Abstract
Clostridium perfringens alpha toxin caused contraction of the isolated aorta of the rat in a dose-dependent manner. The contractile action caused by the toxin was inhibited or abolished by calcium antagonists such as nifedipine, verapamil and cinnarizine, or a Ca-free medium, but was not affected by phentolamine, chlorpheniramine, atropine, tetrodotoxin or a low Na medium. The toxin stimulated Ca uptake into the aorta in a dose-dependent manner. 8-N,N'-diethylaminooctyl-3,4,5-trimethoxybenzoate (TMB-8) blocked significantly both the toxin- and noradrenaline (NA)-induced contractions. Trifluoperazine (TFP) and N-(6-aminohexyl)-5-chloro-1-naphtharene sulphonamide (W-7) did not affect the contractile activity of the toxin but blocked the NA-induced contraction. The toxin also stimulated the 32P phosphate labelling of phosphatidylinositol (PI) and phosphatidic acid (PA) in the preparation. These results indicate that the toxin-induced contraction, which is different from that induced by NA, is the result of a direct action of the toxin on the aorta and is due to an increased Ca2+ permeability across the smooth muscle membrane. It is suggested that the contractile response to the toxin is associated with activation of phospholipid metabolism and enhanced entry of Ca into the aorta.
Full text
PDF








Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- AIKAT B. K., DIBLE J. H. The pathology of Clostridium welchii infection. J Pathol Bacteriol. 1956 Apr;71(2):461–476. doi: 10.1002/path.1700710220. [DOI] [PubMed] [Google Scholar]
- Albuquerque E. X., Thesleff S. Influence of phospholipase C on some electrical properties of the skeletal muscle membrane. J Physiol. 1967 May;190(1):123–137. doi: 10.1113/jphysiol.1967.sp008197. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Albuquerque E. X., Thesleff S. The effect of calcium on the skeletal muscle membrane after treatment with phospholipase C. Acta Physiol Scand. 1968 Mar;72(3):310–321. doi: 10.1111/j.1748-1716.1968.tb03846.x. [DOI] [PubMed] [Google Scholar]
- Allan D., Thomas P., Michell R. H. Rapid transbilayer diffusion of 1,2-diacylglycerol and its relevance to control of membrane curvature. Nature. 1978 Nov 16;276(5685):289–290. doi: 10.1038/276289a0. [DOI] [PubMed] [Google Scholar]
- Chiou C. Y., Malagodi M. H. Studies on the mechanism of action of a new Ca-2+ antagonist, 8-(N,N-diethylamino)octyl 3,4,5-trimethoxybenzoate hydrochloride in smooth and skeletal muscles. Br J Pharmacol. 1975 Feb;53(2):279–285. doi: 10.1111/j.1476-5381.1975.tb07359.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- DAVIS B. J. DISC ELECTROPHORESIS. II. METHOD AND APPLICATION TO HUMAN SERUM PROTEINS. Ann N Y Acad Sci. 1964 Dec 28;121:404–427. doi: 10.1111/j.1749-6632.1964.tb14213.x. [DOI] [PubMed] [Google Scholar]
- Diner B. A. Purification and properties of clostridium welchii phospholipase C. Biochim Biophys Acta. 1970 Mar 18;198(3):514–522. doi: 10.1016/0005-2744(70)90129-4. [DOI] [PubMed] [Google Scholar]
- Godfraind T., Miller R. C., Lima J. S. Selective alpha 1- and alpha 2-adrenoceptor agonist-induced contractions and 45Ca fluxes in the rat isolated aorta. Br J Pharmacol. 1982 Dec;77(4):597–604. doi: 10.1111/j.1476-5381.1982.tb09337.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hirayama T., Kato I. Mode of cytotoxic action of pseudomonal leukocidin on phosphatidylinositol metabolism and activation of lysosomal enzyme in rabbit leukocytes. Infect Immun. 1984 Jan;43(1):21–27. doi: 10.1128/iai.43.1.21-27.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hofmann S. L., Prescott S. M., Majerus P. W. The effects of mepacrine and p-bromophenacyl bromide on arachidonic acid release in human platelets. Arch Biochem Biophys. 1982 Apr 15;215(1):237–244. doi: 10.1016/0003-9861(82)90300-9. [DOI] [PubMed] [Google Scholar]
- Honeyman T. W., Strohsnitter W., Scheid C. R., Schimmel R. J. Phosphatidic acid and phosphatidylinositol labelling in adipose tissue. Relationship to the metabolic effects of insulin and insulin-like agents. Biochem J. 1983 May 15;212(2):489–498. doi: 10.1042/bj2120489. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Karaki H., Nakagawa H., Urakawa N. Comparative effects of verapamil and sodium nitroprusside on contraction and 45Ca uptake in the smooth muscle of rabbit aorta, rat aorta and guinea-pig taenia coli. Br J Pharmacol. 1984 Feb;81(2):393–400. doi: 10.1111/j.1476-5381.1984.tb10091.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Knickelbein R. G., Rosenberg P. Differential phospholipid hydrolysis by phospholipase C in sarcolemma of muscles with calcium or sodium generated action potentials. Toxicon. 1980;18(1):71–86. doi: 10.1016/0041-0101(80)90033-1. [DOI] [PubMed] [Google Scholar]
- Krug E. L., Kent C. Phospholipase C from Clostridium perfringens: preparation and characterization of homogeneous enzyme. Arch Biochem Biophys. 1984 Jun;231(2):400–410. doi: 10.1016/0003-9861(84)90403-x. [DOI] [PubMed] [Google Scholar]
- Kurioka S., Matsuda M. Phospholipase C assay using p-nitrophenylphosphoryl-choline together with sorbitol and its application to studying the metal and detergent requirement of the enzyme. Anal Biochem. 1976 Sep;75(1):281–289. doi: 10.1016/0003-2697(76)90078-6. [DOI] [PubMed] [Google Scholar]
- LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
- Lenard J., Singer S. J. Structure of membranes: reaction of red blood cell membranes with phospholipase C. Science. 1968 Feb 16;159(3816):738–739. doi: 10.1126/science.159.3816.738-a. [DOI] [PubMed] [Google Scholar]
- Lodge S., Leach G. D. The effects of phospholipase C on excitation-contraction coupling mechanisms in smooth muscle. J Pharm Pharmacol. 1973 Nov;25(11):864–871. doi: 10.1111/j.2042-7158.1973.tb09964.x. [DOI] [PubMed] [Google Scholar]
- MACLENNAN J. D. The histotoxic clostridial infections of man. Bacteriol Rev. 1962 Jun;26:177–276. [PMC free article] [PubMed] [Google Scholar]
- Macfarlane M. G., Knight B. C. The biochemistry of bacterial toxins: The lecithinase activity of Cl. welchii toxins. Biochem J. 1941 Sep;35(8-9):884–902. doi: 10.1042/bj0350884. [DOI] [PMC free article] [PubMed] [Google Scholar]
- McIlwain D. L., Rapport M. M. The effects of phospholipase C (Clostridium perfringens) on purified myelin. Biochim Biophys Acta. 1971 Jun 8;239(1):71–80. doi: 10.1016/0005-2760(71)90194-9. [DOI] [PubMed] [Google Scholar]
- Michell R. H. Inositol phospholipids and cell surface receptor function. Biochim Biophys Acta. 1975 Mar 25;415(1):81–47. doi: 10.1016/0304-4157(75)90017-9. [DOI] [PubMed] [Google Scholar]
- Michell R. H. Is phosphatidylinositol really out of the calcium gate? Nature. 1982 Apr 8;296(5857):492–493. doi: 10.1038/296492a0. [DOI] [PubMed] [Google Scholar]
- Möllby R., Wadström T. Purification of phospholipase C (alpha-toxin) from Clostridium perfringens. Biochim Biophys Acta. 1973 Oct 10;321(2):569–584. doi: 10.1016/0005-2744(73)90200-3. [DOI] [PubMed] [Google Scholar]
- Philipson K. D., Frank J. S., Nishimoto A. Y. Effects of phospholipase C on the Na+-Ca2+ exchange and Ca2+ permeability of cardiac sarcolemmal vesicles. J Biol Chem. 1983 May 10;258(9):5905–5910. [PubMed] [Google Scholar]
- Porath J., Carlsson J., Olsson I., Belfrage G. Metal chelate affinity chromatography, a new approach to protein fractionation. Nature. 1975 Dec 18;258(5536):598–599. doi: 10.1038/258598a0. [DOI] [PubMed] [Google Scholar]
- ROTH F. B., PILLEMER L. Purification and some properties of Clostridium welchii type A theta toxin. J Immunol. 1955 Jul;75(1):50–56. [PubMed] [Google Scholar]
- Sakurai J., Nomura S., Fujii Y., Oshita Y. Effect of Clostridium perfringens alpha toxin on the isolated rat vas deferens. Toxicon. 1985;23(3):449–455. doi: 10.1016/0041-0101(85)90028-5. [DOI] [PubMed] [Google Scholar]
- Sakurai J., Oshita Y., Fujii Y. Effect of Clostridium perfringens alpha toxin on the cardiovascular system of rats. Toxicon. 1985;23(6):903–912. [PubMed] [Google Scholar]
- Serhan C., Anderson P., Goodman E., Dunham P., Weissmann G. Phosphatidate and oxidized fatty acids are calcium ionophores. Studies employing arsenazo III in liposomes. J Biol Chem. 1981 Mar 25;256(6):2736–2741. [PubMed] [Google Scholar]
- Simpson R. J., Neuberger M. R., Liu T. Y. Complete amino acid analysis of proteins from a single hydrolysate. J Biol Chem. 1976 Apr 10;251(7):1936–1940. [PubMed] [Google Scholar]
- Smyth C. J., Arbuthnott J. P. Properties of Clostridium perfringens (welchii) type-A alpha-toxin (phospholipase C) purified by electrofocusing. J Med Microbiol. 1974 Feb;7(1):41–66. doi: 10.1099/00222615-7-1-41. [DOI] [PubMed] [Google Scholar]
- Stahl W. L. Phospholipase C purification and specificity with respect to individual phospholipids and brain microsomal membrane phospholipids. Arch Biochem Biophys. 1973 Jan;154(1):47–55. doi: 10.1016/0003-9861(73)90033-7. [DOI] [PubMed] [Google Scholar]
- Strunk S. W., Smith C. W., Blumberg J. M. Ultrastructural studies on the lesion produced in skeletal muscle fibers by crude type A Clostridium perfringens toxin and its purified alpha fraction. Am J Pathol. 1967 Jan;50(1):89–107. [PMC free article] [PubMed] [Google Scholar]
- Suematsu E., Hirata M., Hashimoto T., Kuriyama H. Inositol 1,4,5-trisphosphate releases Ca2+ from intracellular store sites in skinned single cells of porcine coronary artery. Biochem Biophys Res Commun. 1984 Apr 30;120(2):481–485. doi: 10.1016/0006-291x(84)91279-8. [DOI] [PubMed] [Google Scholar]
- TOBIAS J. M., AGIN D. P., PAWLOWSKI R. Phospholipidcholesterol membrane model. Control of resistance by ions or current flow. J Gen Physiol. 1962 May;45:989–1001. doi: 10.1085/jgp.45.5.989. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Takahashi T., Sugahara T., Ohsaka A. Purification of Clostridium perfringens phospholipase C (alpha-toxin) by affinity chromatography on agarose-linked egg-yolk lipoprotein. Biochim Biophys Acta. 1974 May 10;351(1):155–171. doi: 10.1016/0005-2795(74)90074-9. [DOI] [PubMed] [Google Scholar]
- Tanaka T., Ohmura T., Hidaka H. Hydrophobic interaction of the Ca2+-calmodulin complex with calmodulin antagonists. Naphthalenesulfonamide derivatives. Mol Pharmacol. 1982 Sep;22(2):403–407. [PubMed] [Google Scholar]
- Tanaka T., Ohmura T., Yamakado T., Hidaka H. Two types of calcium-dependent protein phosphorylations modulated by calmodulin antagonists. Naphthalenesulfonamide derivatives. Mol Pharmacol. 1982 Sep;22(2):408–412. [PubMed] [Google Scholar]
- Tyson C. A., Vande Zande H., Green D. E. Phospholipids as ionophores. J Biol Chem. 1976 Mar 10;251(5):1326–1332. [PubMed] [Google Scholar]
- Van Nueten J. M., Vanhoutte P. M. Calcium entry blockers and vascular smooth muscle heterogeneity. Fed Proc. 1981 Dec;40(14):2862–2865. [PubMed] [Google Scholar]
- Weber K., Osborn M. The reliability of molecular weight determinations by dodecyl sulfate-polyacrylamide gel electrophoresis. J Biol Chem. 1969 Aug 25;244(16):4406–4412. [PubMed] [Google Scholar]
- Zavecz J. H., Jackson T. E., Limp G. L., Yellin T. O. Relationship between anti-diarrheal activity and binding to calmodulin. Eur J Pharmacol. 1982 Mar 12;78(3):375–377. doi: 10.1016/0014-2999(82)90042-5. [DOI] [PubMed] [Google Scholar]

