Skip to main content
British Journal of Pharmacology logoLink to British Journal of Pharmacology
. 1990 Aug;100(4):843–849. doi: 10.1111/j.1476-5381.1990.tb14102.x

The 'calcium sensitising' effects of ORG30029 in saponin- or Triton-skinned rat cardiac muscle.

D J Miller 1, D S Steele 1
PMCID: PMC1917589  PMID: 2207503

Abstract

1. The effects of a range of concentrations of ORG30029 (1 microM to 1 mM) were investigated on fully (Triton-treated) or selectively (saponin-treated) 'skinned' ventricle trabeculae from rat. The Ca-sensitivity was increased by 100 microM and amounted to a mean reduction in the Ca2+ necessary for half-maximal activation (1/Kapp) of 0.174 +/- 0.053 (mean +/- s.e.mean) pCa units. ORG30029 (50 microM) gave a smaller mean shift of 0.05 +/- 0.016 pCa units. A slight shallowing of the relationship between -log[Ca2+] (pCa) and steady-state tension was also generally found (mean Hill exponent reduction 0.37 +/- 0.28 at 100 microM). 2. The Ca-sensitizing action altered in a dose-dependent fashion. Judged by the ability to enhance force from an initial level of activation of 10-20% of maximum Ca-activated force (Cmax), the first significant effects occurred near 10 microM and continued to increase at 1 mM. 3. A small (3.7 +/- 1.1%) but consistent increase in Cmax was produced by ORG30029 at 100 microM. Much larger increases were produced by the drug at higher concentrations (up to 20-50% at 1 mM). 4. The consequence of these changes is that at levels of activation likely to occur in the heart, the absolute increase in force by 100 microM ORG30029 was considerable: it amounted to a 150-200% increase at a [Ca2+] producing 20% at Cmax. At this drug concentration virtually all the effect was due to Ca-sensitizing rather than increasing Cmax.(ABSTRACT TRUNCATED AT 250 WORDS)

Full text

PDF
843

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Brandt P. W., Cox R. N., Kawai M. Can the binding of Ca2+ to two regulatory sites on troponin C determine the steep pCa/tension relationship of skeletal muscle? Proc Natl Acad Sci U S A. 1980 Aug;77(8):4717–4720. doi: 10.1073/pnas.77.8.4717. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Chapman R. A., Miller D. J. Structure-activity relations for caffeine: a comparative study of the inotropic effects of the methylxanthines, imidazoles and related compounds on the frog's heart. J Physiol. 1974 Nov;242(3):615–634. doi: 10.1113/jphysiol.1974.sp010726. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Fabiato A. Myoplasmic free calcium concentration reached during the twitch of an intact isolated cardiac cell and during calcium-induced release of calcium from the sarcoplasmic reticulum of a skinned cardiac cell from the adult rat or rabbit ventricle. J Gen Physiol. 1981 Nov;78(5):457–497. doi: 10.1085/jgp.78.5.457. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Harrison S. M., Lamont C., Miller D. J. Hysteresis and the length dependence of calcium sensitivity in chemically skinned rat cardiac muscle. J Physiol. 1988 Jul;401:115–143. doi: 10.1113/jphysiol.1988.sp017154. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Hibberd M. G., Jewell B. R. Calcium- and length-dependent force production in rat ventricular muscle. J Physiol. 1982 Aug;329:527–540. doi: 10.1113/jphysiol.1982.sp014317. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Jaquet K., Heilmeyer L. M., Jr Influence of association and of positive inotropic drugs on calcium binding to cardiac troponin C. Biochem Biophys Res Commun. 1987 Jun 30;145(3):1390–1396. doi: 10.1016/0006-291x(87)91592-0. [DOI] [PubMed] [Google Scholar]
  7. Kitada Y., Narimatsu A., Matsumura N., Endo M. Contractile proteins: possible targets for the cardiotonic action of MCI-154, a novel cardiotonic agent? Eur J Pharmacol. 1987 Feb 10;134(2):229–231. doi: 10.1016/0014-2999(87)90170-1. [DOI] [PubMed] [Google Scholar]
  8. Miller D. J., Elder H. Y., Smith G. L. Ultrastructural and X-ray microanalytical studies of EGTA- and detergent-treated heart muscle. J Muscle Res Cell Motil. 1985 Oct;6(5):525–540. doi: 10.1007/BF00711913. [DOI] [PubMed] [Google Scholar]
  9. Miller D. J., Smith G. L. EGTA purity and the buffering of calcium ions in physiological solutions. Am J Physiol. 1984 Jan;246(1 Pt 1):C160–C166. doi: 10.1152/ajpcell.1984.246.1.C160. [DOI] [PubMed] [Google Scholar]
  10. Miller D. J., Smith G. L. The contractile behaviour of EGTA- and detergent-treated heart muscle. J Muscle Res Cell Motil. 1985 Oct;6(5):541–567. doi: 10.1007/BF00711914. [DOI] [PubMed] [Google Scholar]
  11. Moisescu D. G. Kinetics of reaction in calcium-activated skinned muscle fibres. Nature. 1976 Aug 12;262(5569):610–613. doi: 10.1038/262610a0. [DOI] [PubMed] [Google Scholar]
  12. Ney P., Schrör K. E-type prostaglandins but not iloprost inhibit platelet activating factor-induced generation of leukotriene B4 by human polymorphonuclear leukocytes. Br J Pharmacol. 1989 Jan;96(1):186–192. doi: 10.1111/j.1476-5381.1989.tb11799.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Röper J., Schwarz J. R. Heterogeneous distribution of fast and slow potassium channels in myelinated rat nerve fibres. J Physiol. 1989 Sep;416:93–110. doi: 10.1113/jphysiol.1989.sp017751. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Sellin L. C., Alajoutsijärvi A., Törnquist K., Fraser M., Pippuri A., Ojala I. Inhibition of cardiac phosphodiesterase III by the novel cardiotonic agent 6-[4-(4'-pyridyl)aminophenyl]-4,5-dihydro-3(2H)-pyridazinone hydrochloride. Arzneimittelforschung. 1988 Dec;38(12):1787–1789. [PubMed] [Google Scholar]
  15. Shiner J. S., Solaro R. J. The hill coefficient for the Ca2+-activation of striated muscle contraction. Biophys J. 1984 Oct;46(4):541–543. doi: 10.1016/S0006-3495(84)84051-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Smith G. L., Miller D. J. Potentiometric measurements of stoichiometric and apparent affinity constants of EGTA for protons and divalent ions including calcium. Biochim Biophys Acta. 1985 May 8;839(3):287–299. doi: 10.1016/0304-4165(85)90011-x. [DOI] [PubMed] [Google Scholar]
  17. Solaro R. J., Rüegg J. C. Stimulation of Ca++ binding and ATPase activity of dog cardiac myofibrils by AR-L 115BS, a novel cardiotonic agent. Circ Res. 1982 Sep;51(3):290–294. doi: 10.1161/01.res.51.3.290. [DOI] [PubMed] [Google Scholar]
  18. Steele D. S., Smith G. L., Miller D. J. The effects of taurine on Ca2+ uptake by the sarcoplasmic reticulum and Ca2+ sensitivity of chemically skinned rat heart. J Physiol. 1990 Mar;422:499–511. doi: 10.1113/jphysiol.1990.sp017997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Wendt I. R., Stephenson D. G. Effects of caffeine on Ca-activated force production in skinned cardiac and skeletal muscle fibres of the rat. Pflugers Arch. 1983 Aug;398(3):210–216. doi: 10.1007/BF00657153. [DOI] [PubMed] [Google Scholar]
  20. Wetzel B., Hauel N. New cardiotonic agents--a promising approach for treatment of heart failure. Trends Pharmacol Sci. 1988 May;9(5):166–170. doi: 10.1016/0165-6147(88)90031-4. [DOI] [PubMed] [Google Scholar]
  21. de Beer E. L., Gründeman R. L., Wilhelm A. J., Caljouw C. J., Klepper D., Schiereck P. Caffeine suppresses length dependency of Ca2+ sensitivity of skinned striated muscle. Am J Physiol. 1988 Apr;254(4 Pt 1):C491–C497. doi: 10.1152/ajpcell.1988.254.4.C491. [DOI] [PubMed] [Google Scholar]
  22. van Meel J. C. Effects of some cardiotonic agents on contractility of skinned fibers from mammalian heart. Arzneimittelforschung. 1987 Jun;37(6):679–682. [PubMed] [Google Scholar]

Articles from British Journal of Pharmacology are provided here courtesy of The British Pharmacological Society

RESOURCES