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ABSTRACT Allelic association provides a means to map
disease genes that, in a dense map of polymorphic markers,
has considerably higher resolution than linkage methods. We
describe here a composite likelihood estimate of location for
a disease gene against a high-resolution marker map by using
allele frequencies at linked loci. Data may be family-based, as
in the transmission disequilibrium test, or from a case-control
study. x2 tests, logarithm of odds, standard errors, and
information weights are provided. The method is illustrated
by analysis of published cystic fibrosis haplotypes, in which
DF508 is more accurately localized than by other association
studies. This differs from current approaches by adopting a
more general Malecot model for isolation by distance, where
distance here is between marker and disease locus, allowance
for errors in the map and model, and freedom from assump-
tions about demography, systematic pressures, and the ratio
of physical to genetic distance. When these assumptions are
introduced the number of generations since the original
mutation may be estimated, but this is not required to
determine location and its standard error, so that evidence
from allelic association may be efficiently combined with
linkage evidence to identify a region for positional cloning of
a disease gene.

Dependence of allele frequencies at two loci is called allelic
association, linkage disequilibrium, or gametic disequilibrium.
We shall use the first term. Spurious allelic association is not
characteristic of the population, but is either a type 1 error or
is induced by biased sampling or typing. Real allelic association
can be confirmed in multiple samples. Allelic association
mapping depends on the association of specific marker alleles
with a disease mutation and the expectation of greater asso-
ciation as the disease locus is approached. The strength of the
association depends on pressure to disrupt haplotypes of
linked loci by recombination and mutation and the effects of
selection and drift. Data may be family-based or a case control
study of individuals without close relationship. Linkage map-
ping requires cosegregation of marker and disease alleles
within a family and can involve any allele at the marker locus.
Allelic association provides a means to map genes for disease
susceptibility that is independent of linkage evidence and, in
favorable cases, has greater resolution. To exploit this we
require an integrated map that combines genetic and physical
evidence, an estimate of location on the same scale for linkage
and association, and efficient weights by which they may be
combined to give a single, optimal estimate and test of
significance that in principle are the same as for two linkage
samples. Here we show how such an analysis may be performed
by the ALLASS program for testing, estimating, and mapping
allelic association. ALLASS is written in C and is available from
http:yycedar.genetics.soton.ac.ukypublicohtmly.

Association r

Assuming that recombination dominates systematic pressure
of mutation, selection, and long-range migration (with which
it is confounded), the natural measure of allelic association is

rij 5 ~1 2 uij!
t , exp (2tuij) [1]

where uij is the recombination rate per gamete per generation
between loci I and J, t is the number of generations during
which the population has been approaching equilibrium, and
rij is the (coefficient of) association between I and J (1).
Neglecting stochastic variation because of finite population
size, the expected frequency of haplotypes with allele u at locus
I and allele v at locus J is

quv 5 rij Quv 1 ~1 2 rij! qu qv [2]

where qu, qv are the marginal gene frequencies (assumed
constant in time) and Quv was the corresponding haplotype
frequency among founders t generations ago (u 5 1,.., U and
v 5 1,.., V).

Attempts to apply this theory encounter the problems that
the founder haplotype frequencies Quv are unknown and the
model is greatly simplified. Therefore, r has been neglected in
favor of kinship w, a metric based on x2 with (U 2 1) (V 2 1)
degrees of freedom that does not require estimation of Quv (2).
Usually the power of parsimonious models, even if approxi-
mate, is greater than for models with many degrees of freedom
(3). Illustrations of this principle in genetics include tests of
Hardy–Weinberg equilibrium (4) and of oligogenic linkage (5).
We therefore conjectured that maximum likelihood estimation
of a single value of r for each marker locus, where applicable,
would provide the most reliable inference about allelic asso-
ciation and therefore about the location of disease genes.
Models with multiple values of r, measuring the association
between each marker allele and the disease locus, imply an
equal number of unknown values of Quv, and no general theory
has been developed that is biologically meaningful and effi-
ciently estimable (6). However, the special case of a 2 3 2
haplotype table has proven manageable and useful. The cells
of each table give counts for a given marker allele where a
represents disease haplotypes with the allele, b gives disease
haplotypes without the allele, and c and d represent the
corresponding normal haplotypes. Given a two-allele disease
locus, the only practical problem is to reduce a U-allele marker
locus to two alleles.

Merging Associated Marker Alleles

We reduce U 2 3 2 tables for disease allele 3 marker allele by
merging associated alleles through a stepwise process. The
allele with the largest value of x2 is taken to be associated,
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whether x2 is significant or not. Thus, at each marker there is
at least one allele in the ‘‘associated’’ class (and this association
may be positive or negative). For each table, if the determinant
ad 2 bc is negative, this corresponds to a (possibly spurious)
protective marker allele, and only similar protective alleles will
be pooled into the associated class. A positive value of ad 2 bc
corresponds to a (possibly spurious) susceptibility allele to be
pooled with similar susceptibility alleles. Then for U . 2, the
selected allele is excluded and the test is repeated on the
remainder, only significant association being accepted. We
define significance as x1

2 with Yates’ correction .5 without a
Bonferroni correction for the number of tests. In our experi-
ence this gives an acceptable balance between type I and type
II errors. This process is continued until only one allele
remains or no remaining allele is significant. Table 1 defines
the final haplotype counts as 2 3 2 tables for each marker.
Formally this procedure is the same as has been used to
designate founders in a phylogeny (7), but here the associated
alleles are pooled into one class and the remaining alleles are
pooled into the second class. When a marker has both posi-
tively and negatively associated alleles, it is treated as two loci
with the same location, one with positively associated alleles
versus the rest, the other with negatively associated alleles
versus the rest. In the latter case, a and b are interchanged, as
are c and d, so that r . 0. As with any assumption, the equality
of r for different alleles and for positive and negative associ-
ations may be questioned. ‘‘Protective’’ marker alleles reflect
haplotypes in which few disease mutations have occurred, but
recombination is the same as for positively associated alleles at
the same locus. For a diallelic locus the absolute values are
equal. Although no model can include all possible deviations,
the analysis makes allowance for errors by separating the
estimation of r for each marker locus (Table 1) from its
expected value. The disease frequency determines an enrich-
ment factor v as the ratio of the number of cases to controls
divided by the ratio of disease frequency to normal in the
population of haplotypes. Introduction of v makes it unnec-
essary to approximate the associated marker allele frequency
R in the population by its frequency among controls (6). This
approximation is poor unless Q ,, R.

In passing we make obvious extensions. If a quantitative trait
is substituted for a disease dichotomy, the regression of the
trait on the number 0, 1, or 2 of marker alleles is proportional
to r. In the transmission disequilibrium test at least one parent
is heterozygous for a marker allele associated with the disease.
Therefore, the marker allele has frequency r 5 0.5. The test
uses only affected offspring, controls are omitted, and the
transmission frequency from a marker heterozygote to af-
fected children is (1 1 r)y2 (8).

Location SD

Because alleles have been dichotomized by disease association,
we may simplify the notation by letting r̂

i
be the maximum

likelihood estimate of association between disease and the ith
marker locus with information Ki given in the Appendix.
Assuming that allelic association is declining from a higher
level in founders, association plausibly follows the Malecot
model for isolation by distance (1),

ri 5 ~1 2 L! M exp (2«di) 1 L [3]

The Malecot model was derived to describe kinship as a
function of distance between populations. We adapt it here to
represent distance between marker and disease locus. The
general characteristics of the Malecot model are illustrated in
Fig. 1. The parameter M reflects a monophyletic or polyphyl-
etic origin of susceptible haplotypes and is 1 if there is a unique
susceptible haplotype and marker mutation is negligible, and
less than 1 otherwise; « . 0 is dependent on the number of
generations during which the haplotypes have been approach-
ing equilibrium and the pressure to disrupt them by recombi-
nation, mutation, and perhaps selection; L is the bias due to
spurious association in the sample resulting from the con-
straint r̂i . 0, and di $ 0 is the distance between disease locus
and the ith marker locus (9). Departures from the model
including mutational heterogeneity, errors in the map, dispro-
portion between physical distance and recombination, failure
to report nonsignificant values of r, and neglect of associated
alleles other than the most significant can distort estimates of
M and L.

To apply the Malecot model we suppose that a small region
contains m ordered markers G1,.., Gm and perhaps a disease
locus D. The physical locations Sl,.., Sm of markers are assumed
to be known without error. It is convenient to take the distance
from marker i to the disease locus as di 5 di (Si 2 SD), where

di 5 H1 if Si $ SD

21 else [4]

so that the derivative of the composite likelihood takes the
appropriate sign. We assume that the Si are measured in Mb
from G1 (so that S1 5 0). The logarithmic likelihood of the
multiple pairwise observations summed over marker loci is

lnlk 5 2S Ki ~r̂i 2 ri!
2 y2 [5]

Goodness of fit is tested by x2 5 22 lnlk with m-n degrees of
freedom, where m is the number of marker loci and n is the
number of parameters estimated. The logarithm of odds (lod)
for allelic association is derived from the difference between

Table 1. Haplotype frequencies by population

Disease Population

Marker

TotalDisease-associated allele 1 Nonassociated allele 2

Disease allele Founders Q 0 Q
1 Equilibrium QR Q (1 2 R) Q

Cohort Qr 1 QR (1 2 r) (1 2 r) Q (1 2 R) Q
Case-control f11 5 vQ [r 1 R (1 2 r)]yS f12 5 v (1 2 r) Q (1 2 R)yS vQyS
Observed (counts) a b

Normal allele Founders R 2 Q 1 2 R 1 2 Q
2 Equilibrium R (1 2 Q) (1 2 R) (1 2 Q) 1 2 Q

Cohort (R 2 Q) r 1 R (1 2 Q) ( 1 2 r) (1 2 R) [r 1 (1 2 Q) (1 2 r)] 1 2 Q
Case-control f21 5 [(R 2 Q) r 1 R (1 2 Q) (1 2 r)]yS f22 5 (1 2 R) [r 1 (1 2 Q) (1 2 r)]yS (1 2 Q)yS
Observed (counts) c d

Total (except case-control) R 1 2 R 1

S 5 1 1 (v 2 1) Q
For the ith marker locus all parameters are subscripted by i. lnlk 5 a ln f11 1 b ln f12 1 c ln f21 1 d ln f22; Q 5 disease gene frequency; R 5

disease-associated marker allele frequency; v 5 sample enrichment factor; r 5 association.
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total xm
2 (Table 2) and xm2n

2 for the accepted model, which is
itself a x2 with n degrees of freedom (see Appendix). At this
point objection could be raised that the terms in a composite
likelihood (Eq. 5) are not independent but positively corre-
lated, a fact neglected in other multiple pairwise analyses of
allelic association. This tends to make the x2 test conservative,
given exact weights and an exact model. A nominally signifi-

cant x2 must be accommodated in the analysis, conventionally
by the empirical information we propose.

Maximum likelihood estimates of SD and the significant
nuisance parameters M, L, and « give conditional information
about location as KD 5 1yK21

SS, where K21
SS is the corre-

sponding element in the covariance matrix. To obtain a
maximum likelihood estimate of SD, efficient combination
with linkage as S KD SDyS KD is straightforward regardless of
which is more informative (5). If residual x2 is significant, the
corresponding KD should be divided by x2ydf. This allowance
for errors in the model is essential if evidence on linkage and
allelic association is to be pooled and a minimal region is to be
defined for positional cloning.

DF508—A Monophyletic Allele

Polyphyletic minor genes with a long history are a difficult and
perhaps insuperable problem for disease mapping by allelic
association unless the markers are within a candidate locus.
We therefore look first at monophyletic major genes, which
have a short history. The cystic fibrosis transmembrane con-
ductance regulator (CFTR) locus that determines cystic fibro-
sis is ‘‘the best example of the utility of linkage disequilibrium
in mapping disease genes’’ (10). The locus spans 250 kb
between the restriction fragment length polymorphisms
(RFLPs) D7S23 and D7S8 (11). On the map of Kerem et al.
(12) CFTR occupies the interval from 0.78 Mb to 1.03 Mb
distal to MET, with DF508 at position 0.88 (Table 2). Kerem
et al. reported 23 RFLPs defining 77 haplotypes with DF508
and 149 other haplotypes. To secure monophyletic origin we
merged non-DF508 alleles with the control sample. Tsui (13)
estimated the European gene frequency of DF508 as .014.
These observations imply v 5 (.986) (77)y(.014) (149) 5 36.4.
Other data have been reported on this interval. The ALLASS

FIG. 1. Association is described as a function of distance from
disease to marker locus in megabases and parameters, with « reflecting
the number of generations since the original mutation, M reflecting
mono- or polyphyletic origin of the mutation, and L representing bias
introduced by assuming at least one associated allele per marker.
Curves illustrate the decline of association with distance for a range of
values of « assuming M 5 0.75 and L 5 0.1.

Table 2. The CRTR region [12; 14]

Probe Enzyme Locus
Location

S, Mb
Association,

r̂
Information,

K x2

metD BanI MET 0 .5850 82 27.98
metD TaqI MET .009 .6125 10 3.79
metH TaqI MET .024 .4582 40 8.33
E6 TaqI D7S340 .524 .3410 23 2.69
E7 TaqI D7S340 .534 .4159 25 4.35
pH131 HinfI D7S122 .554 .6511 124 52.66
W3D1.4 HindIII D7S122 .569 .6440 118 48.86
H2.3A TaqI WNT2 .594 .8242 31 21.10
EG1.4 HincII WNT2 .614 .9740 66 62.24
EG1.4 BglII WNT2 .619 .9746 69 65.18
JG2E1 PstI D7S23 .654 1.0000 69 68.80
E2.6 MspI D7S23 .684 1.0000 43 43.07
H2.8a NcoI D7S399 .709 1.0000 55 55.46
E4.1 MspI D7S399 .744 1.0000 43 43.07
J44 XbaI D7S399 .779 1.0000 44 43.98
10-1X.6 AccI CFTR .859 .9793 103 98.65

IVS8CA1 CFTR .866 .9518 2,019 1,828.83
IVS8CA2 CFTR .866 .9814 1,956 1,884.05

10-1X.6 HaeIII CFTR .869 .9798 108 103.23
DF508 — CFTR .880 — — —
T6y20 MspI CFTR .889 .9394 20 17.81
H1.3 NcoI CFTR .899 1.0000 58 57.96

IVS17BTA CFTR .926 .9313 1,090 944.97
IVS17BCA CFTR .926 .9284 549 472.98

CE1.0 NdeI CFTR .949 1.000 6 6.49
J32 SacI D7S424 1.599 .2970 92 8.13
J3.11 MspI D7S8 1.669 .3653 69 9.16
J29 PvuII D7S426 1.769 .3729 77 10.74
Totals 6,988 5,994.57

x1
2 from 2 3 2 table for each marker.
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program gives for each dataset and its specific v an interme-
diate output with S, r̂, K, and x2 for each marker. These files
may be pooled, with partition of homogeneity x2 by dataset if
overall heterogeneity is significant. To illustrate this approach
we included the three intragenic microsatellites of Morral et al.
(14), of which IVS8CA has negatively associated alleles (14, 15,
16, 18) in addition to the positively associated ones (17, 23). By
our convention this generates two markers at the same loca-
tion. Estimates of association are consistent with surrounding
RFLPs (Table 2).

Association declines more rapidly distal to CFTR, with a
650-kb gap before the three most distal markers. For all 27
markers the best fit is at M 5 1, L 5 0, but a slightly smaller
value of M and larger value of L are not excluded (Table 3).
DF508 is positioned below its accepted location at 0.834 Mb
(Table 4), but the difference when DF508 is positioned at the
actual location (0.88) gives a x1

2 5 5.38, which is not significant
at the .001 level used by Terwilliger (6) or the .01 level of
Devlin et al. (15). Significance tests in multiple pairwise
mapping are approximate. To explore this further we made
two other analyses. When the three most proximal and most
distal markers are omitted, x1

2 is reduced to 3.77. When the
number of markers is reduced to 13 by adopting the 9 regions
of Kerem et al. (12), x1

2 is 2.75. The effect on the estimate of
location is very small and x2 values for the various hypotheses
and datasets correspond quite well with degrees of freedom. In
no analysis is the estimate of M less than 1 nor the estimate of
L significantly different from 0. We expect M to be 1 for a
monophyletic allele and L to be small. Because the expected
value of x1

2 is 1 on the null hypothesis, the bias induced by
taking r to be positive is about =2ypy= #K for diallelic
markers, where K# is the mean value of K per marker. In this
example the bias is .050. When M is 1 and « is estimated,
virtually identical values of x2 are obtained for L 5 0 and .050.

The lod Z1 for allelic association, calculated as in the
Appendix, is similar in the three analyses and overwhelmingly
significant (Table 4). It dwarfs the evidence on location from
linkage, which was necessary but not sufficient for positional
cloning. The interval between MET and D7S8 was too small
for reliable mapping by linkage at the time when CF was
recognized through recessive disease, hence the interest in
developing allelic association to localize the gene. By allelic
association Terwilliger (6) placed DF508 at 0.77 Mb, with a
13.8 support interval for x2 corresponding to a lod of 3 from
0.69 to 0.87, overlapping the CFTR locus but not including
DF508. Devlin et al. (15) localized DF508 at 0.81 Mb. Using a
subset of the Kerem sample, Xiong and Guo (16) estimated
error by their method as 75 kb. Using the same subset of the
data by this method gives an identical error. The capability of
ALLASS to pool different studies allows greater precision. For
the combined Kerem and Morral samples we place DF508 at
0.834 Mb (Table 4), within 50 kb of its physical location.

Discussion

In the location database ldb the sex-average distance between
MET and D7S8 is 0.8 cM (17), compared with a physical

distance of 1.67 Mb. The ratio z is twice as great as the rule of
thumb that equates 1 Mb to 1 cM. The estimated duration of
DF508 is 100 z«, or 209 generations, but this would be an
underestimate if the allele persisted for a long time in a small
population that later expanded. The highest frequency of
DF508 is found north of the Alps in the region settled by Celtic
and Germanic tribes, but substantial frequencies occur in
Turkey, Russia, and Israel, suggesting dispersal during the
Neolithic as proposed by Serre et al. (18). Our estimated
duration, although obtained by an entirely different method, is
in close agreement with their estimate of 100–200 generations.
Morral et al. (14) estimated a duration an order of magnitude
greater at 2,627 generations, assuming a gametic mutation rate
of 3.3 3 1024 or less. If the ancestral haplotype was 17–31-13,
the frequency of substitutions is .513, .330, and .021. Neglect-
ing multiple substitutions and recombination, the number of
generations at the assumed mutation rate is 1,555, 1,000, and
63. These estimates are variable, the gametic mutation rate is
uncertain, and neglect of recombination and selection may not
be justified. The highly significant value of « in the pooled data
is evidence that recombination is of greater magnitude than
mutation over the interval from MET to D7S8. Allelic asso-
ciation gives much less information about the age of DF508
than about its location.

Terwilliger (6) applied multiple pairwise analysis to condi-
tional likelihood when a single, positively associated allele is
specified a priori at each marker locus. He assumed that all
markers were positioned exactly on a genetic map that could
be equated to a physical map by the 1 cM 5 1 Mb rule of
thumb. The problem of testing for association and the resulting
bias L were not addressed, and negative associations were
excluded. Multiple associated alleles were considered in Table
3, which does not model approach to equilibrium under
recombination. Because no test was provided for goodness of
fit, there was no allowance for errors in the model.

Devlin et al. (15) drew attention to the fact that multiple
pairwise mapping (19) uses composite likelihood for which
useful mathematical theory has been developed (20). They
assume two alleles at each marker locus, but do not consider
how a larger number could be dichotomized. They introduce

Table 3. The DF508 allele of CFTR: Tests of hypotheses

Hypthesis

27 loci Medial 21 loci 13 regions

x2 df x2 df x2 df

M 5 1, L 5 0, S 5 .88 29.44 26 22.69 20 12.54 12
M 5 1, L 5 .050, S 5 .88 29.47 26 22.71 20 12.42 12
M 5 1, L 5 0 24.06 25 18.92 19 9.60 11
M 5 1, L 5 .050 24.20 25 18.99 19 9.58 11
M 5 1 24.06 24 18.92 18 9.58 10
M 5 .99 24.96 24 19.40 18 9.63 10

Parameters fixed by hypothesis are given. Values of estimated parameters («, S, and L) are not shown. x2, goodness of fit
to Malecot model with df (degrees of freedom).

Table 4. The DF508 allele of CFTR: Estimates of lods,
parameters, and information

27 loci Medial 21 loci 13 regions

m 27 21 13
Total xm

2 5,994.57 5,926.43 5,578.08
xm23

2 24.06 18.92 9.58
x3

2 for association 5,970.51 5,907.51 5,568.50
Z1 for association 1,292.70 1,279.02 1,205.43
SD 0.834 0.836 0.836
KD 5,660 5,119 4,365
« 1.019 0.986 1.051
s« 0.112 0.171 0.171

Parameters «, L, and S estimated, M 5 1. Z1, lod corresponding to
x3

2 for association; SD, estimated location of DF508; KD, information
about location.
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the approximation R 2 Q ; R and assume L 5 0, M 5 1 to
approximate « with no test for errors in the model. We allow
explicitly for case-control sampling and make minimal evolu-
tionary assumptions. Perhaps as a consequence, there is no
evidence of heterogeneity in this example.

Sham and Curtis (21) introduced Monte Carlo tests for
disease association with alleles at a single marker locus. They
recognized that alleles should be combined in a way that
preserves the evidence for association. Xiong and Guo (16)
developed ingenious composite likelihood methods that in-
corporate parameters for mutational age, population growth,
and recurrent mutation, unfortunately not known with any
precision. When the physical location is given, ad hoc assump-
tions can be introduced to improve the estimate from allelic
association. In the more relevant case of unspecified physical
location, there is little basis for choice of unknown parameters
that may make the estimate from allelic association better or
worse. Testing for associated alleles, the difference between
genetic and physical maps, and allowance for errors in the
model are not considered. They gave several examples in which
their method worked better than earlier methods. For the
CFTR locus their estimated error using 19 markers selected
from the reported 23 (12) was 75 kb. Using the same subset of
the data with our method we obtain exactly the same error.
With the full set of 27 markers the error is reduced to only 46
kb.

We have not yet attempted to map a disease locus in complex
inheritance, where marker gene frequencies in cases and
controls provide reduction to 2 3 2 tables but the locus cannot
be haplotyped. This must be a severe constraint on the power
of allelic association, as is the small interval in which allelic
association can sometimes be detected (2). Efficient combi-
nation with linkage allows the same family material to be used
for both tests. Although isolated cases are easier to collect than
familial cases, they are more likely to be phenocopies and are
usually less informative for linkage.

The lod score required for reliable detection of a candidate
locus, which is as much as 9 when each marker locus is tested
individually (22), is minimized by partitioning the genome into
regions of 10 or more megabases (Mb), within which only a
single candidate is sought. Then there is only one degree of
freedom for disease location, regardless of the total number of
alleles in the region. If markers are sufficiently dense, a
combination of few tests and high power justifies the canonical
lod of 3, and evidence from linkage and allelic association may
be used to give a single, optimal location and test of signifi-
cance. It remains to be seen how this approach performs with
multiple disease mutations and complex inheritance.

Appendix: Numerical Analysis

In Table 1 let Ug 5 ­ lnlky­g for g 5 Q, R, r, with
corresponding information matrix [kgg9] that reflects sampling
from the current population but not drift over generations.
Newton–Raphson iteration gives r̂. Under Ho the score for r
is U 5 (ad 2 bc) ny(a 1 c)(c 1 d) with conditional information
K 5 n (a 1 b) (b 1 d)y(a 1 c)(c 1 d), where n 5 a 1 b 1 c
1 d and r 5 UyK, and U2yK is the usual x2 for a 2 3 2
contingency table. An apparently significant x2 is reduced by

Yates’ correction, deducting ny2 from uad2bcu . Trial values
are Qo 5 (a 1 b)y[(v 2 1) (c 1 d) 1 n], r0 5 (ad 2 bc)y(a
1 b) d and R0 5 cy(c 1 d). At r̂ 5 1 only R is estimated.
Because of the instability of krr, the information Ki about r̂ for
the ith marker is taken as the lesser of K and x2yr̂2.

For Eq. 5 the information matrix is calculated by exact
second derivatives after convergence under a variable metric
algorithm (23).

To compute the lod Z1 with 1 degree of freedom that has the
same significance level as x2 with m degrees of freedom a
numerical recipe to obtain the corresponding probability r (23)
was modified to return the natural logarithm (ln p), and the
Hastings approximation to the corresponding normal deviate
xp was used with

t 5 Î22 ln ~py2! (ref. 24, equation 26.2.23).

Then Z1 5 xp
2y(2 ln10).
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