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Summary

Recently, Schork et al. found that two-trait-locus, two-
marker-locus (parametric) linkage analysis can provide
substantially more linkage information than can standard
one-trait-locus, one-marker-locus methods. However, be-
cause of the increased burden of computation, Schork et
al. do not expect that their approach will be applied in an
initial genome scan. Further, the specification of a suitable
two-locus segregation model can be crucial. Affected-sib-
pair tests are computationally simple and do not require
an explicit specification of the disease model. In the past,
however, these tests mainly have been applied to data with
a single marker locus. Here, we consider sib-pair tests that
make it possible to analyze simultaneously two marker
loci. The power of these tests is investigated for different
(epistatic and heterogeneous) two-trait-locus models, each
trait locus being linked to one of the marker loci. We com-
pare these tests both with the test that is optimal for a
certain model and with the strategy that analyzes each
marker locus separately. The results indicate that a
straightforward extension of the well-known mean test
for two marker loci can be much more powerful than sin-
gle-marker-locus analysis and that its power is only
slightly inferior to the power of the optimal test.

Introduction

The availability of increasingly denser maps of polymor-
phic markers makes it straightforward to locate simple
Mendelian diseases. However, such complex genetic dis-
eases as psychiatric disorders or asthma are by definition
not controlled by only a single disease locus, but can be
expected to involve multiple genetic and/or environmen-
tal factors. For the purpose of linkage analysis, it is com-
mon practice to model complex diseases such as these as
single-locus diseases with reduced penetrance. The appro-
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priateness of this approximation has been considered by
several investigators (Durner et al. 1992; Goldin 1992; Vie-
land et al. 1992, 1993). The general conclusion of these
papers is that using a single-locus disease model is only
slightly less powerful than analyzing the data under the
correct model. However, they all assumed that there is
only a single genetic marker available. In contrast, Schork
et al. (1993) found that the simultaneous inclusion of two
marker loci, each of them linked to one of the two disease
loci, can substantially increase the power to detect linkage.
As noted by Schork et al. (1993), the cost for the in-

creased linkage information obtained by the two-trait,
two-marker approach is an increased burden of computa-
tion. Therefore, these authors do not expect that their
method will be applied in an initial genome scan. Further,
for their linkage analysis, Schork et al. (1993) assumed that
the parameters of the model (penetrances and gene fre-
quencies at the two disease loci) are known; that is, they
carried out the calculation of lod scores under the gener-
ating model for their data. Even for single-locus models,
the specification of appropriate parameter values is a well-
known problem (Ott 1991). For two-locus disease models,
penetrance values for nine different disease genotypes have
to be specified. In most situations, assuming these pene-
trances to be known will not be realistic.

Affected-sib-pair methods do not require the specifica-
tion of the mode of inheritance. Because of this and be-
cause of their computational simplicity, these methods
have been widely used as a tool especially suited to screen
a large quantity of marker data. The method is based on a
sample of nuclear families with two affected children. The
empirical distribution of the number of marker alleles
shared identical by descent (IBD) by the two affected sibs
is compared with its theoretical distribution in case of no
linkage. A variety of statistical tests have been proposed
for this situation; more recent examples have been given
by Schaid and Nick (1990), Faraway (1993), and Holmans
(1993). So far, these papers have been concerned with a
single marker locus only. To our knowledge, only Dizier
and Clerget-Darpoux (1986) considered the joint distribu-
tion of identity for HLA and Gm in a sample of diabatic
sibs. However, they used a 0-1 variable of phenotypic iden-
tity, instead of IBD, for Gm.
The present paper addresses the following two ques-
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Table I

Description of Two-Locus Segregation Models

POPULATION-
Two-Locus PENETRANCES2 PARAMETER VALUES RISK CHARACTERISTICSb

MODEL f2[ f21 f20 f[2 fit f[0 f02 fA [oo Pi P2 01 = 02 Kp KPO Ksib

Ep-1 )....... X 0 4 X 0 0 0 0 .210 .210 .707 .100 .300 .317
Ep-2 ....... X 0 0 0 0 0 0 0 0 .600 .199 .778 .100 .300 .329
Ep-3 )....... 0 0 0 0 0 0 0 0 .577 .577 .900 .100 .300 .348
Ep-4 )....... X 0 X 0 0 X 0 0 .372 .243 .911 .100 .300 .370
Ep-5 )....... X 0 4) 0 0 0 0 0 .349 .349 .799 .100 .300 .328
Ep-6 ....... 0 X 4 4 0 0 4 0 0 .190 .190 1.000 .070 .209 .361
Het-1 ....... (p (P 01 (p v 01 2 42 0 .053 .053 .495 .100 .300 .303
Het-2 ........ (P 9 1 02 42 0 02 42 0 .279 .040 .660 .100 .301 .342
Het-3 ....... (p 01 01 02 0 0 02 0 0 .194 .194 1.000 .074 .222 .377
S-i............... 4). 4 4 X 4 4 4) 0 .052 .052 .522 .100 .300 .303
S-2 ....... 1 1 1 4 X 0 4 4 0 .228 .045 .574 .100 .300 .372
S-3 ....... 1 1 0 4 0 0 .194 .194 .512 .100 .300 .317

aq

01 + 02 01-02.
b Prevalence (Kp) and recurrence risk for offspring (Kp,,) and sib (Kib).

tions: (1) is there any gain over successive testing for link-
age at each marker locus in considering the joint distribu-
tion of IBD scores for two-marker systems? and (2) which
test should be employed? To answer these questions, we
considered a wide range of two-trait-locus heterogeneity
and epistatic models. For each of these disease models, we
then evaluated the behavior of different single-marker and
two-marker statistical tests, by means of simulated sam-
ples.

Methods

Two-Locus Segregation Models
Throughout this paper, we will assume that there are

two trait loci, both of them being (1) diallelic, (2) in Hardy-
Weinberg equilibrium, (3) unlinked to each other, and (4)
in linkage equilibrium. Locus 1 has alleles A and a with
frequencies pi and q1 (=1-pa), respectively. At locus 2,
allele B occurs with frequency P2 and allele b with q2
(=1-P2). The genetic model is completely described by
specification of the penetrance for each of the nine possi-
ble two-locus genotypes. Let fi4 denote the penetrance for
the genotype with i copies of allele A at locus 1 and with j
copies of allele B at locus 2.
The penetrance patterns (f)i, = 0,1,2 for 12 models con-

sidered in the present paper are given in table 1. The epi-
static models Ep-1-Ep-6 and the heterogeneity models
Het-1-Het-3 have been discussed by Neuman and Rice
(1992), who also provide examples of traits and/or dis-
eases for which these models may be applicable. The het-
erogeneity models S-1 and S-2 and the epistatic model S-3
have been investigated recently by Schork et al. (1993).

Note that S-2 is a special form of the more general model
Het-2 and is obtained by setting 2 = + and 01 = 1 for the
parameters of Het-2.

For the determination of parameter values we followed
Schork et al. (1993) in choosing allele frequencies and pen-
etrance values resulting in a trait prevalence (KP) of .1, an
offspring risk (KPO) of .3, and equal contribution to the trait
prevalence of the two loci. Additionally, we assumed equal
penetrances (1=X2) of the two disease causes in models
Het-1-Het-3.
With the exception of Ep-2, Ep-4, Het-2, and S-2, all

models are symmetrical in the two loci. For symmetrical
models, equal contribution of each locus requires equal
allele frequencies at the two loci. Formulas for the popu-
lation-risk characteristics given in Neuman and Rice
(1992) were applied to give parameter values satisfying Kp
=.1 and Kp = .3. However, there is no such solution for
models Ep-6 and Het-3. For these models, the penetrance
was set to its maximum value and the allele frequency was
chosen to give KPO/Kp = 3. For the asymmetrical models,
the meaning of "equal contribution of each locus to trait
prevalence" (Schork et al. 1993, p. 1128) is rather less ob-
vious. For example, the interpretation of this condition by
Schork et al. (1993), in the context of their model S-2, re-
sults in p2e = . (1 -p2) - (1 -q22). An alternative (and at
least equally justified) interpretation is to require that the
two risk factors (AA at locus 1 and BB or Bb at locus 2)
have equal attributable contribution to the disease. The
two risk factors act independently in model S-2, so this
interpretation results in p2 = X *(1-q2), which algebraically
is not equivalent to the relationship required by Schork et
al. (1993), although its solution (Pi = .227; P2 = .046; and
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Table 2

Distribution of IBD Scores (01=02=.O)

JOINT DISTRIBUTIONa MARKER 1b MARKER 2C

MODEL S22 S21 S20 S12 Sil 51o SO2 SO1 SOO S2. SI. SO. S.2 S.1 S.O

Ep-1 ....... .1394 .1816 .0524 .1816 .2365 .0682 .0524 .0682 .0197 .3734 .4863 .1403 .3734 .4863 .1403
Ep-2 ....... .1476 .1901 .0529 .1772 .2281 .0635 .0531 .0684 .0191 .3906 .4688 .1406 .3779 .4866 .1355
Ep-3 ....... .1617 .1866 .0538 .1866 .2153 .0621 .0538 .0621 .0180 .4021 .4640 .1339 .4021 .4640 .1339
Ep-4 ....... .1538 .1460 .0395 .2182 .2025 .0460 .0925 .0846 .0169 .3393 .4667 .1940 .4645 .4331 .1024
Ep-5 ....... .1522 .1733 .0572 .1733 .2289 .0694 .0572 .0694 .0191 .3827 .4716 .1457 .3827 .4716 .1457
Ep-6 ....... .1731 .2007 .0865 .2007 .1446 .0479 .0865 .0479 .0121 .4603 .3932 .1465 .4603 .3932 .1465
Het-1 ....... .1062 .1678 .0628 .1678 .2477 .0822 .0628 .0822 .0205 .3368 .4977 .1655 .3368 .4977 .1655
Het-2 ....... .1227 .1911 .0695 .1628 .2196 .0590 .0698 .0872 .0183 .3833 .4414 .1753 .3553 .4979 .1468
Het-3 ....... .1659 .2007 .0876 .2007 .1473 .0490 .0876 .0489 .0123 .4542 .3970 .1488 .4542 .3970 .1488
S-1 ....... .1078 .1685 .0619 .1685 .2477 .0815 .0619 .0815 .0207 .3382 .4977 .1641 .3382 .4977 .1641
S-2 ....... .1336 .2241 .0915 .1420 .2014 .0613 .0567 .0726 .0168 .4492 .4047 .1461 .3323 .4981 .1696
S-3 ....... .1250 .1756 .0592 .1756 .2368 .0744 .0592 .0744 .0198 .3598 .4868 .1534 .3598 .4868 .1534

a sij = probability that two affected sibs share i marker alleles IBD at the first marker locus and j marker alleles IBD at the second marker locus.
b Si = probability that two affected sibs share i alleles IBD at the first marker locus (Si.=Si2+si1+sjo).
C sj = probability that two affected sibs share j alleles IBD at the second marker locus (S.j=s2j+Slj+Soj).

0 = .573) is numerically nearly identical. In model Ep-2,
there are two necessary conditions for being at risk. Both
of these conditions are equally frequent if p = 1 - q2. In
model Ep-4, we required that P(AABb) = P(AaBB, aaBB),
which gives p2 = P2/(1+q2). Finally, for model Het-2, pi

1 q2 is required. For each model, the resulting allele
frequencies and penetrance values are shown in table 1,
together with the population risk characteristic induced
by these values.

Induced Distribution ofIBD
We assume that each of the two trait loci is linked to a

marker locus at recombination fraction 0 = .0. This as-
sumption seems to be not too unrealistic in view of the
availability of an increasingly dense map of markers. More-
over, the potential advantage of two-marker analysis over
single-marker analysis can be expected to be most pro-
nounced for completely linked markers.

Let Si, denote the probability that two affected sibs share
i marker alleles IBD at the first marker locus and share j
marker alleles IBD at the second marker locus. For single-
locus disease models, general formulas for the induced dis-
tribution of IBD scores in terms of allele frequencies, pen-
etrances, and recombination fraction are easily obtainable
(Suarez et al. 1978). Whereas such general formulas tend
to be quite cumbersome for two-locus disease models
(Hodge 1981), the numerical calculation of the distribu-
tion of IBD scores is straightforward. Table 2 presents this
distribution for each of the 12 two-locus disease models
considered.
We simulated samples of affected sib pairs according to

the multinomial distributions given in table 2. A random-

number generator proposed by Wichmann and Hill (1982)
was used. Sample sizes (n) were 20-100. For each disease
model and each sample size, 106 replicated samples were
simulated.

Analysis Strategies
Let )i=0=,1,2 denote the joint distribution of IBD scores

in affected sibs in the case that both marker loci are un-
linked to the disease; that is, sq = (1/2)2+1 iI + li-1l In total,
we considered eight different statistical procedures to de-
cide between Ho: (s,,)ij=0,1,2 = (shXj=O,1,2 and H1: (s#)ij=O,1,2 #
(s)ij=0,1,2. The nominal significance level was a = .0001 for
each considered test. This roughly corresponds to the sig-
nificance level of a maximum lod score of 3.0, which is tra-
ditionally employed in classical linkage analysis (Ott 1991).

If both parents possess a different heterozygous geno-
type at each marker locus, then for each sib pair the num-
ber of marker alleles IBD can be determined unambi-
gously. Let nij (i, j=0, 1, 2) denote the observed number of
sibs sharing i and j marker alleles IBD at the first and sec-
ond marker locus. ni. (i=0, 1, 2) and n., (j=0, 1, 2) are the
marginals of this observed distribution.
The first two statistical tests we considered use each marker

locus separately and reject Ho if there is evidence for linkage
for at least one marker locus. In other words, Ho is rejected if
at least one of the null hypotheses Ho: ( sO., S2.) = (14, 1/2, 1/4)
and Ho: (S.0, S.1, S.2) = (1/4, 1/2, 1/4) can be rejected at a significance
level a*. If both marker loci are unlinked to the disease, the
observed numbers of markers IBD at each locus are indepen-
dent. Therefore, to assure that the global significance level
does not exceed a, each sin e comparison has to be per-
formed with a* = 1 - 1- a. As has been mentioned in the
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Introduction, different statistical tests have been proposed for
single-marker IBD data on affected sibs. There is no test that
is uniformly most powerful for all possible alternatives. But
when we compared the power of the Tl,, test of Schaid and
Nick (1990) with that of the tests of Faraway (1993) and Hol-
mans (1993), we found (authors' unpublished data) that the
power differences are slim over a wide range of considered
alternatives. Faraway's test seems to be, on average, slightly
more powerful. For any specific alternative, the most powerful
test can be easily calculated (Knapp 1991). The difference in
power between the test that is optimal in a given situation and
a test that does not rely on the knowledge of the alternative
can be regarded as the price for not knowing the underlying
mode of inheritance. We observed that the maximum value of
this difference was smallest for Holman's test. Therefore, we
applied this test and the unrestricted likelihood-ratio test in
the current context.

One-sided, unrestricted single-marker likelihood-ratio
test (TI). -For the first marker locus, this test is based on

2 12

TV(no., n1., n2.) := 2 In(J1 (Z)ni/fl (z?)ns.)
in= i=o

(and on an analogously defined VI for the second marker

locus), with (i0, $i, ^2) := (no./n, n1./n, n2./n) denoting the
unrestricted maximum likelihood (ML) estimator for (so.,
s1., S2.) and with (zo, zo, zo) = (1/4, 1/4) denoting the single-
marker IBD distribution in the case of no linkage. Because
s2.> so. in the case of H', we used a one-sided version of
this test; that is, we declared the test to be significant if n2.
> no. and TI(no., n1., n2.)> c(n, a*). Asymptotic theory pre-
dicts that the critical value c(n, a*) can be approximated by
the (1-2a*) quantile of the X2 distribution with 2 df. For
our rather small a*, this approximation cannot be ex-
pected to behave very soundly for n <100. Therefore, we
preferred to calculate the exact value for c(n, a*). Note
that because of the discreteness of the distribution of T1,
it is not possible to exhaust the nominal a level completely,
without relying on randomized tests. For practical reasons,
we decided not to consider randomized tests. Therefore,
the true size of the test usually will be smaller than its no-
minal size.

Restricted single-marker likelihood-ratio test (T2).
Throughout this paper, we assume that the number of
marker alleles IBD can be determined unequivocally.
Then, the ML estimator z restricted to the possible trian-
gle {(zo, z1, Z2): 2zO<z1, z1½<}/2 can be shown to be

no. 1 n2.

2(no.+n2.) 2' 2(no.+n2.)J

1l 1 1\

[nO. + nl. 2(no. + nli.) n2.

3n ' 3n ' n

1 1 1

4 '2 '4

n n n

for 2n,. > n

for 2n,. > n

for 2no. > ni.

for 2no. > ni.

and n2.> no.

and n2. 4 no.

and 4n2.> n

and 4n2. < n

otherwise

for the first marker locus (and analogously for the second
marker locus).
Under Ho, the likelihood-ratio-test statistic

2 12

T21(noni.5 n2.) := 2 In /
i=O i=O

for the first marker locus (and, analogously, T2 for the sec-
ond marker locus) is asymptotically distributed like a mix-
ture of %2 distributions with 2, 1, and 0 df (Holmans 1993).
The information matrix equals

(8 :Y
t4 6}

Therefore, an approximation of the critical value is given
by K satisfying the equation

a* = .5P(X 2>K) + 2P p(X2>K),

with cos p = V3 (for details, compare with appendix B of
Holmans [1993]). But, again, this approximation led to a
liberal test, and therefore we used the exact critical value.
The remaining tests consider the information at both

marker loci simultaneously.
Two-sided, unrestricted two-marker likelihood-ratio test

(T3).-This test rejects Ho if
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T3[(n2)i~i=o,1,2] := 2 In( 11 (Zi )Hi [I (Z°q n'i
i'i=o i'i=o

is greater than %8,1-a (which is 31.8276 for a = .0001),
where Z4#:= nji/n is the ML estimator for sij.

One-sided, unrestricted two-marker likelihood-ratio test
(T4).-There are different possibilities for transforming
the unrestricted likelihood-ratio test into a one-sided test.
We considered a version that rejects Ho only if the number
of sibs sharing both alleles IBD at both loci exceeds the
number of sibs sharing no alleles IBD at all, i.e., n22> noo
and T3 > X2,1-2a (=30.1359 for a = .0001).
T3 and T4 can be expected to suffer from their large

number of df. One way to circumvent the problem of esti-
mating a large number of multinomial cell probabilities is
to presuppose a certain structure for these probabilities,
thereby reducing the number of parameters (Bishop et al.
1975). This procedure can prove advantagous even if the
cell probabilities do not coincide with the assumed struc-
ture. A natural selection for this structure in the present
context is to assume that both loci are acting multiplica-
tively; that is, sij = si. * s, for all i, j = 0, 1, 2. (Note that only
models EP-1-EP-3 are really multiplicative.) The restricted
and unrestricted ML estimators for (S#)ij=0,1,2 under the as-
sumption of the multiplicative model are the products of
restricted and unrestricted ML estimators for the margin-
als (si.)1=0,1,2 and (S.,)=0,1,2. The restricted and unrestricted
likelihood-ratio-test statistic then becomes the sum of the
corresponding likelihood-ratio-test statistics at both
marker loci.

Unrestricted two-marker likelihood-ratio test for multi-
plicative model (T5).-Asymptotically,

TS[(nj)ij=o,1,2] := Tl(no., n1., n2.) + T2(n.o, n.1, n.2)

is under Ho, distributed as a mixture of X2 distributions
with 4, 2, and 0 df. The mixing proportions are 1/4, 1/2, and
1/4, respectively. As in the case of T1 and T2, we preferred
to determine the exact critical value by calculation of the
convolution of T' and T2.

Restricted two-marker likelihood-ratio test for multipli-
cative model (T6). -For

T6[(n#)ij=o,1,21 := T21(no.5 n1., n2.) + T2(n.0, n.1, n.2)

it is also possible to calculate the exact critical value in-
stead of using the approximation K satisfying

(2 2ti(c
+ I1-,)+1P(X2>K) +2 P p(X>K)k2iE 7l 4,1 2iE

+(P )p(X2,)

Two-marker mean test (T7).-For single-locus marker
data, the so-called mean test (Blackwelder and Elston
1985) is a well-known and easy-to-apply statistic. It is
straightforward to extend this test to simultaneously in-
corporate two-locus marker data. The test statistic then
becomes the total sum of marker alleles IBD at both loci;
that is,

2

T7[n#y)i,i=o,1,2] 2:= (i~j) nij -
ij=0

Because of the symmetry of the distribution of T7 under
Ho, it can be expected that asymptotic approximations for
the determination of critical values will behave quite well
even for small a. Nonetheless, we again preferred to deter-
mine exact critical values.
As in the case of single-locus marker data (Knapp 1991),

the test statistic of the most powerful test against a speci-
fied alternative s := (s,,)ij=0,1,2 can easily be shown to be a
linear combination of (n,,)ij=0,1,2, with weights depending
on the alternative s; that is,

2

TSopt[(n#j)i,j=o,1,2] 2:= Cij * nii,
i,j=0

with c,1:= ln(s#1/s°B). To determine the critical value of this
optimal test proves to be quite difficult. Whereas it is
straightforward to calculate the mean and variances of
T p, under Ho, we observed that critical values obtained
by the normal approximation of the distribution of T'p,
under Ho are of no practical value, because for most of the
considered models they led to an extremely conservative
test. On the other hand, in general it seems intractable to
determine the critical values by calculating the exact dis-
tribution of TPO. This approach would require evaluation
of T p, for each possible sample (n#)ij=o,1,2. For sample size
n, the total number of different samples is ("+8), which is
-3.52. 1011 for n = 100. But this complexity is reduced

for symmetrical models (i.e., s#, = s,, for all i, j = 0, 1, 2).
Remember, all but EP-2, EP-4, Het-2, and S-2 of the 12
models in table 2 are symmetrical. Since we have cii = ci
for symmetrical models, it is then possible to collapse the
nine different cells into just six cells, thereby reducing the
number of different samples to ("nS), which is -9.66. 107
for n = 100 and therefore is within the limits of feasibility.
Each of the nonsymmetrical models was approximated
by a symmetrical one by simply substituting s#, with
(s#e+s#)12.
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Results

True Type I Error
Figure la-g presents the estimated true type I error

probabilities for the analysis strategies T1-T7. These esti-
mators are based on the relative frequency of significant
samples, of 106 simulated replications for each sample size
n. The agreement between the nominal type I error rate of
a = .0001 (dotted line) and the estimated true type I error

rate is quite good for the unrestricted (Ti) and restricted
(T2) single-marker likelihood-ratio tests as well as for the
unrestricted (T5) and restricted (T6) two-marker likeli-
hood-ratio tests, for the multiplicative model. However, it
is also clearly visible that the determination of critical val-
ues for the two-sided (T3) and one-sided (T4) unrestricted
two-marker likelihood-ratio tests leads to an anticonser-
vative test; that is, for sample sizes >30 sib pairs, both tests

possess a true type I error rate, which is clearly >.0001.
For the two-marker mean test (T7), the difference between
its true and its nominal type I error rate reflects the fact
that this statistic has a rather low resolving power (there
are only 4n + 1 different possible values for this test statis-
tic), and therefore it is quite impossible to exhaust the pre-

described a level without resorting to randomized tests.

The true type I error of TOpt belonging to the IBD distri-
butions of table 2 is shown in figure 2a-1. For all the sym-

metrical models, the agreement with the nominal a level
of .0001 is quite satisfying. The same holds true for the
nonsymmetrical models Ep-2 and Ep-4, whereas for Het-
2 the predescribed a level seems to be incompletely ex-

hausted. For S-2, there is a clear indication that the simple
approximation we used resulted in an anticonservative
procedure.

At this point, it seems necessary to resolve what appar-

ently is a contradiction in the results presented so far.
Knapp et al. (1994) have shown for single-marker-locus
data that the mean test is optimal in the case of a recessive
disease. With a similar argument it can be proved that for
two-marker-locus data, the two-marker mean test is opti-
mal if both disease loci are recessive and equally contribute
to the disease. But this is exactly the disease model EP-3.
Therefore, the optimal test for EP-3 and the mean test
should be identical. A comparison of figure ig (true error

rate for the mean test) with figure 2c (true error rate for the
optimal test against EP-3) reveals that there are differences.
The explanation for these differences is that the weights of
the optimal test were calculated using the values (sjj)jj=0 1 2
presented in table 2. However, these values are necessarily
only rounded values. Whereas the magnitudes of the
differences between these rounded values and the "true"
sij are rather small, these small differences are sufficient for
the "optimal" test belonging to the rounded values to dis-
tinguish between samples that have identical values by the

mean test. Therefore, the "optimal" test better exhausts
the nominal a level.

Power
The power of the different analysis strategies for the 12

genetic models is shown in figures 3-5. From these figures,
the answer to the first question formulated in the Intro-
duction is quite obvious. There is indeed a gain in power
by considering both marker loci simultaneously. This gain
can neither be obtained by using the two-sided (T3) nor
the one-sided (T4) two-marker likelihood-ratio test. De-
spite their inflated size (fig. 1c and d), the performance of
both of these tests is still rather poor. However, T5-T7
clearly show an increase in power, compared with single-
marker analysis. This superiority is most pronounced for
the multiplicative models Ep-1, Ep-2, and Ep-4, as could
be expected in theory. But even for the remaining non-
multiplicative models, generally there is a clear visible gap
between the power curves for TS-T7 and the curves be-
longing to the other tests. The only exception is Ep-4, for
which T2 performs nearly quite as well as do T5 and T7.

For each model, T5 is less powerful than are T6 and T7.
Only for Ep-4 is there a clear advantage of T6 over T7. For
models Ep-6, Het-3, and S-2, the tests T6 and T7 have
quite similar power curves, whereas for the remaining
models T7 is more powerful than T6. In summary, T7
shows the best performance of all considered tests, which
then answers the second question posed in the Introduc-
tion.
A comparison of the power curve of T7 and the power

curve of the optimal test for each model shows that the
range of a possible improvement in power is generally
rather small. The exceptions are models Ep-4 and S-2.
However, for model S-2 we have to remember that the
optimal test is too liberal (fig. 2k).

Discussion

For mapping diseases governed by two unlinked loci,
Schork et al. (1993) have shown that parametric two-
marker-locus linkage analysis can provide substantially
more linkage information than can standard lod-score
analysis. This motivated us to perform an analogue com-
parison with the affected-sib-pair method. Our findings are
similar to those of Schork et al. (1993) in that there is a
pronounced superiority of appropriate two-marker tests,
with respect to power. Whereas the utility of parametric
two-marker-locus linkage analysis is hampered by the
availability of a suitable segregation model and by compu-
tational feasibility, both of these problems are nonexistent
in the context of affected-sib-pair data. The two-marker
mean test, which in general showed the best performance
for the models considered in the present paper, can be eas-
ily calculated. The power of this test is only slightly smaller
than the optimal achievable power for a given model.
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As described in the Methods section, the underlying as-

sumptions for the power calculations presented in figures
3-S are (1) that the number of marker alleles IBD can be
determined unequivocally for each sib pair and (2) that
each marker locus is completely linked to one of the dis-
ease loci (i.e., 01 = 02 = 0). Obviously the power will de-
crease if at least one of these assumptions does not hold.
When the marker is not 100% polymorphic, the investi-

gator has the choice between two principal options. First,
one can try to modify the two-marker tests proposed in
the present paper so that these tests can also include sib
pairs for which the IBD score is not known with certainty.
For single-marker sib-pair data, this has been done by
Risch (1990) and Holmans (1993). Note, however, that
such a modified test necessarily relies on the marker allele
frequencies. As has been clearly worked out by Babron et
al. (1993), rejection of the null hypothesis by any linkage
method that assumes the marker allele frequency to be
known means either that there is linkage or that the as-
sumed marker allele frequencies are wrong. The second
option is to leave the test unchanged but to use only fami-

lies for the statistical analysis for which the IBD score can

be determined unequivocally. For marker loci not com-

pletely polymorphic, the set of families used for statistical
analysis then will be only a subset of the families originally
sampled. It is straightforward to calculate the probability
that a sampled family can be used (i.e., that both parents
at both marker loci are heterozygous with different geno-
types), given the frequency distribution at the marker loci.
For example, if each marker locus possesses m = 6 equally
frequent alleles, this probability is P = .42, whereas form
= 10, P = .63, and for m = 20, P = .81.

In the Appendix, the degree of the loss of power in-
duced by nonzero recombination fractions between
marker and disease loci is quantified for the two-marker
mean test. It is shown that if 01 = 02 = 0 > 0 the sample
size has to be increased by roughly the factor 1/(1-20)4,
to obtain the same power as for 01 = 02 = 0. As an exam-

ple, the sample size has to be increased by 17.7% if 0 = .02
and by 52.4% if 0 = .05.
What are possible further limitations of our findings?

First, the major disadvantage of all simulation studies is
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Figure 4 Simulated powers of the optimal test and of analysis strategies T1-T7 for genetic models Ep-5, Ep-6, Het-1, and Het-2

that the results are restricted to the particular situations
simulated (Elston 1989). Although we believe that we eval-
uated the different analysis strategies for a fairly wide vari-
ety of two-locus disease models, this principal objection
can never be overcome by any simulation study. Second,
we exclusively devoted our attention to genetic models
with two disease loci. These kinds of models acquired
some popularity in the literature when the adequacy of
single-locus approximations for a more complex mode of
inheritance was questioned. In this context, it seems rea-
sonable to argue that a two-locus disease model represents
the worst case of all oligogenic models (Vieland et al.
1992). However, this is no longer true for the problems
discussed in the present paper: If there are two marker loci
considered simultaneously, a two-locus disease model rep-
resents the most favorable case of all oligogenic models.
Additionally, we assumed both disease loci to contribute
equally to the prevalence of the trait. Again, this assump-
tion favors the superiority of the proposed two-marker
analysis strategy. It should be quite evident that the inclu-
sion of a second marker linked to the disease but with only

a very small effect on the disease may also decrease the
power of the linkage analysis. With these restrictions in
mind, we nonetheless conclude that two-marker locus
methods for affected-sib-pair data provide an enrichment
of the arsenal of existing methodological tools for map-
ping genetic diseases.
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Appendix

Assume that the two-locus segregation model is fixed.
Then, the induced joint distribution of IBD scores in
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affected sib pairs s(01, 02) = [S,(01, 02)],,j=0,1,2 only depends
on the recombination fractions ok between the kth disease
and marker locus (k=1, 2).

In case of Ho (i.e., 01 = 02 = 1/2), the standardized two-

marker mean test statistic

T7- E(01=1/2,02=1/2)T7
VVar(o,=1/2, 02=1/2)T7

= n.[2s2.(01, 02)+Sl.(0l, 02)+2s.2(01, 02)+S.1(01, 02)]

and

E(ol=1/2,02=/2)T7= 2n;

Var(ol=1/2,02=l/2)T7= no

is asymptotically standard normal distributed, whereas in

case of H1, V, is asymptotically normal distributed with

E(E1,02,T7- E(ol=1/2,O2=l/2)T7
E(O,,O2)Vn = lVar(o1=1/2, 02=1/2)T7

Let 11k :=0 + (1- Ok)2, k = 1, 2. We have (Suarez et al.
1978)

s2.(01, 02) = (1-_jj)2sO.(0, 0)

+ wi(l1-y)s1.(O, 0) + x2s2 (0, 0),

and Sl.(01, 02) = 2W1(1-l)so.(0, 0) + (iiN+(1-xf)2)si.(0, 0)

Var(o1,,2)Vn = Var(0,102)T7/Var(o=1/2, 02=/2)T7. + 2y1(1-Wl)s2.(05 0)

and analogous relations for s.2(01, 02) and s.1(01, 02).
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After some algebra, this shows

E(e1,02)T7/n = (2V1-1)(2s2.(0, O)+Sl.(O, 0)-l)+1

+(2XV2-l)(2s.2(0, O)+S.1(O, 0)-l)+l.

Now assume 01 = 02 = 0, which implies 1V = V2 = a. It
follows that

E(ol,02)Vn = (2yJ-l)E(O,O)Vn = (1-20)2E(oo)Vn

Therefore,

E(01e02)Vn' = E(O,O)Vn if n' := n/(l - 20)'. (Al)

The variance of Vn is also affected by (01, 02). By ignoring
this dependency, equation (Al) shows that in case of non-
zero recombination fraction, a sample size of n/(l-20)4
gives approximately the same power for the two-marker
mean test as can be obtained by sample size n for com-
pletely linked markers.
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