animal species and experimental models,
however, each show their own disease course of acute
pancreatitis.

Animal models were mainly used to investigate the early
phase of acute pancreatitis.56 However, the model described
by Schmidt et al. seems the most appropriate to investigate
early and late systemic complications, considering that both
phases can be discerned.52,57 In this model, infection of
pancreatic necrosis progresses at least until 96 h. When
taking into account that disease course is more rapid in
small rodents, timing could well correlate with data on the
course of severe acute pancreatitis in humans, as described
by Foitzik et al.2, Beger et al.,4 and Lankisch et al.58

Severity

Pancreatic necrosis is produced in several animal models of
acute pancreatitis (Table 1). On the other hand, only duct
perfusion, with or without superimposed cerulein hyper-
stimulation, and murine CDE models demonstrate mortality
comparable to human necrotizing acute pancreatitis.32,52,59

Models with high early mortality may be useful to
investigate early phase systemic inflammatory response
and organ failure, but are less adequate to investigate late
infectious complications and associated (multiple) organ
failure.

In most models, necrosis needs to be present for
pancreatic infection to occur. It needs to be noted that this
does not apply for the duodenal loop model in which reflux
of duodenal contents into the biliopancreatic duct occurs.60

In contrast, the murine CDE model produces elaborate
necrosis, but is associated with very low rates of pancreatic
infection.33

Culturing, Controls, and Route of Bacterial
Translocation

In all animal models, factors such as analgesia, anesthesia,
or surgical techniques can influence bacteriological results.
Morphine-like analgesics have a significant effect on bowel

motility and cause bacterial overgrowth and translocation to
extraintestinal sites.61 The anesthetic pentobarbital was
suspected to be a factor in promoting bacterial translocation
in a model of hemorrhagic shock.62

Also, stress causes mucosal barrier failure and bacterial
translocation.63 Surgical procedures are stressful events, but
animal transport or handling alone could potentially cause
stress-induced bacterial translocation. The influence of
stress on adrenaline and corticosteroid levels could have
its own effect on the function of the immune system,
potentially influencing the systemic reaction to acute
pancreatitis and bacterial translocation.

Proper sterile surgical techniques are very important
when investigating bacterial translocation. If abdominal
surgery is involved, control cultures of the peritoneal cavity
to trace surgical contamination are of special importance. If
peritoneal cultures are found to be positive, extra caution
should be taken with interpretation of bacteriological
analysis of abdominal organs. In case of surgical contam-
ination or transperitoneal bacterial translocation, the perito-
neal covering of the organ samples might be the cause of
positive organ cultures, not the bacterial colonization in the
organ itself (false positive culture).

Puncturing the duodenum in duct infusion models
hypothetically causes spillage of duodenal contents onto
the peritoneum, covering all abdominal organs. In rats,
however, duodenal contents usually have low bacterial
counts, mainly consisting of nonpathogenic lactobacilli
only. On the other hand, a duct infusion study by Cicalese
et al. reported positive peritoneal cultures at time of
induction of pancreatitis of 16.6 to 33.3% of the studied
rats.15 Literature review of different animal models fairly
frequently shows positive peritoneal cultures at the time of
termination and organ sample collection of rats with acute
pancreatitis. Positive peritoneal cultures are observed
varying from 0–10% in minimally invasive models of
acute pancreatitis (cerulein injection, CDE diet) to 8–100%
in more invasive models (duct perfusion with or without
cerulein hyperstimulation).6,14,15,64–66

Discussion

Changes in intestinal motility and flora, mucosal barrier
function, and immune response were established as pivotal
aspects in the process of bacterial translocation during acute
pancreatitis. Early after the onset of acute pancreatitis,
neurohormonal effects result in reduced small bowel
motility.6 This causes stasis of luminal contents and small
bowel bacterial overgrowth with potential pathogens,
including Escherichia coli and Enterococcus species. The
abundant presence of luminal pathogens forms a challenge
for the mucosal barrier. Furthermore, pancreatitis-associated
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reduced intestinal blood flow results in mucosal ischemia
and reperfusion damage.67–69 Luminal bacteria, normally
held at bay by the mucosal barrier, now have opportunity to
penetrate into the intestinal epithelium. Local intestinal
inflammation follows, further compromising mucosal bar-
rier function. Pancreatitis and ensuing intestinal inflamma-
tion both contribute to a systemic proinflammatory
response (SIRS), with damaging effects on distant
organs.70,71 If the systemic response is severe, multiple
organ dysfunction syndrome (MODS) might follow.72,73 If
the patient survives the early phase, counterregulatory
immunological pathways releasing anti-inflammatory cyto-
kines result in a refractory state characterized by immuno-
suppression.74,75 Persistent immunosuppression will render
the patient liable for infection of pancreatic necrosis.
Multiple organ dysfunction syndrome caused by infectious
complications is considered accountable for so-called late
mortality or “late septic death.”74,76

Although animal models were proven indispensable in
acute pancreatitis research, model-related problems are
most likely the reason for important questions on patho-
physiology and treatment strategies to remain unanswered.
Current topics of debate include the route and origin of
bacterial translocation and optimal prophylaxis and treat-
ment strategies.

Several different routes of bacterial translocation were
described and have directed efforts for many prophylactic
and therapeutic strategies. Webster et al. showed bacter-
emia to occur early after induction of acute pancreatitis in
CDE-induced acute pancreatitis, suggesting a hematoge-
nous route.77 Likewise, rapid passage of bacteria into the
blood was found in other models of acute pancreatitis.78 On
the other hand, Runkel et al. found bacteria migrating to
lymph nodes before their translocation to distant sites in a
duct ligation model, suggesting a lymphogenous route.79

Widdison et al. suggested transperitoneal translocation of
bacteria originating from the colon in a feline model of
severe necrotizing pancreatitis.80 Other study groups, includ-
ing our own, have provided proof of the role of the small
bowel in the pathophysiology of bacterial translocation in
acute pancreatitis or after morphine administration.6,61,81

The model of duct perfusion and cerulein hyperstimula-
tion described by Schmidt et al. was proven very useful
because it resembles human disease quite well, considering
its biphasic disease course, pancreatic histology, “moder-
ate” mortality, and the bacterial spectrum in pancreatic
necrosis.52 However, whether a confounder is introduced by
puncturing the duodenum and cannulating the biliopancre-
atic duct is unknown. Therefore, to ensure quality of the
presented study results, control cultures of the peritoneal
cavity should be done when organ samples are analyzed
bacteriologically. Peritoneal bacteria can potentially affect
bacteriological analysis of all abdominal tissues. Widdison

et al. washed abdominal samples before analysis, but this
is not commonly performed.80 A pilot study by Arendt et
al. showed that washing removed 94–97% of intra-
peritoneally injected bacteria.23 Immunohistologically local-
izing bacteria can help clarify if positive cultures of
abdominal tissues are because of peritoneally located
bacteria or actual bacterial colonization in the underlying
organ tissue.

When experimentally evaluating therapy, treatment often
starts before induction of acute pancreatitis. Obviously, this
is an important reason why results cannot directly be
translated to the clinical situation. On the other hand, these
experimental studies provide proof of principle concerning
the tested therapy. If prophylactically successful, the tested
treatment strategy might be beneficial when started after the
onset of acute pancreatitis and should therefore be further
investigated. On the other hand, the faster course of acute
pancreatitis in rodent models provides only a very short
treatment window between the onset of the disease and
early or late phase complications. This may lead to false
negative effects of the therapy tested.

In conclusion, animal models of acute pancreatitis are
indispensable tools, but model-related drawbacks often
interfere with one or more pathophysiological aspects of
bacterial translocation, complicating interpretation of
results. When the ideal model of acute pancreatitis is not
at hand, it is of major value that numerous alternatives are
available. But with each experimental hypothesis, special
care should be taken to select the most suitable model.
Despite all the experimental work done, the route by which
pancreatic infection occurs and gives rise to septic
complications and mortality has not yet fully been
elucidated. Optimal prophylactic and treatment strategies
are also still widely debated. In the future, animal models
will undoubtedly provide increasing understanding of these
subjects, but model-related drawbacks should always be
kept in mind when designing a study or when interpreting
results.
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