Abstract
We have performed molecular genetic analyses of Hispanic individuals with cystic fibrosis (CF) in the southwestern United States. Of 129 CF chromosomes analyzed, only 46% (59/129) carry ΔF508. The G542X mutation was found on 5% (7/129) of CF chromosomes. The 3849+10kbC→T mutation, detected primarily in Ashkenazi Jews, was present on 2% (3/129). R1162X and R334W, mutations identified in Spain and Italy, each occurred on 1.6% (2/129) of CF chromosomes. W1282X and R553X were each detected once. G551D and N1303K were not found. Overall, screening for 22 or more mutations resulted in detection of only 58% of CF transmembrane conductance regulator gene mutations among Hispanic individuals. Analysis of KM19/XV2c haplotypes revealed an unusual distribution. Although the majority of ΔF508 mutations are on chromosomes of B haplotypes, the other CF mutations are on A and C haplotypes at higher-than-expected frequencies. These genetic analyses demonstrate significant differences between Hispanic individuals with CF and those of the general North American population. Assessment of carrier/affected risk in Hispanic CF individuals cannot, therefore, be based on the mutation frequencies found through studies of the general population but must be adjusted to better reflect the genetic makeup of this ethnic group. Further studies are necessary to identify the causative mutation(s) in this population and to better delineate genotype/phenotype correlations. These will enable counselors to provide more accurate genetic counseling.
Full text
PDFSelected References
These references are in PubMed. This may not be the complete list of references from this article.
- Beaudet A. L., Feldman G. L., Fernbach S. D., Buffone G. J., O'Brien W. E. Linkage disequilibrium, cystic fibrosis, and genetic counseling. Am J Hum Genet. 1989 Mar;44(3):319–326. [PMC free article] [PubMed] [Google Scholar]
- Cutting G. R., Kasch L. M., Rosenstein B. J., Zielenski J., Tsui L. C., Antonarakis S. E., Kazazian H. H., Jr A cluster of cystic fibrosis mutations in the first nucleotide-binding fold of the cystic fibrosis conductance regulator protein. Nature. 1990 Jul 26;346(6282):366–369. doi: 10.1038/346366a0. [DOI] [PubMed] [Google Scholar]
- Feldman G. L., Williamson R., Beaudet A. L., O'Brien W. E. Prenatal diagnosis of cystic fibrosis by DNA amplification for detection of KM-19 polymorphism. Lancet. 1988 Jul 9;2(8602):102–102. doi: 10.1016/s0140-6736(88)90030-x. [DOI] [PubMed] [Google Scholar]
- Gasparini P., Nunes V., Savoia A., Dognini M., Morral N., Gaona A., Bonizzato A., Chillon M., Sangiuolo F., Novelli G. The search for south European cystic fibrosis mutations: identification of two new mutations, four variants, and intronic sequences. Genomics. 1991 May;10(1):193–200. doi: 10.1016/0888-7543(91)90500-e. [DOI] [PubMed] [Google Scholar]
- Kan Y. W., Dozy A. M., Trecartin R., Todd D. Identification of a nondeletion defect in alpha-thalassemia. N Engl J Med. 1977 Nov 17;297(20):1081–1084. doi: 10.1056/NEJM197711172972002. [DOI] [PubMed] [Google Scholar]
- Kerem B. S., Zielenski J., Markiewicz D., Bozon D., Gazit E., Yahav J., Kennedy D., Riordan J. R., Collins F. S., Rommens J. M. Identification of mutations in regions corresponding to the two putative nucleotide (ATP)-binding folds of the cystic fibrosis gene. Proc Natl Acad Sci U S A. 1990 Nov;87(21):8447–8451. doi: 10.1073/pnas.87.21.8447. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ng I. S., Pace R., Richard M. V., Kobayashi K., Kerem B., Tsui L. C., Beaudet A. L. Methods for analysis of multiple cystic fibrosis mutations. Hum Genet. 1991 Sep;87(5):613–617. doi: 10.1007/BF00209023. [DOI] [PubMed] [Google Scholar]
- Nunes V., Gasparini P., Novelli G., Gaona A., Bonizzato A., Sangiuolo F., Balassopoulou A., Giménez F. J., Dognini M., Ravnik-Glavac M. Analysis of 14 cystic fibrosis mutations in five south European populations. Hum Genet. 1991 Oct;87(6):737–738. doi: 10.1007/BF00201737. [DOI] [PubMed] [Google Scholar]
- Osborne L., Knight R., Santis G., Hodson M. A mutation in the second nucleotide binding fold of the cystic fibrosis gene. Am J Hum Genet. 1991 Mar;48(3):608–612. [PMC free article] [PubMed] [Google Scholar]
- Poncz M., Solowiejczyk D., Harpel B., Mory Y., Schwartz E., Surrey S. Construction of human gene libraries from small amounts of peripheral blood: analysis of beta-like globin genes. Hemoglobin. 1982;6(1):27–36. doi: 10.3109/03630268208996930. [DOI] [PubMed] [Google Scholar]
- Rommens J., Kerem B. S., Greer W., Chang P., Tsui L. C., Ray P. Rapid nonradioactive detection of the major cystic fibrosis mutation. Am J Hum Genet. 1990 Feb;46(2):395–396. [PMC free article] [PubMed] [Google Scholar]
- Rosenbloom C. L., Kerem B. S., Rommens J. M., Tsui L. C., Wainwright B., Williamson R., O'Brien W. E., Beaudet A. L. DNA amplification for detection of the XV-2c polymorphism linked to cystic fibrosis. Nucleic Acids Res. 1989 Sep 12;17(17):7117–7117. doi: 10.1093/nar/17.17.7117. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tsui L. C. Mutations and sequence variations detected in the cystic fibrosis transmembrane conductance regulator (CFTR) gene: a report from the Cystic Fibrosis Genetic Analysis Consortium. Hum Mutat. 1992;1(3):197–203. doi: 10.1002/humu.1380010304. [DOI] [PubMed] [Google Scholar]
- Vidaud M., Fanen P., Martin J., Ghanem N., Nicolas S., Goossens M. Three point mutations in the CFTR gene in French cystic fibrosis patients: identification by denaturing gradient gel electrophoresis. Hum Genet. 1990 Sep;85(4):446–449. doi: 10.1007/BF02428305. [DOI] [PubMed] [Google Scholar]