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This article presents an interpretation of autoshaping, and positive and negative automaintenance,
based on a neural-network model. The model makes no distinction between operant and respondent
learning mechanisms, and takes into account knowledge of hippocampal and dopaminergic systems.
Four simulations were run, each one using an A-B-A design and four instances of feedfoward
architectures. In A, networks received a positive contingency between inputs that simulated
a conditioned stimulus (CS) and an input that simulated an unconditioned stimulus (US). Responding
was simulated as an output activation that was neither elicited by nor required for the US. B was an
omission-training procedure. Response directedness was defined as sensory feedback from responding,
simulated as a dependence of other inputs on responding. In Simulation 1, the phenomena were
simulated with a fully connected architecture and maximally intense response feedback. The other
simulations used a partially connected architecture without competition between CS and response
feedback. In Simulation 2, a maximally intense feedback resulted in substantial autoshaping and
automaintenance. In Simulation 3, eliminating response feedback interfered substantially with
autoshaping and automaintenance. In Simulation 4, intermediate autoshaping and automaintenance
resulted from an intermediate response feedback. Implications for the operant–respondent distinction
and the behavior–neuroscience relation are discussed.
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_______________________________________________________________________________

This article is an exercise in scientific
interpretation, the use of principles derived
through experimental analysis of certain phe-
nomena to account for other, typically more
complex phenomena. In this sense, it is like
Skinner’s (1957) Verbal behavior, where princi-
ples derived through experimental analyses of
relatively simple behaviors (key pecking in
pigeons and bar pressing in rats) were used to
account for more complex ones (speaking and
writing in humans). The present interpreta-
tion, however, differs in three respects.

First, the interpretation targets two behav-
ioral phenomena that were discovered
through experimental analysis of nonhuman
behavior, namely autoshaping and automain-
tenance. They have received much attention
largely because of their implications for the
operant–respondent distinction, a distinction
that has been central in conditioning research

since it was drawn by Skinner (1935, 1937,
1938; cf. Konorski & Miller, 1937a, b; Miller &
Konorski, 1928). Second, the principles to
which the interpretation appeals have been
derived through independent experimental
analyses of the structure and functioning of
nervous systems at the cellular and anatomical
levels. In this sense, it is a neural interpreta-
tion. Third, the interpretation takes the form
of computer simulations that are based on
a mathematical formulation of such principles.
In this sense, it is a formal interpretation
(Donahoe & Palmer, 1994).

The primary aim of this exercise is to show
that a neural-network model with the following
two interrelated features can simulate auto-
shaping and automaintenance. 1) It makes no
distinction between operant and respondent
learning mechanisms, nor does it reduce
either category to the other, although it makes
a distinction between types of responding and
types of contingencies. 2) The learning mech-
anism was not inferred from observed perfor-
mance, but informed by independent knowl-
edge from neuroscience. In the first section, I
briefly review highlights of the literature on
autoshaping and automaintenance and their
relevance for the operant–respondent distinc-
tion. The second section is devoted to the
basic aspects of the model used, with an
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elaboration of the aforementioned features.
The simulations are described in the third
section. I discuss the implications for the
operant–respondent distinction and the be-
havior–neuroscience relation in the last sec-
tion.

THE PHENOMENA

Autoshaping (AS) was first reported by
Brown and Jenkins (1968). Food-deprived
pigeons were given pairings of a keylight
followed a few seconds later by access to the
food magazine. After a number of pairings,
pigeons pecked the illuminated key. The first
key peck caused the procedure to switch to
a standard operant-conditioning schedule
where key pecks gave access to the food
magazine. Brown and Jenkins defined AS as
the occurrence of the first key peck, but other
acquisition criteria can be used (e.g., three out
of four consecutive trials with at least one key
peck; see Gibbon & Balsam, 1981). AS has
been observed in different species and with
different types of responses and reinforcers
(e.g., Gamzu & Schwam, 1974; Jenkins &
Moore, 1973; Sidman & Fletcher, 1968; Smith
& Smith, 1971; Squier, 1969; Stiers & Silber-
berg, 1974; Timberlake & Grant, 1975; Wasser-
man, 1973).

The implications of AS for the operant–
respondent distinction were immediately ap-
parent. AS seems to blur the distinction, for it
exemplifies the acquisition of a prototypical
operant response through a respondent-con-
ditioning procedure (Hearst, 1975; Pear &
Eldridge, 1984; Schwartz & Gamzu, 1977;
Tomie, Brooks, & Zito, 1989). Key pecking is
a prototypical operant response in three
senses.

First, it is directed in that it involves
approaching and making physical contact
with an identifiable part of the environment.
In the autoshaped key peck, that part is the
source of the light (viz., the response key).
This feature is the reason behind the alterna-
tive label ‘‘sign-tracking’’ (Hearst & Jenkins,
1974). The defining characteristic of this
feature for operant responding has been
challenged (e.g., Pear & Legris, 1987). How-
ever, it remains a defining feature of auto-
shaped responding. Second, the response is
emitted in that it is not elicited in an obvious
way by any stimulus, especially the reinforcer,

grain (although grain appears to elicit grain
pecking in birds). Third, the response is
modifiable by consequences. AS shows that
a response with these features can be reliably
acquired in a procedure where the response is
neither elicited by nor required for the
reinforcer.

The question thus arises as to whether
autoshaped key pecking is operant, respon-
dent, or both. The evidence strongly suggests
that AS is a respondent-conditioning phenom-
enon. According to this account, the keylight
functions as a conditioned stimulus (CS) and
the food as an unconditioned stimulus (US).
AS has been shown not to occur (or to occur
very weakly) in zero- or negative-contingencies
between CS and US (e.g., Gamzu & Williams,
1973), and to depend on temporal variables
such as the trial-duration and the intertrial
interval, in a way comparable to respondent
conditioning of autonomic responses (e.g.,
Gibbon & Balsam, 1981; Jenkins, Barnes, &
Barrera, 1981; Ricci, 1973; Terrace, Gibbon,
Farrell, & Baldock, 1975). Also, the topogra-
phy of the autoshaped response closely resem-
bles the topography of the response specifi-
cally elicited by the US (e.g., Jenkins & Moore,
1973).

Some authors (e.g., Gormezano & Kehoe,
1975) have argued that the unconditioned
response (UR) is not directly measured in AS,
which makes the labels ‘‘US’’ and ‘‘UR’’
misnomers. They thus have rejected AS as
a clear case of respondent conditioning.
Others (e.g., Herrnstein & Loveland, 1972;
Hursh, Navarick, & Fantino, 1974) have
reached a similar conclusion, but based on
the directed character of autoshaped re-
sponses. According to the basic argument, AS
is not a clear case of respondent conditioning
because the former involves directed re-
sponses whereas the latter involves autonomic
responses, which are nondirected in character.
The problem with this argument is that it
neglects the fact that directed responses also
have been observed in classic respondent
conditioning of autonomic responses. For
instance, Pavlov (1941) observed that when
the CS was a light and its source (a bulb) was
within reach of the subjects (dogs), they licked
the source (see also Pavlov, 1955; Zener,
1937).

Further doubts on the respondent character
of AS have appealed to the fact that, pre-
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sumably in contrast to respondent condition-
ing of autonomic responses, AS seems to be
relatively insensitive to intermittent reinforce-
ment (e.g., Gamzu & Williams, 1971, 1973;
Gonzalez, 1973, 1974; Schwartz & Williams,
1972a). However, it is unclear that intermittent
reinforcement is harmful to all respondent
conditioning of autonomic responses (Gibbs,
Latham, & Gormezano, 1978; Gormezano &
Moore, 1969).

The uncertainty increased with the discovery
of automaintenance. Two sorts of automainte-
nance have been identified. Positive automain-
tenance (PAM) is the maintenance of an
autoshaped response under the same condi-
tions in which it was autoshaped (e.g., Gonza-
lez, 1974). In contrast to Brown and Jenkins’
(1968) procedure, the first response does not
produce the reinforcer. Instead, light–food
pairings keep occurring, independently of the
organism’s behavior. PAM suggests that stim-
ulus–reinforcer relations also are sufficient to
maintain directed responding. However, re-
sponses in PAM are accidentally followed by
the reinforcer, which introduces a positive
response–reinforcer contingency that may also
play a role.

The role of response–reinforcer relations in
autoshaped key pecking has been assessed
through negative automaintenance (NAM),
the reliable maintenance of an autoshaped
response in an omission-training procedure
(Williams & Williams, 1969). In its simplest
form, the procedure gives the reinforcer at
the end of each trial unless the animal
responds. If the animal responds, the trial
ends without reinforcement. Despite this
negative response–reinforcer contingency, re-
sponding was maintained, albeit at a reduced
level (cf. Hursh et al., 1974; Sanabria, Sitomer,
& Killeen, 2006). Autoshaped key pecking
thus seems to be sensitive to response–re-
inforcer relations. However, stimulus–reinforc-
er relations are still considered to play a major
role (see also Myerson, Myerson, & Parker,
1979; Schwartz & Williams, 1972a, b; Wessells,
1974).

BASICS OF THE MODEL

The neuroscientific rationale and mathe-
matical details of the model have been
discussed in other papers (Burgos, 2001,
2003, 2005; Burgos & Donahoe, 2000; Burgos

& Murillo, in press; Donahoe, 2002; Donahoe
& Burgos, 1999, 2000; Donahoe, Burgos, &
Palmer, 1993; Donahoe & Palmer, 1994;
Donahoe, Palmer, & Burgos, 1997a, b). Ac-
cordingly, I shall focus on those aspects that
are most directly relevant to the present study.
In particular, I shall clarify the sense in which
the model makes no distinction between
operant and respondent learning mech-
anisms.

A neural network is a set of interconnected
neural processing elements or units. A unit is
a sort of abstract neuron that can be activated
through a mechanism that is described by an
activation function. In the present model,
activations are real values between 0 and 1,
and can be neurally interpreted as the
probability of occurrence of an action poten-
tial. A connection is the theoretical analogue
of a synapse or small group of synapses, and it
consists of a presynaptic unit and a postsynaptic
unit. The strength of a connection is repre-
sented numerically by a weight that represents
the efficacy with which the presynaptic unit
can activate the postsynaptic unit(s) to which it
is connected. In the present model, a weight is
a real number between 0 and 1. It can be
neurally interpreted as the proportion of
postsynaptic receptors that are controlled by
a presynaptic process. In both functions, time
is divided into discrete time steps (ts) of an
undefined duration.

Weights change through a learning function
that includes two free parameters that deter-
mine rate of change (one for increments, one
for decrements), the activation of the presynap-
tic unit, the activation of the postsynaptic unit,
and a signal that arises from certain specialized
units in the network (ca1 and vta; see below).
The function also includes the amount of weight
available on the postsynaptic unit. This amount
is proportional to the amount of weight already
gained by other presynaptic units that are
connected to the same postsynaptic unit. The
more weight a presynaptic unit gains, the less
weight will be available to be gained by other
presynaptic units that are connected to the same
postsynaptic unit. The present learning func-
tion, then, is competitive in character. Pre-
synaptic units connected to a certain postsynap-
tic unit compete for a limited amount of weight
available on the postsynaptic unit.

Models of conditioning typically have been
developed following a top-down strategy (e.g.,

AUTOSHAPING AND AUTOMAINTENANCE IN NEURAL NETWORKS 117



Gibbon & Balsam, 1981; Miller & Matzel, 1988;
Rescorla & Wagner, 1972; Wagner, 1981). This
strategy begins with processes that are inferred
from observed performance, independent of
the biological structure and functioning of the
brain. The processes are postulated to involve
some sort of relationship (competition or
comparison) among hypothetical entities (as-
sociative strength, expectancy) that are used to
explain known phenomena and predict novel
ones. The correspondence between the pro-
cesses and the biological structure of the brain
is not integral to the construction of the
model. That is to say, the models are not
informed by neuroscientific knowledge about
the biological structure and functioning of
brains. In some cases (e.g., Grossberg, 1968;
Meeter, Myers, & Gluck, 2005; Schultz, 2002;
Wagner & Donegan, 1989), a correspondence
is sought after the model has been built. The
logic of such models, however, remains top-
down.

In contrast, the present model was de-
veloped following a bottom-up strategy in
that it involved drawing on independent
knowledge from neuroscience about verte-
brate brains at the cellular, microcircuit, and
anatomical levels. Hence, some correspon-
dence with the biological structure and
functioning of the brain was integral to the
construction of the model. Conditioning
phenomena are thus explained as emergent
properties of artificial systems whose parts
function and relate in ways that are consis-
tent with that knowledge. The learning
function, in particular, is informed by knowl-
edge about hippocampal and dopaminergic
systems, which have been shown to be
involved in conditioning (e.g., Berger, Alger,
& Thompson, 1976; Christian & Thompson,
2003; Pan, Schmidt, Wickens, & Hyland,
2005; Power, Thompson, Moyer, & Dister-
hoft, 1997; Schultz, Dayan, & Montague,
1997). This feature distinguishes the model
from others that do not take such knowledge
into account (e.g., Kehoe, 1988; Sutton &
Barto, 1981), or that do but focus only on
one system (e.g., Meeter, Myers, & Gluck,
2005; Schmajuk & DiCarlo, 1992; Schultz,
2002; Zipser, 1986).

The model makes no distinction between
operant and respondent learning mechanisms
in that nothing in its learning function
corresponds to any of the standard ways of

making the distinction. The two descriptive
ways date to Skinner (1935). One way refers
to the distinction between elicited and emit-
ted responses. The other refers to the
distinction between stimulus–stimulus and
response–outcome contingencies. Nothing in
the learning function corresponds to either
distinction. As I argue below, the model
makes these distinctions, but not at the
mechanism level of the learning function.
Rather, they are made at the system or
network level.

There also is a theoretical distinction that
refers to different types of associations
between internal representations of events.
One type is postulated to be between
stimulus representations (e.g., Gibbon &
Balsam, 1981; Miller & Matzel, 1988; Rescorla
& Wagner, 1972; Wagner, 1981), the other
between response and outcome representa-
tions (e.g., Colwill & Rescorla, 1986, 1990;
Rescorla, 1991). The former are supposed to
result from Pavlovian contingencies, the
latter from operant contingencies. Nothing
in the learning function corresponds to such
a distinction either. Nor does anything in
a network correspond to the distinction
either. To be sure, a connection in a network
is a sort of associative bond. Also, one could
speak of stimulus and response representa-
tions in a network. However, no single
connection in a network in this model
corresponds to an elementary stimulus–stim-
ulus or response–outcome bond. In order to
appreciate this and how the model makes
the descriptive distinctions, consider Fig-
ure 1, which shows a typical network in this
model.

Units are represented as circles and connec-
tions as arrows. Thin arrows represent connec-
tions that are modifiable through the learning
function. Thick arrows represent what are
initially maximally strong, unmodifiable con-
nections. The units are organized into layers in
a feedforward manner, where the activations
propagate in only one direction, from one
layer to the next (left to right in the diagram).
Here, the model assumes no logical equiva-
lence between a network and its constituting
parts (units and connections), just as there is
no logical equivalence between a whole organ-
ism and its neurons and synapses. Hence, what
applies to a whole system (whether an organ-
ism or an artificial neural network) does not
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necessarily apply to its parts. The descriptive
operant–respondent distinctions were origi-
nally made in reference to whole organisms,
not their neurons and synapses. The model
seeks to be consistent with this usage by
making the distinctions at the level of the
whole network, not its units and connections.
In this manner, the model avoids the so-called
‘‘mereological fallacy,’’ the assumption that
what applies to the whole necessarily applies to
its parts (see Bechtel, 2005; Bennett & Hacker,
2003).

The input (leftmost) layer consists of units
labeled as I1 through I4, whose activations
represent environmental stimuli. Activations
of I1, I2, and/or I3 represent sensory–extero-
ceptive stimuli like lights and sounds, typically
used as CSs in respondent conditioning and as
discriminative stimuli in operant conditioning
(see Simulations for an explanation of the
label ‘‘R feedback’’). Activations of I4 repre-
sent the occurrence of a US or primary
reinforcer, like food, water, or shock. Strictly
speaking, input activations are not computed
according to the activation function. Rather,
they are assigned according to a training

protocol that simulates the kinds of proce-
dures used in conditioning studies.

Units I1, I2, and I3 connect to the sensory-
association (sa) units, which simulate the kind
of integration found in secondary sensory
areas. These units, in turn, connect to ca1,
a hippocampal-like change detector that is the
source of a signal that influences changes in
all the weights of the input–sa and sa–ca1
connections. In this sense, the signal is
diffuse. Its diffuse character is represented
in the diagram by the grey arrows and areas
arising from the ca1 unit. The signal is
defined as a temporal difference between
the activations of ca1 in successive time steps
(ts), for which it also is a discrepancy signal.
The sa units also are connected to the motor-
association (ma) units, which represent the
kinds of neurons found in secondary motor
areas.

The ma units connect to vta, a dopaminergic-
like unit that is the source of a signal that
influences changes in the sa–ma, ma–vta, and
ma–output weights. Like the signal arising
from ca1, the vta signal is a diffuse discrepancy.
Its diffuse character is represented in the
diagram by the grey arrows and areas arising
from the vta unit. At any ts t, vta can be
activated in one of two ways. If the activation of
I4 at t is above zero, vta is activated at t with the
same level as I4. Otherwise, vta is activated by
I1, I2, and/or I3 via the sa and ma units,
according to the activation function. Substan-
tial activations of vta by the ma units thus
require learning in that they occur only after
the appropriate connection weights have in-
creased. Typically, this increase obtains in
a training protocol that simulates the kinds
of procedures that have been observed to
promote excitatory conditioning in natural
systems.

The ma units also connect to the output
units, labelled as R and CR/UR (rightmost
layer). The activations of these units represent
the system’s overt responding. Like vta, CR/UR
also receives an initially maximally strong and
unchangeable connection from I4. Like vta,
CR/UR can be activated in one of two ways at
any ts t. If the activation of I4 is above zero at t,
CR/UR is activated at t with the same level as I4.
This activation represents elicited or uncondi-
tioned responding. Otherwise, CR/UR is acti-
vated by I1, I2, and/or I3, via the sa and ma
units, according to the activation function.

Fig. 1. A typical network architecture. Units labeled as
I1, I2, and I3 are input units whose activations represent the
kinds of exteroceptive stimuli used in respondent condi-
tioning as CSs (e.g., light and tones). Reinforcement (US
occurrence) is represented by an activation of the input
unit labeled as I4. The dashed arrows labeled as ‘‘CS’’, ‘‘R
feedback’’, and ‘‘US’’ represent the input activations that
defined the stimuli used in Simulation 1. Thin black
arrows represent variable connections whose weights
changed according to a learning function. Thick black
arrows represent maximally strong unmodifiable connec-
tions. Gray arrows and areas represent the signals that
influence weight changes. Responding is represented by
the activation of the output units, labeled as R and CR/UR.
The other labels denote: sa: sensory-association; ma:
motor-association; ca1: Cornu Ammon 1; vta: ventral
tegmental area.
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This activation represents conditioned re-
sponding; hence the label ‘‘CR/UR’’. Like
vta, substantial conditioned activations of CR/
UR require learning in that they occur only
after the appropriate weights have increased.
Such an increase, too, results from exposure to
a training protocol that simulates the kinds of
procedures that lead to excitatory condition-
ing in natural systems.

The R unit, in contrast, can only be activated
conditionally. Such activation represents emit-
ted responding in that it is not elicited by the
US (i.e., not activated by I4) and requires
learning to occur at substantial levels. In this
model, then, the distinction between emitted
and elicited responding is made in terms of
the distinction between R activations and
unconditional CR/UR activations, respectively.
Again, this distinction is made at the network
level, between types of output activations, not
between learning mechanisms or aspects of
the learning mechanism. Hence, the distinc-
tion is nowhere to be found in the learning
function.

The model makes the distinction between
respondent and operant contingencies in
terms of two different conditions of activation
of I4, which define two types of training
protocols. In respondent protocols, I4 activa-
tions depend only on the activations of the
other input units, regardless of the activation
of R. In operant or response–outcome proto-
cols, I4 activations depend also on R activa-
tions. In this kind of protocol, I4 activations
may additionally depend on the activations of
the other input units, in order to simulate
discriminated or occasion-setting procedures.
This distinction, too, is made at the network
level, not at the learning-mechanism level.
Therefore, the distinction is not part of the
learning function either.

SIMULATIONS

The primary main aim of this exercise is to
include AS, PAM, and NAM in the range of
behavioral phenomena that a model with the
above features can simulate. Simulation 1 is
the basic demonstration of how the model
simulates the phenomena. The rest of the
simulations explore two more specific aspects.
One aspect is the role of directedness as
a defining feature of autoshaped responding.
The other is how this role is affected by the

network architecture. The exercise is only
a starting point, so the simulations are very
simple. In each simulation, four neural net-
works and a within-subject design that approx-
imates the A–B–A research design were used.
More complex simulations are possible, but
they are not the best starting points and thus
better left for further studies. In order to have
some continuity with previous studies with this
model, and rely as little as possible on para-
metric manipulation, all of the model’s free
parameters were the same as those used in
previous simulations. Also, in agreement with
most simulation studies with this model, initial
connection weights were set to 0.01 (cf.
Burgos, 2003, 2005).

Simulation 1

Four instances of the architecture depicted
in Figure 1 were used. This architecture is the
one most used in previous research with this
model (but see the other simulations). All
instances were first given 300 trials of a CS–US
contingency, where the CS was defined as the
activation of I1 at a level of 1.0 for 8 ts (dashed
arrow labeled as ‘‘CS’’ in Figure 1). The US
was defined as the activation of the I4 unit also
at a level of 1.0 at the last CS ts (dashed arrow
labeled as ‘‘US’’ in Figure 1). The CS–US
interval, then, was 7 ts. As in most previous
simulations with this model, for convenience
the intertrial interval was not explicitly simu-
lated (cf. Burgos, 2005). Instead, it was
assumed to be long enough for all activations
to decrease to a near-zero level.

The networks were assumed to dwell in an
extremely simple environment, consisting of
only one identifiable part with which they
could make physical contact and function like
an operandum. Hence, there could only be
one directed response. No other identifiable
part of a standard operant-conditioning cham-
ber, like a food magazine, was simulated.
Rather, the US was supposed to be directly
administered to, not actively consumed by, the
networks. In order to simulate active consump-
tion of the primary reinforcer from a food
magazine, a more complex simulation would
be required. But as a starting point, I preferred
to keep the study as simple as possible.

Response directedness was defined as fol-
lows. Whenever the activation of R was equal to
or greater than 0.5, input units I2 and I3 were
activated at a level of 1.0 (dashed arrows
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labeled as ‘‘R feedback’’ in Figure 1). Other-
wise, I2 and I3 were not activated. R activations
below 0.5 thus represented undirected re-
sponding such as orientation toward the key
(e.g., Wessells, 1974). This criterion implies
that the same neurons are involved in directed
and undirected responding, which seems
implausible. However, the criterion is only
a simplification, not a theoretical assertion
about the functioning of natural nervous
systems.

The above definition of response directed-
ness was guided by two assumptions (e.g.,
Dinsmoor, 1985, 1995, 2001; Notterman &
Mintz, 1965; Wyckoff, 1952; Zeigler & Wyckoff,
1961). First, approaching and making direct
physical contact with some part of the envi-
ronment generates sensory feedback. Second,
this feedback can come to control behavior. In
key pecking, for instance, the feedback would
be given at least by the proximate sight of the
lighted key (which makes it look larger and
brighter), the sound made by the beak making
contact with the key, and the proprioceptive
stimulation that arises from the resistance
offered by the key upon pecking it. Sensory
feedback from directed responses thus seems
considerably richer than the putative CS. This
richness was represented by the activation of
two input units (I2 and I3), as opposed to just
the one for the CS (I1).

Following the CS–US trials, the networks
were then given 300 trials of omission training,
defined as follows. If R was activated at a level
of 0.5 or greater at ts 8, I4 was not activated.
Otherwise, I4 was activated at a level of 1.0.
After this training, the networks reverted to
the first condition. In the three phases, R
activations above 0.5 that occurred before ts 8
did not deactivate I1. This procedure was
intended to simulate one in which key pecking
does not turn off the keylight (see Schwartz &
Williams, 1972a).

Figure 2 shows the results for all networks
(rows labeled as N1 through N4) and phases
(columns labeled as AS/PAM, NAM, and
PAM). The dashed lines mark the R activation
criterion for response feedback. R activations
were lower during omission training (NAM)
than during the other two phases. This effect is
explained as follows. Early in training, during
AS, reinforcements (I4 activations) were corre-
lated only with I1 activations, since R activa-
tions were below 0.5. This arrangement caused

all connections to gain weight, except for the
I2–sa and I3–sa connections. These connec-
tions remained unchanged at their initial
values because of the inactivation of I2 and
I3. After AS, during the first phase of PAM,
weights were sufficiently high to allow I1 to
activate R above 0.5, which caused I2 and I3 to
be activated and correlated with I4 activations,
which resulted in substantial maintenance.
During NAM, R activations equal to or greater
than 0.5 at ts 8 prevented the activation of I4,
inducing a decrease in all connection weights
and, consequently, the activation of R by I1, I2,
and I3. Whenever the activation of R was below
0.5, I4 was reactivated and all connections
regained weights, which increased the activa-
tion of R, and so on. The net effect was the

Fig. 2. Results of Simulation 1. The rows represent the
individual networks (labeled as N1, N2, N3, and N4). Each
network was given a sequence of three phases, represented
by the columns labeled as AS/PAM (autoshaping/positive
automaintenance), NAM (negative automaintenance),
and PAM. The dots represent R activations at ts 5 7 (the
moment before reinforcement). The dashed lines mark
the R activation criterion for sensory feedback from
responding.
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maintenance of R’s activation at substantial
levels.

These results show that the same network
architecture used in previous simulation re-
search with this model can simulate the
phenomena of interest, at least in their
simplest form. The results are consistent with
the evidence that directed responding that is
not elicited by the reinforcer can be acquired
and maintained under a respondent contin-
gency, without an explicit positive operant
contingency. This is in agreement with the
dominant account, according to which AS is
a purely respondent-conditioning phenome-
non. Additionally, the reduced activations in
NAM were due at least partly to the negative
stimulus–reinforcer relation, which induced
a reduction in the activation of R by I1. This
result agrees with the account that stimulus–
reinforcer relations play a role in NAM.

The evidence also suggests that response–
reinforcer relations may play a role in PAM
and NAM. The present results are consistent
with this evidence as well. Not only were the
networks sensitive to the explicit negative
response–reinforcer contingency in NAM.
Also, in PAM high R activations at ts 7 were
adventitiously followed by I4 activations at ts 8,
which may have contributed to the substantial
PAM. Neither the present nor the subsequent
simulations, however, allow for an unequivocal
determination of this contribution. Such a de-
termination would require a more complicat-
ed simulation that is better left for future
study.

The connectivity of the architecture used
here was complete in that all units in a layer
were connected to all units in the next layer.
However, aside from its neuroanatomical
implausibility (there is no such complete
connectivity in vertebrate brains), another
simulation showed that directedness made no
difference in this architecture. Four other
networks whose R activations had no sensory
feedback (i.e., did not activate I2 and I3)
behaved nearly identically to those shown in
Figure 2, under the same conditions. Activa-
tions of I1 (CS) correlated with activations of I4

(US) were sufficient for simulating acquisition
and maintenance of undirected responding
that was not elicited by the reinforcer. The
model’s relevance to AS, PAM, and NAM is
thus diminished. Fortunately, the model allows
for a way to make directedness more relevant.

In order to understand how the model can do
this, it will be convenient to see exactly why
directedness is unnecessary in the architecture
shown in Figure 1.

The problem with the architecture in
question is its full connectivity. Such connec-
tivity favored a strong competition between the
CS (activation of I1) and response feedback (I2

and I3 activations correlated with R activations
larger than 0.5). Early in training, R was
activated below 0.5, for which only the CS
occurred, with no response feedback. The CS
thus had a competitive advantage. As a result,
I1 gained weight before I2 and I3 could gain
any weight. By the time response feedback
started to occur, I1 had gained much of the
weight available on the sa units. As a result, I2

and I3 gained little weight, so their activations
did not contribute substantially to the activa-
tion of R. The implication is that directedness
could play a more substantial role in networks
with a reduced competition between the CS
and response feedback. The next two simula-
tions were devised to explore this implication.

Simulation 2

Infinitely many different network architec-
tures are possible. However, a neuroscientifi-
cally meaningful choice is underdetermined
by current experimental evidence. In particu-
lar, the sa–ca1, ma–vta, and ma–primary motor
cortex connectivity is not known with the
specificity that is required for handcrafting
an artificial neural architecture. Consequently,
at this point in time, the choice has to be
guided more by logical than evidential con-
siderations. The present choice was con-
strained by two logical considerations. First,
the architecture must allow for a determination
of whether sensory feedback from directed
responses plays any role when competition
between the CS and the feedback is reduced.
Second, a sensible first step for this determi-
nation is to explore the extreme case where
there is no competition.

Figure 3 shows an architecture that satisfies
both considerations (for convenience, the US
and CR/UR units, as well as the diffuse signals,
were omitted from the diagram). It is a simple
architecture with minimal synaptic competition
between different groups of input units. It has
two distinguishable portions joined by a single
input unit (I3). The output unit (R) is part of the
upper portion, which allows the unit to be
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activated only by I1 and/or I2. Similarly, the lower
portion could be activated only by I4 and/or I5.

Each portion has its own ca1 and vta units,
because having only one ca1 and one vta for
both portions would have increased competi-
tion. This feature raises the technical issue of
how to compute the diffuse signals. The model
is neutral in this respect and many solutions are
possible, but, once again, the choice is under-
determined by the experimental evidence.
Logically, a sensible strategy would be to pre-
clude any learning bias towards either portion
of the architecture. The simplest way to achieve
this is to assume that a signal of either type (ca1
or vta) is distributed evenly between the two
units of that type. The ca1 signal thus was
defined as the sum of the diffuse signals from
both ca1 units, divided by the two ca1 units. The
same was done for the vta signal and units.

In order to prevent competition between CS
and feedback, the CS was defined as the
activation of I1 at a level of 1.0 for 8 ts (dashed
arrow labeled as ‘‘CS’’ in Figure 3). The sensory
feedback was defined as the activation of I4 and
I5 at a level of 1.0 whenever R was activated at
0.5 or more (dashed arrows labeled as ‘‘R
feedback’’ in Figure 3). I2 and I3 thus remained
inactive throughout the entire simulation. Un-
like the sensory feedback in Simulation 1 and
the CS in both simulations, sensory feedback in
this simulation did not activate R. This feature
allowed for the determination of whether such
activation was necessary for sensory feedback

from R to play a role (see Simulation 3). The
activations still qualify as feedback in that they
can activate the ca1 and vta units of the lower
portion of the network, which influences
changes in the weights of the ma–R connections
and, to this extent, the R activations themselves.
The US was defined as before. For simplicity,
only one R unit was used in order to avoid the
issue of whether one or two types of responses
were involved.

The results are shown in Figure 4. R activa-
tions were higher and less variable than those
observed in Simulation 1. The reason was that
I4 and I5 could acquire substantial control over
the lower portion of the architecture. The ca1

Fig. 4. Results of Simulation 2. The rows represent the
individual networks (labeled as N5, N6, N7, and N8). Each
network was given a sequence of three phases, represented
by the columns labeled as AS/PAM (autoshaping/positive
automaintenance), NAM (negative automaintenance),
and PAM. The dots represent R activations at ts 5 7 (the
moment before reinforcement). The dashed lines mark
the R activation criterion for sensory feedback from
responding.

Fig. 3. Network architecture used in Simulations 2, 3,
and 4. Labels I1 through I5 represent the exteroceptive
sensory input units. The dashed arrows labeled as ‘‘CS’’
and ‘‘R feedback’’ represent the activations that defined
the stimuli used in the simulations. The US and CR/UR
units, as well as diffuse signals (shown in Figure 1), were
omitted for simplicity. Signals influencing weight changes
were averaged across ca1 or vta units.
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and vta units in this portion were thus
substantially activated, which increased the
average ca1 and vta diffuse signals and, hence,
the amount of weight increment. As before,
omission training was detrimental, although
less so than in Simulation 1. This result
confirms the ones obtained in the previous
simulations, with the concomitant reduction
in variability due to an interaction between the
architecture and the procedure used.

Simulation 3

To assess the role of sensory feedback in
the new architecture, four other instances
were given the same procedure as in the
previous simulations, but without any sensory
feedback correlated with R activations. Units
I2 through I5 of Figure 3 thus remained
inactive throughout the entire simulation.
Hence, the dashed arrows labeled as ‘‘R
feedback’’ in Figure 3 do not apply here. As
Figure 5 shows, the absence of sensory feed-
back from responding was noticeably detri-
mental to R activations in all three phases,
compared to Simulation 2. R activations were
considerably lower and more variable, and
omission training was far more effective. The
results can be explained as follows. The ca1
and vta units in the lower portion of the
networks remained inactive because of the
inactivation of I3, I4, and I5. This situation
caused a substantial reduction in the average
ca1 and vta diffuse signals and, hence, in the
amount of weight increment.

Directedness thus played a more substantial
role in a partially connected architecture
under a procedure where there was no
competition between CS and response feed-
back. The main implication of this for natural
neural systems is that the importance of
sensory feedback from responding and, to this
extent, directedness, is inversely proportional
to the amount of competition between CS and
response feedback, as determined by an in-
teraction between the architecture and the
environmental conditions. Neural connectivity
can vary across different species, individuals of
the same species, and sensory and response
systems of the same individual. Therefore,
differences in the importance of directedness
could be partly due to differences in species,
individuals, and/or sensory and response
systems, environmental conditions being
equal.

Sensory feedback played a role despite the
fact that it did not activate R. The implication
of this for natural systems is that response
feedback can control the response that pro-
duces it without activating the corresponding
response system. This possibility allows for
a distinction between control and activation by
some stimulation. In the present model,
control may (as in Simulation 1) but need
not (as in Simulations 2 and 3) involve
activation by the controlling stimulus.

Simulations 2 and 3 also suggest that AS,
PAM, and NAM are proportional to the
intensity of sensory feedback. In these net-
works, this intensity was given by the level of
activation of the feedback input units (I4 and

Fig. 5. Results of Simulation 3. The rows represent the
individual networks (labeled as N9, N10, N11, and N12).
Each network was given a sequence of three phases,
represented by the columns labeled as AS/PAM (auto-
shaping/positive automaintenance), NAM (negative auto-
maintenance), and PAM. The dots represent R activations
at ts 5 7 (the moment before reinforcement). In this
simulation, R activations had no sensory feedback. Hence,
dashed lines are not shown, and the dashed arrows labeled
as ‘‘R feedback’’ in Figure 3 do not apply here.
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I5 in Figure 3). Intermediate feedback activa-
tions should thus produce less substantial AS,
PAM, and NAM than that observed in Simula-
tion 2, but more than the present simulation.
The following simulation was devised to
explore this implication.

Simulation 4

This simulation was identical to the previous
two except that the sensory feedback units (I4

and I5 in Figure 3) were now activated at a level
of 0.6. As Figure 6 shows, there was less
substantial AS, PAM, and NAM than Simula-
tion 2, but more than Simulation 3. The
explanation is the same as before. This time,
the ca1 and vta units in the lower portion of

the networks were less substantially activated
by I4 and I5 than those in Simulation 2, but
more so than Simulation 3. This situation
caused roughly intermediate average ca1 and
vta diffuse signals and, hence, weight incre-
ments.

These results allow for a plausible resolution
of the following dilemma. On the one hand,
Simulation 2 involved substantial sensory
feedback from responding. However, it also
showed substantial NAM, which is inconsistent
with the results reported by Sanabria et al.
(2006). On the other hand, Simulation 3
showed less NAM, which is consistent with
those results. However, it involved no sensory
feedback from responding. The implication is
that directedness, conceived as sensory feed-
back from responding, plays little or no role.
In the present simulation, however, an in-
termediate level of sensory feedback from
responding resulted in substantial AS and
PAM, but an extinction-like effect in NAM.
This result represents a better approximation
to those reported by Sanabria et al.

Directedness can thus be conceived as
sensory feedback from responding in a way that
retains its relevance for AS, PAM, and NAM,
and is reasonably consistent with the evidence
reported by Sanabria et al. (2006). The
implication, again, is that the magnitude with
which these phenomena occur is proportional
to the intensity of the feedback. Of course, this
implication was explored here in a very simple
way. Consequently, it is not directly applicable
to the much more complex experiment by
Sanabria at al. One important simplification in
the simulation was that the intensity of response
feedback was constant across trials, which is
clearly implausible. Notterman (1959) showed
that extended exposure to an explicit re-
sponse–reinforcer contingency (continuous re-
inforcement) tended to decrease response
force. On this basis, it seems reasonable to
believe that the intensity of response feedback
also decreases with the number of sessions. The
most effective procedure used by Sanabria et al.
for reducing NAM precisely involved extended
PAM followed by NAM followed by instrumen-
tal learning. Perhaps the larger number of
sessions in this procedure, compared to the
other procedures used by Sanabria et al.,
contributed to a reduction in key pecking force
and duration and, to this extent, in sensory
feedback from key pecking. This situation, in

Fig. 6. Results of Simulation 4. The rows represent the
individual networks (labeled as N13, N14, N15, and N16).
Each network was given a sequence of three phases,
represented by the columns labeled as AS/PAM (auto-
shaping/positive automaintenance), NAM (negative auto-
maintenance), and PAM. The dots represent R activations
at ts 5 7 (the moment before reinforcement). The dashed
lines mark the R activation criterion for sensory feedback
from responding.
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turn, may have contributed to the more
successful NAM reported by the authors.

GENERAL DISCUSSION

The aim of this study was to show that AS,
PAM, and NAM can be simulated with a neural-
network model that has two features. First, its
learning function makes no distinction be-
tween operant and respondent mechanisms,
although it makes the descriptive distinctions
between response and contingency types at the
network level. Second, the model was built in
a bottom-up fashion, taking into account
independent evidence from neuroscience.
The learning function, in particular, takes into
account the structure and functioning of
hippocampal and dopaminergic systems in
conditioning.

In contrast to other theoretical accounts of
the distinction (e.g., Bindra, 1972; Mowrer,
1947; Rescorla & Solomon, 1967; Trapold &
Overmier, 1972), the present one does not
invoke hypothetical inferences from behavior
in a top-down fashion. As such, the model
represents an advance towards a truly unified
theoretical account of conditioning that really
takes into account knowledge from neurosci-
ence as integral to model building. The model
still involves many simplifying assumptions,
but any model does. Besides, the assumptions
were dictated primarily by practical considera-
tions of empirical underdetermination by the
relevant neuroscientific evidence, not by a top-
down hypothesizing strategy.

Hippocampal and dopaminergic systems are
found in only some animal species, so the
proposed mechanism has a limited scope of
application. However, the mechanism is not
intended to be universally applicable to all
animal species. That would be premature and
overly sweeping at this point in time. The
mechanism represents only a small step toward
a comprehensive account of the neural sub-
strates of conditioning. The relation between
the behavior of organisms and the structure
and functioning of their nervous systems is
exceedingly complex and thus requires pro-
gressive, piecewise study.

The preliminary character of the present
effort is most obviously seen in the extreme
simplicity of the architectures and procedures
used. The networks were assumed to be in an
environment that had only one identifiable

part with which they could make direct
physical contact and produce sensory feed-
back. Further research would be needed to
simulate more complex scenarios where the
environment has several parts, and the net-
works have the minimal output capacity to
make direct physical contact with every part
and the minimal input capacity to detect the
sensory feedback that is produced by this
contact.

In such scenarios, the present account
assumes that different parts produce different
sensory feedbacks that differentially control
their respective producing responses. For
instance, the sensory feedback that is pro-
duced by pecking an intermittently illuminat-
ed key must be somewhat different from that
produced by pecking grain in an intermittent-
ly illuminated food magazine. The two feed-
backs differentially control different aspects of
the pigeon’s behavior. In the model, this
difference could be simulated by having
activations of different R units produce activa-
tions of different input units. In this manner,
the networks could discriminate between
responding directed towards one part and
responding directed towards the other part.
All of this can be accomplished without having
the feedback inputs activate the R units that
produce the feedback.

There also is the issue of the role of
response–reinforcer relations in these net-
works. Response–reinforcer relations (implic-
itly positive in the case of PAM, explicitly
negative in the case of NAM) did occur in the
present simulations, so they may have played
some role. However, the results were ex-
plained purely in terms of the dynamics of
activations and weights, as determined by
stimulus–reinforcer relations, without appeal-
ing to response–reinforcer relations. The
latter thus add nothing to an understanding
of such dynamics, above and beyond stimulus–
reinforcer relations. It remains to be seen
whether this obtains in future, more compli-
cated simulations.

Finally, there is the relationship between
behavior and neuroscience, which was ex-
plored in a recent volume of this journal
(Green, 2005). Behavior analysts tend to be
suspicious of neural interpretations of behav-
ioral phenomena, under the assumption that
they are inherently reductionistic. This as-
sumption, however, is unwarranted. All scien-
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tific accounts are neutral with respect to the
reductionism–antireductionism debate, simply
because this debate is philosophical. As such,
the debate involves additional concepts, as-
sumptions, and methodologies that transcend
any scientific proposal. The very same scientif-
ic account, then, can be philosophically
treated in a reductionistic or a nonreductionis-
tic manner. To wit, the model could be taken
either as a causal explanation of AS, PAM, and
NAM (reductionistic treatment), or as a de-
scription of the basic happenings in an
organism’s nervous system when these phe-
nomena occur (nonreductionistic treatment).
There is nothing inherent to the model that
favors one or the other treatment.

Another eyebrow raiser for behavior analysts
is the potential character of artificial neural
networks as ‘‘conceptual’’ nervous systems
(CNS). Skinner’s (1938, Ch. 12; 1950, p. 193;
1974, pp. 217–218) misgivings in this regard
are well known, and make some sense. His
point that reference to the nervous system is
not necessary for the study of behavior in its
own right to be scientifically respectable is
most reasonable. Equally sound is his point
that a scientific study of behavior in its own
right is essential for a proper scientific un-
derstanding of its neural substrates. The
present study is entirely consistent with these
two points. Nothing in it questions the
scientific respectability of the experimental
analysis of behavior in its own right, or its
relevance for a proper scientific understand-
ing of the neural substrates of behavior. On
the contrary, the study was motivated by
phenomena that were discovered through
such analysis.

Less reasonable, however, is Skinner’s sug-
gestion that a theory is scientifically respectable
only if it is supported by direct experimental
data. If he indeed suggested this, the present
proposal departs from it. Under Skinner’s
criterion, the theories of Sherrington, Newton,
Darwin, and Mendel, for instance, would not
have been scientifically respectable at the
moment they were proposed since they were
not supported by any direct experimental
evidence at that moment. By Skinner’s stan-
dards, then, there was no scientific reason to
pursue those theories at that moment, even if
later on (as he acknowledged) they received
direct experimental support. And yet, scientists
did pursue them at that moment, and to good

effect. The key is maintaining a balance be-
tween the openness of concepts and their
potential causal concreteness.

For reasons that remain unclear, scientists
often bet on a new theory, as it were, and wait to
see if it receives direct experimental support.
So, either scientists should not do this or
Skinner’s criterion is too restrictive. The pres-
ent proposal leans toward the latter option. To
be sure, the wait is not always worth it (although
it is always possible that we did not wait long
enough). One might agree with Skinner that
betting on a new theory carries considerable
risk. However, the history of science shows that
scientists seem to be willing to take the risk, at
least occasionally. Betting on new theories may
not be common in science, but it has contrib-
uted to scientific progress.
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