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Abstract
This introduction to the special issue of Neurotoxicology and Teratology on “Risk of neurobehavioral
toxicity in adolescence” begins by broadly considering the ontogeny and phylogeny of adolescence,
and the potential value of animal models of adolescence. Major findings from the emerging
neuroscience of adolescence are then highlighted to establish the importance of studies of adolescent
neurotoxicity. A variety of methodological issues that are of particular relevance to adolescent
exposures are then discussed. These include consideration of pharmacokinetic factors, inclusion of
other-aged comparison group(s), and issues involving timing, route of administration, and exposure-
induced alterations in growth rate. Despite such methodological challenges, research to determine
whether adolescence is a time of increased vulnerability (or greater resiliency) to specific drugs and
environmental toxicants is progressing rapidly, as exemplified by the work presented in the articles
of this special issue.
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Most of what we know about neural and behavioral consequences of developmental exposure
to drugs and other chemicals is based on exposures during the prenatal and early postnatal
period, with little emphasis on exposure periods that subsume adolescence. With the increasing
recognition that adolescence is a time of considerable neural restructuring and sculpting of the
brain (for review, see Spear, 2000), there likewise has been a growing interest in assessing
whether this developmental transition is a vulnerable period for neurotoxicity. This special
issue is designed to highlight research examining “the question of whether adolescence is a….
(time) of enhanced neurobehavioral toxic risk associated with exposure to drugs of abuse,
therapeutic drugs, hormones and environmental toxicants.” By presenting examples of the
emerging research in this area, the goal of the special issue is to encourage additional high
quality work in this area, and to draw attention to Neurotoxicology and Teratology as an outlet
for this research.
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To set the stage for the research presented in the special issue, this introduction will begin by
considering the ontogeny and phylogeny of adolescence, and the value and limitations of
animal models of adolescence. Major findings from the emerging neuroscience of adolescence
will then be highlighted to establish the importance of studies of adolescent neurotoxicity.
Following this foundation, methodological considerations of particular importance to work
involving adolescent exposure periods will then be addressed.

Adolescence: ontogeny, phylogeny, and the use of animal models
Adolescence consists of a series of characteristic alterations that are seen during the transition
from immaturity/dependence to maturity/independence. Among the physiological transitions
seen at some point during this broad developmental period are puberty and its concomitant
hormonal and physiological changes, along with a considerable growth spurt. As discussed
later, the brain of the adolescent also undergoes pronounced sculpting and modification.
Adolescence is likewise characterized by expression of a number of typical behavioral features,
such as increased novelty seeking and risk taking (Irwin, 1989;Trimpop et al, 1999) and a shift
in social affiliation towards more peer-based social interactions (La Greca et al., 2001). It is
during adolescence as well that many individuals begin experimenting with alcohol and other
drugs. Alcohol use becomes normative, with per episode alcohol intakes among adolescent
drinkers averaging about twice those of adult drinkers (SAMHSA, 2004).

The developmental stage of adolescence is not uniquely human. Developing organisms from
other species likewise undergo adolescent-typical transitions that include pubertal changes and
a growth-spurt, along with expression of certain adolescent-typical behavioral patterns (see
Spear, 2000, for review). For instance, even when considering a simple animal model of
adolescence in the rat, animals undergoing this transition exhibit more risk taking, novelty-
seeking, and peer-directed social interactions than adults (e.g., Douglas et al, 2003,
2004;Stansfield & Kirstein, 2006). Adolescent rats also voluntarily consume 2–3 times more
alcohol relative to their body weight than adults under a number of circumstances (Brunell &
Spear, 2005;Doremus et al, 2005) and find social peers (Douglas et al, 2004), novelty (Douglas
et al, 2003) and nicotine (Vastola et al, 2002) more rewarding than their adult counterparts.

Similarities across species in adolescent-typical physiological and behavioral characteristics
are consistent with the notion that adolescence has been a highly conserved developmental
stage during evolution (Savin-Williams & Weisfeld, 1989), with a number of specific
adolescent-typical behavior patterns postulated to confer adaptive significance (see Spear,
2000, for discussion). Across-species similarities in physiological and behavioral attributes of
adolescence provide reasonable face and construct validity for the use of animal models to
study potential neurotoxic effects during adolescence. That is not to imply, however, that all
consequences of human drug or toxicant exposures can be modeled in non-human animals. Of
course, no other species demonstrates the full complexity of human brain and behavior evident
during adolescence (or at any stage of life, for that matter). It is only through consideration of
the specific neurotoxic features targeted for examination that it can be determined whether they
can be examined effectively using animal models, and what animal model would be most
appropriate.

A critical issue when assessing consequences of drug/toxicant exposure during adolescence is
the timing of the exposure period. This is often not straightforward, in that there is no single
event that signals the onset or offset of adolescence in any species, with notable individual
differences in timing driven in part by genetic differences, gender, and nutrition, along with
other environmental factors (e.g., Frisch, 1984;Kennedy & Mitra, 1963). For example,
although the adolescent period in humans has been considered by a variety of developmental
researchers to typically span the age range from 12–18, some emerging signs of adolescence

Spear Page 2

Neurotoxicol Teratol. Author manuscript; available in PMC 2008 January 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



may begin as early as 8–10 (especially in females), with other characteristic features lasting
until 25 years or later (Baumrind, 1987;Parker, 1991). The precise timing of adolescence defies
absolute categorization in other species as well. In rats, the age range from 28–42 days postnatal
has been conservatively classified as adolescence, based on timing of age-specific behavioral
changes, neural changes in brain, puberty, and the growth spurt. Yet, again some harbingers
of adolescence may begin in females as early as 23 or so days postnatally, with some residual
signs perhaps lasting until 55 days or so in males (see Spear, 2000). Thus, to ensure that an
exposure period blankets the entire adolescent period in rats of both sexes, it might be necessary
to begin shortly after the conventional age of weaning and continue until at least 55 days or
so. Depending on the research questions under investigation, more restricted exposure periods
may sometimes prove useful for revealing particular portions of the adolescent period as times
of enhanced neurotoxic vulnerability relative to other adolescent intervals (e.g., see work by
Abreu-Villaca et al, 2003a,b;Adriani et al, 2002,2003,2004). Unfortunately, some research
purported to be focused on adolescence tests animals outside of such age ranges, with often
little evidence provided to justify the chosen ages. At this early stage in the study of adolescent
neurotoxicity, it seems critical to carefully consider the age range chosen for investigation, and
to provide clear justification for that age span.

The neuroscience of adolescence
Despite some early evidence for notable ontogenetic dissociations in behavior and
psychopharmacological sensitivity during adolescence (e.g., Spear & Brake, 1983), it has only
been within the last decade or so that studies of neural development have begun to include a
focus on adolescence. The increasing emphasis on research investigating brain maturation
during adolescence is evident both in studies using animal models and in work with developing
humans, the latter of which has been aided considerably by rapid advances in imaging
technology that permit non-invasive assessment of human brains without the use of
radioactivity. Both the imaging work in humans and the often more detailed neuroanatomical
assessments emerging from studies with laboratory animals have revealed a surprising degree
of neural sculpting during adolescence, with notable similarities in the brain regions affected
often emerging across a variety of species (see Spear, 2000, in press).

Prominent among the neural alterations seen during adolescence is a substantial culling of
synaptic connections, with close to 50% of the synaptic connections lost in some cortical
regions (Rakic et al, 1994). Synaptic pruning is more pronounced in prefrontal cortex (PFC)
and other neocortical regions than subcortical areas (Rakic et al, 1994). Included among the
synapses undergoing particularly notable pruning during adolescence are those providing
excitatory input to the neocortex (Bourgeois et al, 1994) as well as synapses contributing to
reverberating circuits within particular cortical regions (Woo et al, 1997). This ontogenetic
reduction in excitatory input to cortex and connectivity within reverberating circuitry could
contribute to the reduction and refinement of brain effort during adolescence. Indeed,
adolescence is associated with a considerable decline in brain energy utilization in humans
(Chugani, 1996) and other species (e.g., rats: Tyler & van Harreveld, 1942), with the high rates
of blood flow and the elevated rates of oxygen and glucose utilization seen during childhood
gradually declining through adolescence to reach the lower rates of energy consumption
characteristic of the adult brain.

Progressive myelination of axons results in considerable developmental increases in cortical
white matter through adolescence and into adulthood; myelination serves to accelerate
information flow along axons, and has been presumed to increase overall speed of information
processing within the brain (e.g., Villablanca et al, 2000;Sowell et al, 2003). Although less
prominent and consistent than developmental increases in white matter, ontogenetic declines
in volume of gray matter (cellular regions) are seen in regions such as the frontal cortex (Giedd
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et al, 1999;Rapoport et al, 1999), although some developmental increases in gray matter volume
are reported in other areas (e.g., amygdala and hippocampus - Giedd et al, 1997). Declines in
relative volume of gray matter in particular brain regions may reflect both the culling of
synapses as well as ontogenetic increases in white matter, with overall cerebral volume
remaining about the same from 5 years of age onward in humans (Giedd et al, 1996).

Among the brain regions showing particularly marked ontogenetic alterations during
adolescence is the PFC, with this region showing considerable synaptic culling and a prominent
loss of excitatory input (Rakic et al, 1994;Bourgeois et al, 1994). Developmental studies using
functional magnetic resonance imaging (fMRI) have revealed notable ontogenetic changes in
PFC activation during performance of cognitive tasks thought to index various components of
executive function (e.g., response inhibition, working memory, attention)(e.g., Casey et al,
1998,2000;Luna et al, 2001;Paus, 2005). Such fMRI studies have sometimes revealed declines
in subcortical activation between adolescence and adulthood that are the inverse of the
ontogenetic increases in activation seen in certain frontal regions (Rubia et al, 2000). Indeed,
although substantial emphasis has been placed on alterations in PFC and other regions of
neocortex during adolescence, certain subcortical regions also undergo considerable
remodeling during adolescence as well - especially those regions that form part of an
interconnecting network of circuitry with the PFC - e.g., the amygdala and extended amygdala,
and other dopamine (DA) mesocorticolimbic terminal regions. For instance, projections from
the amygdala to PFC continue to be elaborated through adolescence (Cunningham et al,
2002). The amygdala of the adolescent also shows a different pattern of stress-induced
activation than the adult (Kellogg et al, 1998), with fMRI data as well often revealing
ontogenetic differences in amygdalar activation to emotional stimuli (faces) between
adolescents and adults (e.g., Killgore et al, 2001;Thomas et al, 2001; although see also Pine et
al, 2001).

Among the numerous alterations seen in mesocorticolimbic brain regions during adolescence
are regionally specific ontogenetic alterations in patterns of DA production and utilization,
with estimates of DA synthesis and turnover in PFC being higher early in adolescence than
later in adolescence and in adulthood, whereas DA synthesis and/or turnover estimates in
nucleus accumbens and striatum conversely are lower earlier than late in adolescence
(e.g.,Teicher et al, 1993;Andersen et al, 1997, although see also Leslie et al, 1991). Stressors
would likely exacerbate the shift in DA balance toward even greater mesocortical than
mesolimbic/striatal DA activity during early adolescence, given the greater sensitivity of the
mesocortical DA projection system to activation by stressors (Dunn, 1988). These adolescent-
typical alterations in neurocircuitry involving the extended amygdala and related forebrain DA
terminal regions are likely to be of functional significance for the adolescent. DA projections
to mesolimbic brain regions and the PFC form part of the circuitry critical for modulating risk
taking, novelty seeking, and social behaviors (e.g., Le Moal & Simon, 1991), and for attaching
motivational relevance to natural rewards (such as social stimuli, novelty, food) as well as
alcohol and other drugs of abuse (e.g., Robinson & Berridge, 2003).

As illustrated by these examples, the brain undergoes considerable sculpting and remodeling
during adolescence (see Spear, 2000, for further review). During this transformation, the brain
must support critical adolescent behaviors and the marked physiological and hormonal
transformations of this age period, while also serving as the substrate for the eventual
emergence of the mature brain. This adolescent-typical remodeling of brain could provide a
relatively delayed window of opportunity to sculpt the brain to match the environmental
circumstances encountered by the organism as it approaches maturity (see Andersen, 2003).
Indeed, the greater capacity for synaptic remodeling seen developmentally through
adolescence diminishes markedly following adolescence (Gan et al, 2003).
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The question remains, however, as to whether the neural alterations occurring during this
developmental phase are unusually sensitive to disruption by specific drugs or toxicants, or
whether this remodeling reflects a window of opportunity for unusual plasticity and recovery.
It seems likely that the answer may vary with test substance, duration and timing of exposure,
and the target measures being examined. On the one hand, evidence is beginning to emerge to
support the suggestion that, for certain drugs, adolescence may be a time of enhanced
neurotoxic sensitivity relative to adulthood (e.g., for reviews see Slotkin, 2002;Smith, 2003).
Yet, there are also some intriguing signs that under certain specific circumstances, the
adolescent brain may perhaps show unsuspected resiliency to neurotoxic insult. For instance,
there is a recent report that changes in mRNA expression patterns seen following chronic access
to alcohol in adulthood were not observed following a comparable period of access during
adolescence (Falco et al, 2006). Substantially more research is needed to determine the
generalizability of these reports of adolescent-specific vulnerabilities and resiliencies, and to
characterize under what exposure and test circumstances these effects are observed. There are
a number of methodological challenges inherent in such work, as outlined in the next section.

Methodological considerations in studies of adolescent neurotoxicity
When conducting research to examine adolescent neurotoxicity, a number of issues arise that
are often less relevant to exposures at other points in the lifespan. Some of these potential
difficulties can be relatively easily accommodated when developing the experimental design
or methods to be used in particular studies. Other issues may be difficult to address at the design
level, but are important to consider when interpreting and drawing conclusions from adolescent
exposure data.

Other-aged comparison group(s)
Determining that a given drug or environmental toxicant produces lasting effects following
chronic exposure during adolescence may not be particularly meaningful without one or more
comparison groups exposed to an equivalent amount of the substance at another age. That is,
in the absence of another-aged comparison group(s), even if long-term consequences of
adolescent exposure are observed, those effects could reflect either an enhanced, equivalent or
reduced neurotoxic potential during adolescence relative to exposure at maturity or some other
point in the lifespan. Hence, to draw conclusions regarding whether neurotoxic risk to a
particular substance is increased during adolescence, outcomes of adolescent exposures must
be compared with equivalent exposures conducted during some other phase(s) of the lifespan.
At first glance, this approach seems to vary from prenatal studies in neurotoxicology where a
single chronic exposure period may be targeted. Yet, prenatal studies inherently contain an
other-aged comparison group: the pregnant female That is, consequences of prenatal exposure
to a test substance can only be assessed at exposure levels that, by necessity, are not toxic to
the dam.

Issues of timing
Research in prenatal toxicology has revealed that the timing of the prenatal exposure may
critically influence the findings obtained, with as little as a one day difference in drug exposure
sometimes resulting in markedly different outcomes (e.g., see Vorhees, 1987). The same may
prove to be true within the adolescent period as well. Although there is little if any research
that has directly examined variations in neurotoxic sensitivity within the adolescent period,
there is evidence that neural transformations and pharmacological sensitivities vary
considerably from early to late adolescence. For instance, based on neurochemical evidence it
has been postulated that there is a shift in balance within the mesocorticolimbic dopamine
system during adolescence (Spear, 2000;Andersen, 2003), with greater mesocortical DA
activity early in adolescence preceding a shift to greater DA activity in mesolimbic regions
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such as the nucleus accumbens later in adolescence (see Spear, 2000, for review). Early
adolescence has been shown to be a time of particular marked adolescent-typical alterations
in psychopharmacological sensitivity to ethanol (Varlinskaya & Spear, 2004;2006) and
nicotine (Adriani et al, 2002;Abreu-Villaca et al, 2003a,b;Adriani et al, 2003; but see also
Adriani et al, 2004).

When considering timing of neurotoxic exposures within adolescence, it is also important to
consider sex differences and the timing of puberty within the broader adolescent period.
Pubertal transitions often occur relatively early during adolescence, with females tending to
mature more rapidly and proceed through puberty earlier than males in humans (Van Vliet,
1991;Wheeler, 1991) and other species (e.g., Weisfeld, 1979;Odell, 1990). To the extent that
exposure to a particular drug/toxicant influences pubertal-related neural systems or other neural
alterations whose pacing differs between males and females, sex differences in timing of
developmental vulnerabilities to neurotoxic effects may emerge. Thus, different conclusions
regarding the relative sensitivity of males versus females to neurotoxic effects during
adolescence could emerge depending on when that exposure period occurred within the broader
adolescent period.

One design issue that plagues research that compares outcomes following exposures at different
ontogenetic stages regards the potentially confounding variables of time and age. That is, when
animals are exposed to a substance at different ages, one must decide whether to test animals
following the same post-exposure recovery interval, hence confounding age at the time of
testing across exposure groups, or to test animals at the same ontogenetic age, with a resultant
confound across groups in the time from exposure to test. Recovery time and chronological
age are both critical variables. Certainly in the literature examining consequences of
withdrawal from chronic drug exposure in adulthood, the interval between drug termination
and test has been shown to crucially influence measures of neurobehavioral function (e.g.,
Bienkowski et al, 2004;Lu et al, 2004). Chronological age, even within adulthood, has likewise
been shown to impact various neural and behavioral measures (e.g., Benes, 1994). The decision
of post-exposure-to-examination interval is not a trivial one. Consider, for example, the
regionally- and time-specific nicotinergic receptor up regulation that emerges following
nicotine exposure in adolescence versus adulthood (Trauth et al, 1999). If this work had instead
focused on only a single brain region and sacrifice interval, the data obtained could have
supported the conclusion that nicotine exposure in adolescence induces more receptor
upregulation than in adulthood, or less up regulation, or even equivalent upregulation at both
ages - depending on the specific brain region and sacrifice interval chosen for examination.

There are a number of possible strategies for addressing the potential confound of age versus
exposure-to-test interval in studies comparing neurotoxicity in adolescents and adults. One
approach is to test two different groups of developmentally exposed animals - one following
the same post-exposure recovery interval as adult-exposed animals, and the other at the same
chronological age as the adult-exposed animals. Whether this approach justifies its costs (both
financially and in terms of animal resources) may depend on project goals and stage of
investigation of the developmental neurotoxicity of the substances. When such a design is not
used, conclusions should be tempered by recognition that the variable chosen for confounding
may have contributed to the effects observed.

Pharmacokinetic issues
One challenge when attempting to compare outcomes of drug/toxicant exposures conducted
in adolescence with those at other ages is pharmacokinetic. It is difficult to determine if
adolescents are at increased risk relative to more mature animals for some particular
consequence in the absence of pharmacokinetic information. For instance, consider a
hypothetical study where adolescents were found to develop marked neurotoxicity to a test
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substance at an exposure level that did not induce neurotoxicity in adults. While it would be
tempting to conclude from such findings that adolescents are more sensitive to neurotoxic
consequences of the substance than adults, this conclusion could be premature. For instance,
it could be the case that metabolism of the test substance into inactive metabolites occurs
substantially more slowly in adolescents than adults, resulting in brain levels of the test
substance that are notably higher among the adolescents, and that it is these elevated brain
levels that are responsible for the greater neurotoxicity. Administration of equivalent doses
across age does not necessarily mean that exposure levels are equivalent. Unfortunately, studies
comparing brain (or even blood) levels of drugs/toxicants following exposures at different
stages of ontogeny are infrequent.

There is evidence that under a number of circumstances adolescents tend to metabolize drugs
and other substances more rapidly than adults. Resting metabolic rate is inversely related to
body weight (more accurately, body surface area - Schmidt-Nielsen, 1972), and hence is higher
during adolescence than in adulthood (Iossa et al, 1999). Rates of metabolism of a variety of
drugs tend to be slightly elevated as well in adolescents relative to adults (e.g., McCarthy et
al, 2004). This may be related in part to the greater hepatic capacity and more efficient renal
mechanisms relative to their size that juveniles have when compared to adults; both of these
factors could contribute to faster elimination of drugs using these pathways by juveniles than
adults (Geller, 1991).

For test substances that distribute in body water, distributional factors also would tend to
support lower blood levels in organisms prior to maturity, given that percentage of body water
(and hence relative volume of distribution) is inversely related to body weight and hence
declines ontogenetically (Wiberg et al, 1971;York, 1983). Basing drug doses on body weight
may also bias for relatively larger exposure levels in adults than immature animals. As animals
grow, increases in body weight are more marked than increases in body surface area, although
the latter is more closely related to overall metabolic rate than body weight (e.g., Schmidt-
Nielsen, 1972). Hence, as size increases ontogenetically, drug doses based on body weight rise
faster than if they were based on surface area, amplifying dose effects relative to overall
metabolic rate in larger (e.g., adult) animals relative to their smaller (e.g., adolescent)
counterparts.

Although age differences in drug levels exerted by these pharmacokinetic factors in
conglomerate are often surprisingly slight (see discussion below), when significant differences
emerge, they tend to produce lower functional drug concentrations in adolescents than adults
following administration of the same exposure dose. Under such circumstances, any greater
sensitivity of adolescents to neurotoxic effects would seemingly occur despite the tendency
for lower exposure levels. Indeed, this strategy of determining whether adolescents display
enhanced neurotoxicity relative to adults despite measured (or assumed) lower functional drug
concentrations among the adolescents seems to implicitly, if not explicitly, underlie much of
the research in this area. This strategy relies on at least two assumptions. One is that
neurotoxicity is monotonically related to dose; should dose and neurotoxicity be related by a
U- or J-shaped function (e.g., Calabrese & Baldwin, 2002), though, greater damage could
emerge at lower than higher neural concentrations of the drug. Another necessary assumption
with this approach is that metabolites of the drug are inactive, or at least less active than the
parent compound; this is not necessarily the case with all drugs (e.g., consider the active
nicotine metabolite, cotinine - see Slotkin, 2002, for discussion).

Pharmacokinetic issues during ontogeny have been examined most systematically with
ethanol. Rates of ethanol metabolism increase developmentally to reach a peak or plateau
during adolescence (Silveri & Spear, 2000), with adolescent animals sometimes (Holstedt et
al, 1977; Brasser & Spear, 2002) but not consistently (Kelley et al, 1987;Silveri & Spear,
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2000) observed to have slightly but significantly faster rates of ethanol metabolism than mature
animals. Any slight difference in ethanol metabolism between adolescents and adults rarely
results in different blood alcohol levels following injection of low-to-moderate doses of ethanol
(e.g., Varlinskaya & Spear, 2002), however, and is generally insufficient to account for the
attenuated sensitivity shown by adolescents to many acute effects of ethanol (e.g., see Silveri
& Spear, 2000). There are also some ontogenetic differences in ethanol distribution rates that
emerge in male rats following fairly high doses of ethanol, with the distribution phase taking
longer in adult males than adolescent animals (and adult females). As a consequence, clearance
is delayed, with the net result that the overall amount of ethanol to which the adult males are
exposed (i.e., area-under-the-curve) is greater relative to the total exposure levels of adolescent
animals and adult females (Varlinskaya & Spear, 2004).

Similar findings have been reported with nicotine. At infusion rates of 3–4 mg/kg/day for
adolescents and 5 mg/kg/day for adults, Slotkin (2002) reported that adults had proportionally
greater plasma levels of both nicotine (3–4 fold greater) and the nicotine metabolite, cotinine
(2–3 fold greater) than adolescents. Evidence for a sex difference also emerged among the
adolescents, with males and females having similar levels of both nicotine and cotinine despite
the lower nicotine infusion rate reached in males (3.0 mg/kg/day) relative to females (3.6 mg/
kg/day) when samples were collected at the end of the infusion period (Slotkin, 2002). Thus,
adolescents appear to metabolize nicotine somewhat more rapidly than adults, with female
adolescents tending to metabolize nicotine even more rapidly than their male counterparts.

There are a few other scattered reports of developmental differences in pharmacokinetics. Brain
levels of amphetamine were found to be lower in pre-adolescent (postnatal day 25 [P25]) rats
than adolescent (P35), post-adolescent (P45) and adult rats, and with a trend for lower brain
amphetamine levels among the adolescent than the older animals as well (see Spear & Brake,
1983). Likewise, 15 minutes following acute administration of cocaine, adolescent mice have
been reported to have lower levels of cocaine and higher levels of the cocaine metabolite
benzoylecgonine (BZE) than adults (McCarthy et al, 2004). Blood levels of the selective
serotonin reuptake inhibitor (SSRI) fluoxetine tend to decline more rapidly in adolescents than
adults, with a trend for lower levels of norfluoxetine, an active metabolite of fluoxetine, among
adolescents as well (Brunell & Spear, in preparation). Human adolescents have been reported
to have a shorter half-life for the SSRI paroxetine than adults (Findling et al, 1999), although
no apparent age differences emerged with another SSRI, sertraline (Axelson et al, 2002). Thus,
across a number of different classes of drugs, when differences in blood or brain levels in the
drug emerge between adolescents and adults, lower levels tend to be present among the
adolescents. This generalization is likely to have exceptions, however, and it should not be
assumed that similar ontogenetic findings necessarily would emerge when examining other
drugs/toxicants - particularly when the pharmacokinetic picture is complicated by repeated
exposures.

Indeed, pharmacokinetics of drug metabolism may change with repeated exposure to the drug,
and may do so differentially across age. For instance, whereas both adolescent and adult rats
develop functional tolerance to ethanol-induced social suppression when exposed chronically
to ethanol, Varlinskaya and Spear (in press) have demonstrated that it was only in the adults
that metabolic tolerance could have contributed to this effect. That is, adults challenged with
ethanol following a period of chronic ethanol exposure had lower blood ethanol levels than
adults who had not previously been exposed to ethanol, whereas no difference in ethanol levels
following challenge emerged between chronically ethanol-exposed and control adolescents
(Varlinskaya & Spear, in press). To the extent that metabolic tolerance develops more rapidly
in mature animals than adolescents to other drug or environmental toxicants, over the course
of the chronic exposure period this effect of repeated exposure would tend to diminish age
differences in drug levels produced by other pharmacokinetic factors. Indeed, the lower levels
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of cocaine and elevated levels of the cocaine metabolite BZE seen in adolescent relative to
adult mice were only evident after acute exposure to cocaine, with no evidence of any age
differences in these measures following chronic cocaine administration (McCarthy et al,
2004). Differential emergence of metabolic tolerance (or other pharmacokinetic adaptations)
across age would make it challenging to equate total amount of chronic exposure at different
ages, necessitating caution when interpreting across-age data.

Route of administration
Route of administration and its relevancy to typical human exposure routes is an important
consideration at all exposure ages, although adolescent exposures can sometimes add
additional complexities. For instance, when using osmotic minipumps to administer nicotine,
mg/kg/day release rates change much more dramatically during the growth spurt of adolescence
than during the typically more moderate rises in body weight characteristic in adulthood. If
initial exposure rates are equated across age, much lower mg/kg/day exposures are evident by
the end of the exposure period among adolescents than adults. An alternative approach is to
load the minipumps so that initial release rates are higher in adolescents than adults to equate
“area under the curve” (i.e., mean daily mg/kg exposure rates averaged over the total exposure
period) (see Wilmouth & Spear, submitted).

When administering the drug orally through dietary administration or via voluntary oral self-
administration, there is the complication that adolescents typically consume more food and
fluids relative to their body weights than animals at other ages. Thus, when indexed in terms
of kg of body weight, consumption of target substances will likely be greater in adolescence
than adulthood, regardless of whether the target substance is placed in the diet or consumption
is voluntary (e.g., 2-bottle tests). These elevated adolescent intakes, associated in large part
with the elevated caloric demands of the considerable growth spurt of adolescence (e.g., Nance,
1983;Post & Kemper, 1993;Ganji & Betts, 1995), make it challenging to equate exposure levels
across age when using oral consumption. While oral intake across age can sometimes be
equated by varying concentration of the test substance to be used at each age (e.g., Silveri et
al, 1999), in other instances the pharmacological properties of the test substance itself may
help drive ontogenetic differences in consumption. For instance, the greater voluntary
consumption of ethanol often seen among adolescent than adult rats is not merely a function
of the hyperdipsia of adolescence or ethanol's caloric properties (Doremus et al, 2005) and may
be driven in part by the attenuated sensitivity of adolescents to aversive effects of ethanol that
may normally serve to limit intake (see Spear & Varlinskaya, 2005, for discussion).

Exposure-induced alterations in growth rate
Elevated caloric demands and the growth spurt of adolescence provide an additional challenge
when assessing neurotoxic effects of adolescent exposures. Because of their enhanced caloric
needs, minor perturbations in consummatory behavior induced by environmental conditions
or toxicant exposure may have exaggerated effects on adolescents. For instance, in work to
develop a food restriction schedule for adolescents, we initially gave adolescent rats the same
grams of food as food-restricted adults and found that the adolescents, despite their smaller
size (and hence proportionally greater g/kg food allocation), lost more weight than the adults
(Vetter & Spear, unpublished observations). Under some circumstances, adolescents have been
found to be more sensitive than adults to chronic stressors such as social stress, restraint, and
isolate housing (Einon & Morgan, 1977;McGivern et al, 1996;Stone & Quartermain, 1998),
stressor effects that may include an adolescent-specific suppression of food intake and weight
gain (see Stone & Quartermain, 1998). Any reduction of weight gain during adolescence is
likely to alter the pace of development, delaying puberty, extending the adolescent period, and
perhaps altering the normal trajectory of developmental processes. Indeed, body weight or
composition (i.e., proportion of body fat) is more strongly linked to the timing of puberty than
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chronological age per se in species ranging from rodents (Kennedy & Mitra, 1963) to humans
(Frisch, 1972,1984). Thus, when assessing effects of potential neurotoxic agents during
development, exposure-related effects on body weight should be monitored. In cases where
notable disruptions in weight gain are observed, it might ultimately prove necessary to include
body weight controls (e.g., pair-fed animals) to dissect whether neurotoxic effects of adolescent
exposures are a function of exposure to the substance per se or whether they arise indirectly
though undernourishment. These issues have received little attention to date at this early stage
of research in adolescent neurotoxicity.

Conclusions and questions for the future
Adolescence is a unique and highly conserved age period with characteristic behavioral and
physiological features, including a marked remodeling of the brain. But is this remodeling of
adolescent brain a time of increased or decreased vulnerability to drugs/toxicant exposures? Is
the sculpting of the adolescent brain disrupted by exposure to neurotoxicants, resulting in the
production of a different brain, and resulting in long-lasting alterations in neural functioning
that are not evident following equivalent exposures to the less plastic adult brain? Or does this
time of neural plasticity provide an enhanced opportunity for the nervous system to recover
from neurotoxic insults delivered during adolescence, resulting in fewer long-term
consequences than seen with comparable adult exposures? Could the time window of altered
vulnerability or resilience vary with neural region and test substance? Despite numerous
methodological challenges, research to answer these questions is evolving rapidly, as illustrated
by the work presented in the articles in this special issue.
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