Skip to main content
American Journal of Human Genetics logoLink to American Journal of Human Genetics
. 1994 Feb;54(2):179–190.

Preferential sites in keratin 10 that are mutated in epidermolytic hyperkeratosis.

C C Chipev 1, J M Yang 1, J J DiGiovanna 1, P M Steinert 1, L Marekov 1, J G Compton 1, S J Bale 1
PMCID: PMC1918158  PMID: 7508181

Abstract

Epidermolytic hyperkeratosis (EH) is a rare autosomal dominant skin disease. Recent studies in our laboratory established genetic linkage to the type II keratin gene locus on chromosome 12q in one family with EH and identified a single amino acid mutation in keratin 1 that is responsible for the disease. Other point mutations in the keratin 1 or keratin 10 genes have now been reported in other patients with EH. We have examined a series of probands with EH in order to develop a catalog of mutations in keratin 10. Using direct sequencing of PCR-amplified genomic DNA, we have identified mutations in six families, in which five mutations occur in the beginning of the 1A rod domain of keratin 10-namely, two ARg10 to His, one Arg10 to Cys, and Asn8 to His, and a Tyr14 to Asp. This region contains highly conserved residues among all keratins. An additional mutation (Leu103 to Gln) was found in the conserved region late in the 2B rod domain in keratin 10. We developed several allele-specific assays to assess the frequency of these mutations in the general population. No evidence was found for the presence of such changes in unaffected individuals. In vitro functional assays performed with peptides corresponding to the 1A mutations in these families show severely diminished capacity to disaggregate preformed keratin intermediate filaments, in comparison with a wild-type control peptide. Results from this work support the hypothesis that the beginning of the 1A rod domain segment in keratin 10 contains preferential sites for disease-causing mutation in EH. This should be of considerable use when developing prenatal diagnostic tests and biologically based therapies for this disease.

Full text

PDF
179

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bijvoet S. M., Hayden M. R. Mismatch PCR: a rapid method to screen for the Pro207-->Leu mutation in the lipoprotein lipase (LPL) gene. Hum Mol Genet. 1992 Oct;1(7):541–541. doi: 10.1093/hmg/1.7.541. [DOI] [PubMed] [Google Scholar]
  2. Bonifas J. M., Bare J. W., Chen M. A., Lee M. K., Slater C. A., Goldsmith L. A., Epstein E. H., Jr Linkage of the epidermolytic hyperkeratosis phenotype and the region of the type II keratin gene cluster on chromosome 12. J Invest Dermatol. 1992 Nov;99(5):524–527. doi: 10.1111/1523-1747.ep12658061. [DOI] [PubMed] [Google Scholar]
  3. Cheng J., Syder A. J., Yu Q. C., Letai A., Paller A. S., Fuchs E. The genetic basis of epidermolytic hyperkeratosis: a disorder of differentiation-specific epidermal keratin genes. Cell. 1992 Sep 4;70(5):811–819. doi: 10.1016/0092-8674(92)90314-3. [DOI] [PubMed] [Google Scholar]
  4. Chipev C. C., Korge B. P., Markova N., Bale S. J., DiGiovanna J. J., Compton J. G., Steinert P. M. A leucine----proline mutation in the H1 subdomain of keratin 1 causes epidermolytic hyperkeratosis. Cell. 1992 Sep 4;70(5):821–828. doi: 10.1016/0092-8674(92)90315-4. [DOI] [PubMed] [Google Scholar]
  5. Compton J. G., DiGiovanna J. J., Santucci S. K., Kearns K. S., Amos C. I., Abangan D. L., Korge B. P., McBride O. W., Steinert P. M., Bale S. J. Linkage of epidermolytic hyperkeratosis to the type II keratin gene cluster on chromosome 12q. Nat Genet. 1992 Jul;1(4):301–305. doi: 10.1038/ng0792-301. [DOI] [PubMed] [Google Scholar]
  6. Coulombe P. A., Hutton M. E., Letai A., Hebert A., Paller A. S., Fuchs E. Point mutations in human keratin 14 genes of epidermolysis bullosa simplex patients: genetic and functional analyses. Cell. 1991 Sep 20;66(6):1301–1311. doi: 10.1016/0092-8674(91)90051-y. [DOI] [PubMed] [Google Scholar]
  7. Dong W., Ryynänen M., Uitto J. Identification of a leucine-to-proline mutation in the keratin 5 gene in a family with the generalized Köbner type of epidermolysis bullosa simplex. Hum Mutat. 1993;2(2):94–102. doi: 10.1002/humu.1380020206. [DOI] [PubMed] [Google Scholar]
  8. Epstein E. H., Jr Molecular genetics of epidermolysis bullosa. Science. 1992 May 8;256(5058):799–804. doi: 10.1126/science.1375393. [DOI] [PubMed] [Google Scholar]
  9. Fuchs E., Esteves R. A., Coulombe P. A. Transgenic mice expressing a mutant keratin 10 gene reveal the likely genetic basis for epidermolytic hyperkeratosis. Proc Natl Acad Sci U S A. 1992 Aug 1;89(15):6906–6910. doi: 10.1073/pnas.89.15.6906. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Goldsmith L. A. The ichthyoses. Prog Med Genet. 1976;1:185–210. [PubMed] [Google Scholar]
  11. Hatzfeld M., Weber K. A synthetic peptide representing the consensus sequence motif at the carboxy-terminal end of the rod domain inhibits intermediate filament assembly and disassembles preformed filaments. J Cell Biol. 1992 Jan;116(1):157–166. doi: 10.1083/jcb.116.1.157. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Ishida-Yamamoto A., McGrath J. A., Judge M. R., Leigh I. M., Lane E. B., Eady R. A. Selective involvement of keratins K1 and K10 in the cytoskeletal abnormality of epidermolytic hyperkeratosis (bullous congenital ichthyosiform erythroderma). J Invest Dermatol. 1992 Jul;99(1):19–26. doi: 10.1111/1523-1747.ep12611391. [DOI] [PubMed] [Google Scholar]
  13. Korge B. P., Compton J. G., Steinert P. M., Mischke D. The two size alleles of human keratin 1 are due to a deletion in the glycine-rich carboxyl-terminal V2 subdomain. J Invest Dermatol. 1992 Dec;99(6):697–702. doi: 10.1111/1523-1747.ep12614149. [DOI] [PubMed] [Google Scholar]
  14. Korge B. P., Gan S. Q., McBride O. W., Mischke D., Steinert P. M. Extensive size polymorphism of the human keratin 10 chain resides in the C-terminal V2 subdomain due to variable numbers and sizes of glycine loops. Proc Natl Acad Sci U S A. 1992 Feb 1;89(3):910–914. doi: 10.1073/pnas.89.3.910. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Lane E. B., Rugg E. L., Navsaria H., Leigh I. M., Heagerty A. H., Ishida-Yamamoto A., Eady R. A. A mutation in the conserved helix termination peptide of keratin 5 in hereditary skin blistering. Nature. 1992 Mar 19;356(6366):244–246. doi: 10.1038/356244a0. [DOI] [PubMed] [Google Scholar]
  16. Letai A., Coulombe P. A., Fuchs E. Do the ends justify the mean? Proline mutations at the ends of the keratin coiled-coil rod segment are more disruptive than internal mutations. J Cell Biol. 1992 Mar;116(5):1181–1195. doi: 10.1083/jcb.116.5.1181. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Letai A., Coulombe P. A., McCormick M. B., Yu Q. C., Hutton E., Fuchs E. Disease severity correlates with position of keratin point mutations in patients with epidermolysis bullosa simplex. Proc Natl Acad Sci U S A. 1993 Apr 15;90(8):3197–3201. doi: 10.1073/pnas.90.8.3197. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Rieger M., Franke W. W. Identification of an orthologous mammalian cytokeratin gene. High degree of intron sequence conservation during evolution of human cytokeratin 10. J Mol Biol. 1988 Dec 20;204(4):841–856. doi: 10.1016/0022-2836(88)90045-9. [DOI] [PubMed] [Google Scholar]
  19. Rothnagel J. A., Dominey A. M., Dempsey L. D., Longley M. A., Greenhalgh D. A., Gagne T. A., Huber M., Frenk E., Hohl D., Roop D. R. Mutations in the rod domains of keratins 1 and 10 in epidermolytic hyperkeratosis. Science. 1992 Aug 21;257(5073):1128–1130. doi: 10.1126/science.257.5073.1128. [DOI] [PubMed] [Google Scholar]
  20. Sommer S. S., Groszbach A. R., Bottema C. D. PCR amplification of specific alleles (PASA) is a general method for rapidly detecting known single-base changes. Biotechniques. 1992 Jan;12(1):82–87. [PubMed] [Google Scholar]
  21. Steinert P. M., Marekov L. N., Fraser R. D., Parry D. A. Keratin intermediate filament structure. Crosslinking studies yield quantitative information on molecular dimensions and mechanism of assembly. J Mol Biol. 1993 Mar 20;230(2):436–452. doi: 10.1006/jmbi.1993.1161. [DOI] [PubMed] [Google Scholar]
  22. Steinert P. M., Parry D. A. The conserved H1 domain of the type II keratin 1 chain plays an essential role in the alignment of nearest neighbor molecules in mouse and human keratin 1/keratin 10 intermediate filaments at the two- to four-molecule level of structure. J Biol Chem. 1993 Feb 5;268(4):2878–2887. [PubMed] [Google Scholar]
  23. Woodley D., Sauder D., Talley M. J., Silver M., Grotendorst G., Qwarnstrom E. Localization of basement membrane components after dermal-epidermal junction separation. J Invest Dermatol. 1983 Aug;81(2):149–153. doi: 10.1111/1523-1747.ep12543517. [DOI] [PubMed] [Google Scholar]
  24. Zhou X. M., Idler W. W., Steven A. C., Roop D. R., Steinert P. M. The complete sequence of the human intermediate filament chain keratin 10. Subdomainal divisions and model for folding of end domain sequences. J Biol Chem. 1988 Oct 25;263(30):15584–15589. [PubMed] [Google Scholar]

Articles from American Journal of Human Genetics are provided here courtesy of American Society of Human Genetics

RESOURCES