Skip to main content
British Journal of Pharmacology logoLink to British Journal of Pharmacology
. 1990 Sep;101(1):77–80. doi: 10.1111/j.1476-5381.1990.tb12092.x

The effect of peptidase inhibitors on bradykinin-induced bronchoconstriction in guinea-pigs in vivo.

M Ichinose 1, P J Barnes 1
PMCID: PMC1917661  PMID: 2282470

Abstract

1. Bradykinin (BK) instilled directly into the airway lumen caused bronchoconstriction in anaesthetized, mechanically ventilated guinea-pigs in the presence of propranolol (1 mg kg-1 i.v.). The geometric mean dose of BK required to produce 100% increase in airway opening pressure (PD100) was 22.9 nmol (95% c.i. 11.7-44.6 nmol). 2. The dose-response curve for the effect of instilled BK was significantly shifted to the left by the angiotensin converting enzyme (ACE) inhibitor, captopril (5 and 50 nmol instillation, PD100 = 3.0, 95% c.i. 0.98-8.9, and 2.0 nmol, 95% c.i. 0.65-6.2 nmol, respectively). 3. The neutral endopeptidase (NEP) inhibitor, phosphoramidon (5 and 50 nmol instillation) also shifted the dose-response curve for the effect of instilled BK; the PD100 values = 2.2 (95% c.i. 0.40-11.7) and 1.8 nmol (95% c.i. 0.87-3.5 nmol), respectively. 4. After pretreatment with captopril (50 nmol) and phosphoramidon (50 nmol) in combination, the dose-response curve for the effect of instilled BK (PD100 = 1.1 nmol, 95% c.i. 0.37-3.2 nmol) was similar to that obtained in the presence of each inhibitor used alone. 5. The kinase I inhibitor, DL-2-mercaptomethyl-3-guanidinoethylthiopropionic acid (50 nmol instillation) failed to alter the dose-response curve to instilled BK (PD100 = 14.6 nmol, 95% c.i. 6.7-32.0 nmol). 6. These data suggest that both ACE and NEP degrade BK in the airway lumen, but that kininase I is not involved.

Full text

PDF
77

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abe K., Watanabe N., Kumagai N., Mouri T., Seki T., Yoshinaga K. Circulating kinin in patients with bronchial asthma. Experientia. 1967 Aug 15;23(8):626–627. doi: 10.1007/BF02144161. [DOI] [PubMed] [Google Scholar]
  2. Barnes P. J., Chung K. F., Page C. P. Inflammatory mediators and asthma. Pharmacol Rev. 1988 Mar;40(1):49–84. [PubMed] [Google Scholar]
  3. Christiansen S. C., Proud D., Cochrane C. G. Detection of tissue kallikrein in the bronchoalveolar lavage fluid of asthmatic subjects. J Clin Invest. 1987 Jan;79(1):188–197. doi: 10.1172/JCI112782. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Dusser D. J., Nadel J. A., Sekizawa K., Graf P. D., Borson D. B. Neutral endopeptidase and angiotensin converting enzyme inhibitors potentiate kinin-induced contraction of ferret trachea. J Pharmacol Exp Ther. 1988 Feb;244(2):531–536. [PubMed] [Google Scholar]
  5. Fuller R. W., Choudry N. B. Increased cough reflex associated with angiotensin converting enzyme inhibitor cough. Br Med J (Clin Res Ed) 1987 Oct 24;295(6605):1025–1026. doi: 10.1136/bmj.295.6605.1025-a. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Fuller R. W., Dixon C. M., Cuss F. M., Barnes P. J. Bradykinin-induced bronchoconstriction in humans. Mode of action. Am Rev Respir Dis. 1987 Jan;135(1):176–180. doi: 10.1164/arrd.1987.135.1.176. [DOI] [PubMed] [Google Scholar]
  7. Ichinose M., Barnes P. J. A potassium channel activator modulates both excitatory noncholinergic and cholinergic neurotransmission in guinea pig airways. J Pharmacol Exp Ther. 1990 Mar;252(3):1207–1212. [PubMed] [Google Scholar]
  8. Johnson A. R., Ashton J., Schulz W. W., Erdös E. G. Neutral metalloendopeptidase in human lung tissue and cultured cells. Am Rev Respir Dis. 1985 Sep;132(3):564–568. doi: 10.1164/arrd.1985.132.3.564. [DOI] [PubMed] [Google Scholar]
  9. Kaufman M. P., Coleridge H. M., Coleridge J. C., Baker D. G. Bradykinin stimulates afferent vagal C-fibers in intrapulmonary airways of dogs. J Appl Physiol Respir Environ Exerc Physiol. 1980 Mar;48(3):511–517. doi: 10.1152/jappl.1980.48.3.511. [DOI] [PubMed] [Google Scholar]
  10. Lewis G. P., Reit E. The action of angiotensin and bradykinin on the superior cervical ganglion of the cat. J Physiol. 1965 Aug;179(3):538–553. doi: 10.1113/jphysiol.1965.sp007679. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Lötvall J. O., Skoogh B. E., Barnes P. J., Chung K. F. Effects of aerosolised substance P on lung resistance in guinea-pigs: a comparison between inhibition of neutral endopeptidase and angiotensin-converting enzyme. Br J Pharmacol. 1990 May;100(1):69–72. doi: 10.1111/j.1476-5381.1990.tb12053.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Newball H. H., Keiser H. R., Pisano J. J. Bradykinin and human airways. Respir Physiol. 1975 Jul;24(2):139–146. doi: 10.1016/0034-5687(75)90108-5. [DOI] [PubMed] [Google Scholar]
  13. Piper P. J., Collier H. O. Release of catecholamines in the guinea-pig by substances involved in anaphylaxis. Nature. 1967 Feb 25;213(5078):838–840. doi: 10.1038/213838a0. [DOI] [PubMed] [Google Scholar]
  14. Proud D., Kaplan A. P. Kinin formation: mechanisms and role in inflammatory disorders. Annu Rev Immunol. 1988;6:49–83. doi: 10.1146/annurev.iy.06.040188.000405. [DOI] [PubMed] [Google Scholar]
  15. Proud D., Siekierski E. S., Bailey G. S. Identification of human lung mast cell kininogenase as tryptase and relevance of tryptase kininogenase activity. Biochem Pharmacol. 1988 Apr 15;37(8):1473–1480. doi: 10.1016/0006-2952(88)90008-1. [DOI] [PubMed] [Google Scholar]
  16. Regoli D., Barabé J. Pharmacology of bradykinin and related kinins. Pharmacol Rev. 1980 Mar;32(1):1–46. [PubMed] [Google Scholar]
  17. Saria A., Martling C. R., Yan Z., Theodorsson-Norheim E., Gamse R., Lundberg J. M. Release of multiple tachykinins from capsaicin-sensitive sensory nerves in the lung by bradykinin, histamine, dimethylphenyl piperazinium, and vagal nerve stimulation. Am Rev Respir Dis. 1988 Jun;137(6):1330–1335. doi: 10.1164/ajrccm/137.6.1330. [DOI] [PubMed] [Google Scholar]
  18. Sekizawa K., Tamaoki J., Graf P. D., Basbaum C. B., Borson D. B., Nadel J. A. Enkephalinase inhibitor potentiates mammalian tachykinin-induced contraction in ferret trachea. J Pharmacol Exp Ther. 1987 Dec;243(3):1211–1217. [PubMed] [Google Scholar]
  19. Sekizawa K., Tamaoki J., Nadel J. A., Borson D. B. Enkephalinase inhibitor potentiates substance P- and electrically induced contraction in ferret trachea. J Appl Physiol (1985) 1987 Oct;63(4):1401–1405. doi: 10.1152/jappl.1987.63.4.1401. [DOI] [PubMed] [Google Scholar]
  20. Shore S. A., Stimler-Gerard N. P., Coats S. R., Drazen J. M. Substance P-induced bronchoconstriction in the guinea pig. Enhancement by inhibitors of neutral metalloendopeptidase and angiotensin-converting enzyme. Am Rev Respir Dis. 1988 Feb;137(2):331–336. doi: 10.1164/ajrccm/137.2.331. [DOI] [PubMed] [Google Scholar]
  21. Simonsson B. G., Skoogh B. E., Bergh N. P., Andersson R., Svedmyr N. In vivo and in vitro effect of bradykinin on bronchial motor tone in normal subjects and patients with airways obstruction. Respiration. 1973;30(4):378–388. doi: 10.1159/000193051. [DOI] [PubMed] [Google Scholar]
  22. Yang H. Y., Erdös E. G. Second kininase in human blood plasma. Nature. 1967 Sep 23;215(5108):1402–1403. doi: 10.1038/2151402a0. [DOI] [PubMed] [Google Scholar]

Articles from British Journal of Pharmacology are provided here courtesy of The British Pharmacological Society

RESOURCES