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ABSTRACT

The rapidly growing understanding of human
genetic pathways, including those that mediate
cancer biology and drug response, leads to an
increasing need for extensive and reliable mutation
screening on a population or on a single patient
basis. Here we describe s-RT-MELT, a novel
technology that enables highly expanded enzymatic
mutation scanning in human samples for germline
or low-level somatic mutations, or for SNP discov-
ery. GC-clamp-containing PCR products from
interrogated and wild-type samples are hybridized
to generate mismatches at the positions of muta-
tions over one or multiple sequences in-parallel.
Mismatches are converted to double-strand breaks
using a DNA endonuclease (SurveyorTM) and oligo-
nucleotide tails are enzymatically attached at
the position of mutations. A novel application of
PCR enables selective amplification of mutation-
containing DNA fragments. Subsequently, melting
curve analysis, on conventional or nano-technology
real-time PCR platforms, detects the samples
that contain mutations in a high-throughput and
closed-tube manner. We apply s-RT-MELT in the
screening of p53 and EGFR mutations in cell lines
and clinical samples and demonstrate its advan-
tages for rapid, multiplexed mutation scanning in
cancer and for genetic variation screening in biology
and medicine.

INTRODUCTION

Screening for genetic changes to unveil molecular attri-
butes of human specimens is important for a variety of
medical applications, including genotyping for inherited
disorders, prediction of the pathologic behavior of
malignancies, identification of cancer biomarkers and
can affect treatment decisions for individual patients (1–3).
For example, mutations in genes like EGFR can
profoundly influence chemotherapeutic response in lung
cancer (2–5) and the response is modulated by mutations
in other genes of the same signaling pathway [e.g. K-ras,
HER2, ErbB-3 (1,6)]. Therefore there is a need for efficient
and high-throughput mutation screening of multiple genes
along identified signal transduction pathways in tumor
samples. Because a large portion of cancer-causing genetic
changes remains unknown and can occur in numerous
positions along tumor suppressor genes (e.g. p53, ATM,
PTEN) mutation scanning rather than detection of specific
mutations is frequently required for molecular cancer
profiling.
Sequencing is often considered the gold standard for

comprehensive mutation analysis. Multi-capillary electro-
phoresis, re-sequencing arrays or pyrosequencing provide
platforms for highly parallel genetic analysis (7–13).
However, the expense associated with these techniques is
currently high both for instrumentation and for running-
costs. Since somatic mutations for most genes are
relatively rare events it can be inefficient to scan for
mutations using expensive approaches that in several cases
provide unnecessary data (14,15). Another issue with
direct sequencing or re-sequencing arrays is the difficulty
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in detecting a small fraction of mutated alleles in the
presence of a high excess normal alleles, which is
frequently the case with clinical cancer samples (16).
As a less expensive alternative, rapid pre-screening
methods such as SSCP, DGGE, dHPLC, CCM, CDCE
or HR-melting are widely utilized to identify DNA
fragments that contain mutations prior to performing
full sequencing (14,16–20). Enzymatic mutation detection
based on mismatch scanning enzymes like MutY, TDG or
T4 endonuclease VII for mutation pre-screening has also
been employed (21–25), albeit with modest success since
these enzymes cannot detect all possible mutations and
deletions (22) and some of them have substantial activity
on homoduplex DNA (16). Recently an enzymatic
mutation scanning method based on the SurveyorTM

(CELI/II) nuclease (26,27) combined with dHPLC or gel
electrophoresis detection was introduced that shows
satisfactory selectivity and reliability (1% mutant to
wild-type alleles is detectable) while it also identifies all
base substitutions and small deletions that are important
to cancer (17,28) or to biotechnology and plant genetic
applications [TILLING method (29–34)]. While reliable,
the use of dHPLC for examining SurveyorTM-generated
DNA fragments is a slow endpoint detection method
restricted to examining a single DNA fragment at a time
and the resulting DNA fragments cannot be sequenced.
This limits analysis of cancer specimens when numerous
samples or genetic regions need to be screened.
We introduce a new approach that enables SurveyorTM

to scan for mutations over one or several PCR products
simultaneously and selectively amplify and isolate the
mutation-containing DNA fragment(s) via linker-
mediated PCR. By selectively amplifying mutation-
containing DNA from wild-type fragments, the present
approach de-couples enzymatic mutation scanning from
the endpoint detection step. As a result, following
enzymatic action on mismatches any chosen DNA
detection method (real-time PCR, gel/capillary electro-
phoresis, microarray-based detection) can potentially be
used to identify the mutated DNA fragments in a simplex
or multiplex fashion. Here we utilize real-time PCR
coupled with melting curve analysis (SurveyorTM-
mediated Real Time Melting, s-RT-MELT) to validate
the new technology. We demonstrate that this approach
increases the mutation scanning throughput by 1–2 orders
of magnitude when several (4100) samples are to be
pre-scanned for mutations, enables mutation scanning
over several PCR fragments simultaneously and mutation-
positive samples can be directly sequenced when
somatic mutations are at a low-level (�1–10% mutant-
to-wild-type ratio) in surgical cancer specimens.

METHODS

Samples and controls

Genomic DNA from cell lines with defined mutations in
p53 exons, DU145 (exon 6), SW480 (exons 8 and 9),
DLD1 (exon 7) and BT483 (exon 7) was extracted from
cell lines purchased from the American Type Culture
Collection (ATCC), or purchased as purified DNA when

available. Surgical colon and lung cancer tumor samples
were obtained from the Massachusetts General Hospital
Tumor Bank following Internal Review Board approval.
DNA from the EGFR mutation-positive cell lines A549,
HCC827, H1975 and LU011 and from formalin-fixed-
paraffin-embedded lung cancer samples were obtained
from the Lowe Center for Thoracic Oncology, Dana
Farber Cancer Institute following Internal Review Board
approval. We isolated genomic DNA using DNeasyTM

Tissue Kit (Qiagen).

PCRwith primers containing 50-GC-clamp and 50-M13

Sequences for the 50M13 and GC-clamp portion of the
primers, as well as the gene-specific portion of the primers
used in this investigation are listed in Supplementary
Table 1. The M13f and GC-clamp sequence was added to
the 50 end of forward and reverse gene-specific primers
respectively, or vice versa. Twenty microliter PCR reac-
tions were performed from genomic DNA with final
concentrations of reagents as follows: 1X JumpStartTM

buffer (Sigma), 0.2mM each dNTP, 0.2 mM forward and
reverse primer, 1X JumpStartTM Taq polymerase (Sigma).
PCR cycling was done on a Perkin Elmer 9600 PCR
machine. The cycling conditions were: 948C, 90 s; (948C,
20 s/658C, 20 s/688C, 1min)� 10 cycles, with annealing
temperature decreasing 18C/cycle, touch-down PCR;
(948C, 20 s/558C, 20 s/688C, 1min)� 30 cycles; 688C,
5min. This PCR program was linked to a program for
denaturation and re-annealing of the PCR product
over 10min.

Treatment of cross-hybridized sequences with
the SurveyorTM endonuclease

Five-microliter PCR product (300–500 ng) was mixed with
0.5 ml EnhancerTM and 0.5ml SurveyorTM (Transgenomic)
and incubated at 428C for 20min followed by adding
0.5 ml Stop-solution, as per manufacturer’s protocol. The
inactivated SurveyorTM-digested product was purified
with PCR QiaQuickTM purification kit (Qiagen) and
eluted in 35 ml water. In some experiments, the PCR
product was mixed with an approximately equal amount
of PCR product from wild-type DNA prior to forming
cross-hybridized sequences, to facilitate detection of
homozygous mutations.

Addition of polyA-tail on the 30-end

Following purification of the SurveyorTM-treated sample,
Poly-adenine ‘tail’ was added to the 30-ends of DNA
fragments. For each reaction, we added 5 ml purified
surveyor-digested PCR product to a final volume of 20 ml
with final concentration of 1X reaction buffer-4, 1X
CoCL2, 0.2mM dATP, 4 U Terminal Transferase
(New England Biolabs). The reaction was incubated at
378C for 10min and inactivated by heating at 758C for
10min.

Real-time PCR, melting curve analysis and dHPLC

The real-time PCR amplification was performed using
Titanium-TaqTM polymerase (BD-Biosciences - Clontech)
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in a Smart Cycler (Cepheid) real-time PCR machine.
For each reaction, we added 0.5 ml polyA-tailed DNA to a
final volume of 20 ml with final concentration of 1X
Titanium buffer, 0.2mM each dNTP, 0.1�LCGreen
(Idaho Technologies), 0.2 mM m13f primer, 0.2mM
oligodT-anchor mix GACCACGCGTATCGATGTCG
ACTTTTTTTTTTTTTTTTV

[V represents A, C and G each oligodT-anchor
concentration is 0.067 mM, as per RACE protocol (35)],
1�TitaniumTM polymerase (Clontech— BD Biosciences).
The thermocycling program was as following: 1 cycle of
948C for 2min, 25 cycles of 948C for 15 s, 558C for 20 s
and 688C for 30 s for reading fluorescence. Temperature
titration was performed using different denaturation
temperatures, 94–828C to experimentally determine con-
ditions that selectively enable mutation-containing frag-
ments to amplify.

The real-time PCR step was immediately followed by
real-time differential melting curve analysis using the
SmartCyclerTM machine. DNA melting was performed
immediately following PCR on the Smart Cycler I
machine. Samples were heated from 708C to 958C at
0.18C/s. Differential fluorescent intensity curves (�dF/dT)
were smoothed and used for identification of
melting peak (s).

Altenatively, real-time PCR products were examined
via dHPLC chromatography on a WAVETM system
(Transgenomic). Mutation-positive PCR products were
purified via PCR purification kit (Qiagen) and
sequenced using the M13f primer. All experiments were
repeated at least three times in independent runs from
genomic DNA.

Real-timePCRandmelting using theOpenArrayTMplatform

The OpenArrayTM high-throughput, massively parallel
real-time PCR platform (36) (BioTrove) was tested
for compatibility with s-RT-MELT. Forty-eight
samples of p53 exon 8 PCR products were generated
from 48 different lung adenocarcinoma samples and
mutation-containing cell lines and processed via
the hybridization and enzymatic steps of s-RT-MELT.
Real-time PCR in the OpenArrayTM platform was
performed with the LightCycler FastStartTM DNA
Master SYBR GreenTM I (Roche) using 0.2mM M13f
and 0.2 mM oligodT-anchor-mix as primers pre-positioned
on the array through-holes (36) and polyA-tailed DNA as
template. The cycling conditions were as follows: 1 cycle at
948C for 2min, 25 cycles of 908C for 15 s, 558C for 20 s
and 688C for 30 s for reading fluorescence using a high
sensitivity imaging camera (36). The real-time PCR step
was immediately followed by real-time differential melting
curve analysis. Raw data were exported in Excel software
for further analysis. The OpenArrayTM experiment was
repeated twice at the company’s headquarters.

Prediction of melting temperatures

To estimate Tm,min, the PCR denaturation temperature
below which PCR is not efficient it was assumed, as an
initial approximation, that495% hypochromicity must be
present for PCR to work (i.e. any given sequence must be

completely denatured, otherwise it re-forms immediately
when temperature is lowered in the reaction and inhibits
primer binding). The percent melting (hypochromicity)-
versus-temperature relations for GC-clamp-containing
PCR products and SurveyorTM activity-generated pro-
ducts were estimated using the POLAND algorithm (37),
and the thermodynamic parameters determined by Blake
and Delcourt for 75mM NaCl in the solution (38) were
used. In order to force agreement at a single point,
predicted and observed values for a p53 exon 8 sequence
containing a short GC-clamp were normalized at 888C.
This shift accounts for the influence on Tm,min of NaCl
and Mg++ content in the reaction, the presence of the
SYBR-GREEN/LC-GREEN dyes and the proprietary
composition of PCR buffers. The Tm,min of all other PCR
products was then estimated using these semi-empirically
determined parameters.

RFLP-based verification of low-level mutation detected
in codon 273, p53 exon 8

The ‘enriched PCR’ method by Behn et al. (39) was used
to sequence codon 273 mutation of p53 exon 8 from
sample CT20 and wild-type samples. In addition, a second
method [Amplification via Primer-Ligation At The
Mutation (40,41)] was used to distinguish mutant and
wild-type samples by virtue of the de novo Nla-III site
generated in the mutant sample by the p53 codon
273 G4A mutation.

RESULTS

Overview of the s-RT-MELT assay

The s-RT-MELT assay converts PCR fragments gener-
ated at positions of mutations by the SurveyorTM enzyme
to fully amplifiable sequences that enable selective PCR
amplification in a subsequent quantitative PCR detection
method. Following denaturation and re-annealing of PCR
products that leads to formation of cross-hybridized
sequences at the positions of mutations (Figure 1A) the
sample is exposed to SurveyorTM endonuclease that
recognizes base pair mismatches or small loops with
high specificity (28) and generates a break on both DNA
strands 30 to the mismatch. The resulting DNA fragments
participate in a terminal transferase (TdT) reaction that
leads to polynucleotide ‘tailing’ (sequential addition of
adenine, poly-A-tail) at the 30-ends. A real-time PCR
reaction is subsequently performed using adjusted condi-
tions that enable selective amplification of the mutant-
only fragments, followed by real-time melting curve
analysis for identification of mutations in the presence of
SYBR-GREENTM or LC-GREENTM DNA dye.
To enable selective amplification of the mutation-

containing fragments in the real-time PCR step, modified
primers are employed for the original amplification from
genomic DNA (Figure 1B). The forward primer contains a
region specific to the target gene and a high melting
domain (GC-clamp), while the reverse primer contains a
region specific to the target gene and an M13 tail (or vice
versa). Following the TdT tailing reaction, the M13 primer
is used for real-time PCR in conjunction with a primer
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that binds to the poly-A tail. The denaturation tempera-
ture of the real-time PCR reaction is lowered to enable
PCR amplification only for fragments that do not
contain GC-clamps. Because the PCR products that
escape digestion by SurveyorTM contain GC-clamps
(Figure 1B), these fragments do not amplify efficiently
during PCR, thereby enabling selective amplification of
SurveyorTM-selected fragments, i.e. an effective ‘purifica-
tion’ of mutation-containing fragments. The subsequent
closed-tube melting curve analysis enables clear separation
of true mutant sequences from PCR dimers or other
artifacts.
Because s-RT-MELT does not require size-separation

for identification of enzymatically generated fragments,
more than one sequence can be scanned in parallel
for unknown mutations in a single-tube reaction of
SurveyorTM. This simple procedure enables the specificity
of the SurveyorTM enzyme to be combined with the
throughput and convenience of real-time PCR for rapid
mutation scanning. Finally, because the amplified mutated
sequences contain defined primers at their ends, direct

sequencing of enzymatically selected PCR products is
readily possible following the real-time melting step,
enabling sequencing of low-level mutations identified by
SurveyorTM.

Detection of p53 exon 8 mutations using s-RT-MELT

To provide initial proof of principle for unknown
mutation scanning using s-RT-MELT we utilized cell
lines and tumor samples containing sequencing-identified
mutations at several positions of p53 exon 8. Figure 2A
depicts dHPLC chromatograms of the products obtained
using a sample containing a p53 exon 8 G4A mutation or
a wild-type sample. The standard SurveyorTM-dHPLC
approach (28) was first employed to identify the mutation
following PCR amplification of exon 8 from genomic
DNA. The resulting dHPLC traces contain a single
product for the wild-type and two products for the
mutation-containing sequences (Figure 2A, curves 1 and
2, respectively). Next, s-RT-MELT was used to screen the
same p53 exon 8 sequence. Following PCR amplification

Simplex or Multiplex PCR
amplification of one or more exons

A B

PCR PRODUCT(s)
GC-CLAMP

M
13

Self-hybridize or cross-hybridize
with wild type DNA: generate

mismatches at positions of mutations
in one or more PCR fragments

Scan for mismatches all fragments
simultaneously using CEL I /SurveyorTM

enzyme.

CEL I /SurveyorTM enzyme.

Use TdT enzyme to add oligonucleotide tail (e.g. oligo-dA)
to 3′OH ends, to serve as primer anchor

GC-CLAM
P

GC-CLAM
P

M13 M13

Un-digested fragments
Digested fragments

TdT tailing of 3′ DNA ends

Amplify only mutated fragment(s)
coupled w. real time melting

analysis (see B)

3′OH-AA….AA
M13

3′OH-AA…. AA
G
C
-C
L
A
M
P

M13

Perform real time PCR at reduced denaturation temperature to inhibit amplification of
GC-clamp-containing DNA fragments and to selectively amplify only the mutant fragment (s).

Detect mutations via closed tube, high-throughput melting curve analysis.

IF positive, sequence the
amplified mutated DNA fragment

Figure 1. s-RT-MELT for rapid mutation scanning using enzymatic selection and real-time DNA-melting. (A) General outline of the approach.
The dotted line contains the new steps involved in s-RT-MELT relative to previous approaches, i.e. the addition of a 30-polynucleotide tail followed
by real-time PCR that enables selective amplification of the SurveyorTM-cut sequences and real time melting curve analysis. (B) Detailed outline of
the procedure used to selectively amplify the mutation-containing fragments in s-RT-MELT.
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with GC/M13-modified primers we cross-hybridized PCR
products and exposed them to SurveyorTM and TdT
tailing. The subsequent real-time PCR was run at different
denaturation temperatures and the products were exam-
ined either via dHPLC or via real-time melting-curve
analysis. At the standard denaturation temperature
of 948C the mutation-containing sample contains two
peaks, corresponding to the anticipated amplification of
both SurveyorTM-digested and un-digested fragments
(Figure 2A, curve 3). However, when the PCR denatura-
tion temperature is lowered (e.g. 86–888C) a single PCR
product is generated for the mutant sample, while the
wild-type sample demonstrates no product (Figure 2A,
curves 4–7). In Figure 2B, real-time differential melting
curves for the PCR reaction run at 888C are depicted. A
peak corresponding to the PCR product from the mutant
sample is again clearly evident, which is absent in the wild-
type sample. Finally, Figure 2C depicts sequencing of the
s-RT-MELT-generated PCR fragment, as well as the
direct sequencing from genomic DNA. The G4A
mutation is evident in both samples. In the s-RT-MELT
product the anticipated addition of the poly-A tail at the
30-position next to the mutation is illustrated.
To examine the selectivity of s-RT-MELT, dilutions of

mutant to wild-type DNA were performed using DNA
from SW-480 cells that harbor a p53 exon 8 14487G4A
homozygous mutation. The real-time PCR reaction was
again performed at 888C and mutant-to wild-type ratios of
�1–10% were distinguished from the wild-type using
either dHPLC (Figure 2D) or melting curve analysis
(Figure 2E). In these samples, direct di-deoxy-sequencing
could not identify a mutation if the ratio of mutant-to-
wild-type was5�30–40% (data not shown). On the other
hand, sequencing of s-RT-MELT products was possible
including the lower dilutions (Figure 2F). sRT-MELT
sequencing generated traces with poly-A tails depicting the
presence and the position of the mutation, although the
exact nucleotide change was less clear than the one in exon
5 (i.e. the position �1 base from the mutation might also
be confused to be a mutation). The reason for this �1 base
ambiguity of the exact position of the mutation can be
probably understood. The PCR performed following
poly-A tail addition contains an equimolar mixture of
three reverse primers (30 ending in V=G, A or C).
Depending on the exact nucleotide at the mutation, the
correct primer should in theory be preferred, while the
other two primers should not allow efficient polymerase
extension due to the mismatched 30-end. However, in
practice this ‘allele-specific PCR’ step occasionally allows
30-mismatched primer extension, enabling more than one
version of the primer to amplify over the position of the
mutation, or alternatively the incorporation of the poly-A
tail may occur �1 base from the exact position of the
mutation. We conclude that in certain cases sRT-MELT
indicates the position of the mutation to within 1 base,
while in others (e.g. p53 exon 5) it indicates the position
‘and’ the actual nucleotide change.
Next, p53 exon 8 was amplified using DNA from a

group of 48 surgical lung adenocarcinoma samples and
s-RT-MELT was used for the screening of unknown
mutations via melting curve analysis. Mutations at

different positions along exon 8 were present in several
of these clinical samples, as indicated by the shift in
melting profiles obtained (Figure 2H) and subsequently
verified via sequencing. In this set of samples, sRT-
MELT-sequencing detected a low-level mutation on a
colon cancer specimen (CT20) that direct sequencing
failed to identify (Figure 2I). As with Figure 2F, sequenc-
ing of sample CT20 indicated the position of poly-A tail
addition to within one base, but the actual nucleotide
change was difficult to identify. To exclude the possibility
for a false positive, two independent RFLP-based
methods were used to verify the presence of the mutation.
Thus, since the position of poly-A tail addition was known
(Figure 2I, codon 273 of p53 exon 8) the mismatched
primer approach by Behn et al. (42) was used to introduce
an MluI restriction site for the wild-type p53 sample but
not for the codon 273 mutants. Subsequent restriction
with MluI enzyme followed by PCR generated a product
with a 14487G4A mutation for the CT20 sample but
not for the wild-type sample (Supplementary Figure 1,
Frame A). As an additional verification for the low-level
CT20 mutation, we observed that G4A mutation
generates a de-novo Nla-III site at the position of the
mutation. Accordingly, we applied ‘Amplification via
Primer-Ligation At The Mutation’, a method that we
described previously (40,41) to ligate a primer at the Nla-
III-digested site, and preferentially amplified the mutant
fragment in a second PCR. The sequenced PCR product
identified again the 14487G4A mutation (Supplementary
Figure 1, Frame B). In conclusion, sRT-MELT identified
correctly a p53 codon 273 low-level mutation on CT20
that was missed by regular sequencing. This is very
significant as p53 exon 8 mutations at codon 273 have
been associated with bad prognosis in cancer (43,44).

Table 2 of Supplementary Data depicts a good
agreement between standard Surveyor screening, s-RT-
MELT screening and di-deoxy-sequencing, except for the
low-level mutation discovered on sample CT20 via s-RT-
MELT. s-RT-MELT-sequencing traces for two samples
with p53 exons 6 and 7 mutations are also depicted.

The data in Figures 2A–D and H indicate a lack of
substantial PCR amplification at denaturation tempera-
tures 4888C for fragments containing the GC-clamp and
a selective amplification of the mutation-containing
fragments for several different mutation positions on p53
exon 8. To estimate the influence of the GC-clamp length
on PCR efficiency versus temperature and the PCR
amplification of fragments generated for mutations lying
at different positions along the sequence, a calculation
based on the POLAND algorithm (37) was performed.
The predicted minimum temperatures for substantial PCR
amplification were then plotted versus the experimentally
observed values. Three possibilities were simulated, no
GC-clamp, 26 nucleotides (nt) GC-clamp and 117-nt
GC-clamp. DNA fragments corresponding to mutations
at several positions along exon 8 were also simulated and
compared to the experimentally observed minimum
temperatures for generating a PCR product for three
samples that contained mutations at different positions
along p53 exon 8 (SW480, CT5 and TL50). The results
(Figure 2G) indicate agreement to within �1.08C between
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theoretical prediction and experimental observation. For
denaturation temperatures in the region 85–888C in
combination with a 26-nt GC-clamp all the available
mutations on p53 exon 8 are predicted to result in selective
amplification of the mutation-containing fragment and
inhibition of the GC-clamp-containing fragment. This
prediction is consistent with the experimental results
obtained from PCR temperature-titration experiments
(Figure 2G). The developed calculation algorithm can
thus be used to predict the appropriate PCR denaturation
temperature for additional PCR fragment/GC-clamp
combinations.

Detection of p53 exons 5–9 mutations and EGFRmutations
in clinical samples

As a further validation for s-RT-MELT, we utilized the
method to identify mutations in additional p53 exons.
Figure 3A depicts the chromatographs obtained when a
1:1 mixture of DNA from SW-480 cells (homozygous
mutation at p53 14686 C4T exon 9) and from wild-type
cells was screened. The real-time PCR reaction was
performed at different denaturation temperatures and
the products were examined both via dHPLC and via
melting curve analysis for comparison. As also observed
for p53 exon 8, at 948C denaturation temperature both the
SurveyorTM-digested and the undigested PCR products
are amplified during real-time PCR (Figure 3A, curves 1
and 2, mutant and wild-type, respectively). By lowering
denaturation temperature to 858C or 848C, a single PCR
product is obtained from the mutant while no product,
other than primer dimer, is obtained by the wild-type
sample (Figure 3A, curves 3–6). Figure 3B depicts the
melting curves obtained following real-time PCR at 858C
denaturation temperature for the mutant and wild-type
samples. s-RT-MELT was subsequently applied in the
same manner to screen for p53 mutations in exons 5–7
from cell lines and surgical colon samples harboring
sequencing-identified mutations including a single-base
frameshift mutation in exon 7 (listed in Supplementary
Table 2). The melting curves from mutant and wild-type
samples in p53 exons 5–7 are depicted in Figure 3C–E.
The data indicate that results similar to those obtained for
p53 exon 8 are also obtained for p53 exons 5, 6, 7 and 9.

Detection of mutations in EGFR exons 18–21 is of
particular clinical interest as these alterations can mod-
ulate response to EGFR inhibitors in lung adenocarci-
noma patients (2,3). Figures 3F, G and H depict the
application of s-RT-MELT for screening DNA from lung
cancer cell lines that harbor dHPLC-identified alterations
in EGFR exons 19–21, including a two-codon deletion
(del L747-E749, exon 19). The ability of s-RT-MELT for
detecting low-level EGFR mutations was evaluated by
performing DNA dilutions of a heterozygous EGFR exon
20 into a homozygous sample. A 1–10% mutant-to-wild-
type ratio was detectable in this dilution experiment
(Figure 3F). Finally, the application of s-RT-MELT in
detecting mutations in DNA from formalin-fixed paraffin-
embedded (FFPE) samples was examined by screening
four clinical FFPE lung adenocarcinoma specimens.
Two of these samples were known to harbor EGFR

exon 21 mutations (L858R), while the other two were
negative for mutations when independently evaluated via
dHPLC (28). Figure 3I demonstrates the identification of
the mutational status of these samples via s-PCR-MELT.

Multiplex s-RT-MELT orOpenArray
TM-based

s-RT-MELT increases the throughput of mutation scanning

A significant potential advantage of enzymatic mutation
scanning is the ability to screen several sequences
simultaneously for mutations. To demonstrate that
s-RT-MELT can be used for parallel scanning of
mutations in several PCR products, we mixed equimolar
amounts of PCR products from p53 exons 5–9 containing
mutations either in exon 8 or in exon 9. We then formed
‘cross-hybridized sequences’ and screened the mixture for
mutations in p53 exons 5–9 in a single tube using s-RT-
MELT, as depicted in Figure 1A. Following real-time
PCR and melting curve analysis, the exon 8 or exon 9
mutants were clearly distinguished from the wild-type
sample (Figure 4A, curves 1–3). Next, the mutant exon 8
DNA sample was first diluted 10-fold into wild-type
exon 8 and the equimolar mixture of p53 exons 5–9 was
prepared and screened again in a single tube via s-RT-
MELT. The exon 8 mutation was again distinguished
from the wild-type mixture of exons (Figure 4B, curves
1–3). Since480% of p53 mutations in human tumors are
encountered in exons 5–9 (45), the multiplex single-tube
s-RT-MELT reaction could be used to identify most p53
mutations encountered in clinical tumor samples.
Combined with multiplex PCR directly from genomic
DNA, this approach could result to a convenient,
high-throughput method for mutation scanning.
By adopting a real-time PCR platform as endpoint

detection for s-RT-MELT, the throughput for mutation
scanning increases drastically over other mutation pre-
screening approaches that utilize dHPLC, or capillary and
gel electrophoresis. To demonstrate better this point, a
highly parallel nano-technology platform was adopted for
the real-time PCR step of s-RT-MELT that enables an
array of 3072 nl volume real-time PCR reactions
(OpenArrayTM system) to be carried-out simultaneously
followed by differential melting curve analysis (36). As a
proof of principle of the compatibility of s-RT-MELT
with OpenArrayTM, p53 exon 8 PCR products were
generated from 48 different lung adenocarcinoma samples
and mutation-containing cell lines and processed via the
hybridization and enzymatic steps of s-RT-MELT. The 48
samples were each dispensed in 10 replicate nano-liter
volume reactions on OpenArrayTM plates pre-fabricated
to contain the appropriate primers and amplified in 3072
real-time PCR reactions using a denaturation temperature
of 908C in the presence of SYBR-GREEN I dye.
Melting curves were subsequently obtained using the
OpenArrayTM melting curve analysis mode. The PCR
growth curves and smoothed differential melting curves
obtained distinguish clearly the mutation-containing
samples from wild-type samples (Figure 4C and D,
representative results from 3072 reactions). Furthermore,
identification of mutation-containing samples is in
good agreement between the conventional and the
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nano-technology platforms (Figure 4D versus Figure 2H).
These data indicate that s-RT-MELT is compatible with
high-throughput nano-technology detection formats and
reiterates the advantage of de-coupling enzymatic selec-
tion from the detection step. Comparison of the through-
put using conventional pre-screening method (dHPLC or
dHPLC/SurveyorTM) to s-RT-MELT (Table 1) indicates
that s-RT-MELT is 1–2 orders of magnitude faster when a

large number of samples (4100) are screened for muta-
tions. If the multiplex s-RT-MELT format is adopted, the
throughput can increase further.

DISCUSSION

The intrinsic potential of enzymatic mutation scanning for
parallel identification of mutations can, in principle, be
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Figure 4. Multiplex s-RT-MELT or OpenArrayTM-based s-RT-MELT. (A) Melting curves obtained following multiplex s-RT-MELT for mixture
of p53 exons 5–9 (exon 8 mutation, curve 2) or exon 9 mutation (curve 3) or wild-type (curve 1). (B) Melting curves obtained following multiplex
s-RT-MELT for mixture of p53 exons 5–9 (exon 8 mutation, curve 3) or 10-fold diluted into wild-type exon 8 mutation (curve 2) and wild-type
(curve 1). (C) OpenArrayTM based s-RT-MELT PCR growth curves for p53 exon 8 using DNA from lung and colon surgical specimens and cell
lines. (D). Melting curves obtained following OpenArrayTM based s-RT-MELT of p53 exon 8 using DNA from lung and colon surgical specimens
and cell lines.

Table 1. Comparison of throughput in mutation scanninga. Plus the ability to sequence and identify low-level somatic mutations

One sample 16 samples
(e.g. Cepheid
QRT-PCR
machine)

96 samples
(96-well
QRT-PCR
machine)

384 samples
(ABI QRT-PCR
machine)

3,072 samples
(OpenArrayTM)

Detects
low-level
mutations
(1–10%
mutant-to-wild
type)

Nucleotide change
and/or position
of the mutation

dHPLC/Surveyorb 0.5 h 3-4 h 24 h 96 h 768 h Yes No
s-RT-MELTc 1.5 h 2.0 h 3.0 h 4.0 h 17 h Yes Yes

aPost-PCR treatment time to accomplish pre-screening for unknown mutations.
bSurveyorTM treatment requires �15–20 minutes. The dHPLC screens one sample at a time (12-15 minutes/sample including wash).
cAn additional half hour for every batch of 96 samples purified via 96-sample Qiagen purification kit, following SurveyorTM treatment,
was accounted for s-RT-MELT.
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very high since the enzyme operates on numerous distinct
mismatch-containing sequences on a molecule-to-
molecule basis thus providing highly parallel mutation
scanning. However, in the past the selectivity of the
enzymes used and the endpoint detection method has
limited the realization of this potential. Here we enabled
SurveyorTM, an endonuclease that recognizes selectively
mismatches formed by mutations and small deletions
following ‘cross-hybridized sequence’ formation, to
generate mutation-specific DNA fragments that are
amplified and screened via differential melting curve
analysis. The replacement of size-separation methods
(capillary/gel electrophoresis, dHPLC) by real-time PCR
technology as the endpoint detection platforms and the
ability to scan more than one sequences in parallel result
in a highly increased throughput for s-RT-MELT while
retaining the ability to detect diverse mutations at
low-levels.
Cel I/II endonucleases have also been known to have

exonuclease activity on 50 DNA-ends (26,27). For this
reason, s-RT-MELT was designed to attach an oligonu-
cleotide linker to the 30-DNA ends via terminal transferase
(TdT) instead of using the 50-DNA ends. The exonuclease
activity also tends to degrade the attached 50-GC-clamps
in s-RT-MELT, thereby eliminating their influence in
reducing amplification of un-digested fragments. We
found that if exposure of DNA ‘cross-hybridized
sequences’ to SurveyorTM is limited to 15–20min, the
substantial degradation of 50-GC-clamps is avoided.
For multiplexing mutation detection using several PCR
products simultaneously, the size of the GC-clamp on
each PCR amplicon may need to be individually adjusted
to ensure that mutations along all sequence positions of
the PCR products included in the mixture can be screened
at a single real-time PCR temperature and that undigested
fragments do not amplify. The calculational tools devel-
oped in this work can be used to guide the individual
design of GC-clamps. s-RT-MELT detects heterozygous
SNPs as well as mutations. As with other mutation pre-
screening techniques, the presence of a SNP concurrently
with a mutation might be difficult to identify without
performing sequencing. Because SNPs occur at fixed
positions, melting peaks originating from SNPs have a
reproducible pattern and melting temperatures (46,47)
thus in many cases they should be distinguishable from
mutations. Finally, it is noteworthy that s-RT-MELT is a
general methodology that may also be applied to isolate
mutations using mismatch-cutting enzymes other than
SurveyorTM when enzymes with satisfactory properties for
mutation detection become available. Detection platforms
other than real-time PCR/melting (e.g. DNA microarray-
based) may also be envisioned following enzymatic
mutation selection.
In summary, we developed a new method for rapid

mutation scanning, s-RT-MELT that utilizes the Cel I/II
(SurveyorTM) and terminal deoxy-nucleotide transferase
(TdT) enzymes to isolate and amplify mutation-containing
DNA fragments without the requirement of DNA size-
dependent techniques. Besides enabling highly increased
throughput, multiplexed mutation screening and direct
sequencing of the identified mutant DNA fragments,

s-RT-MELT also retains the advantages of the Surveyor
endonuclease over alternative pre-screening methods, such
as reliability and identification of genetic alterations
present at low (1–10%) fractions in the sample. s-RT-
MELT provides a significant advancement in unknown
mutation scanning in cancer research and diagnostics as
well as for general medical, biological and biotechnology
applications.
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ACKNOWLEDGEMENTS

The assistance of Mohamet Miri and Frank Haluska, MD
in obtaining tissue specimens from the Massachusetts
General Hospital Tumor Bank is gratefully acknowl-
edged. This work was supported by NCI grants 1 R21
CA111994-01 and CA 115439-01, by training grant 5 T32
CA09078 (JL) and by the Joint Center for Radiation
Therapy Foundation.

Conflict of interest statement. None declared.

REFERENCES

1. Baselga,J. (2006) Targeting tyrosine kinases in cancer: the second
wave. Science, 312, 1175–1178.

2. Paez,J.G., Janne,P.A., Lee,J.C., Tracy,S., Greulich,H., Gabriel,S.,
Herman,P., Kaye,F.J., Lindeman,N. et al. (2004) EGFR Mutations
in Lung Cancer: Correlation with Clinical Response to Gefitinib
Therapy. Science, 304, 1497–1500.

3. Kobayashi,S., Boggon,T.J., Dayaram,T., Janne,P.A., Kocher,O.,
Meyerson,M., Johnson,B.E., Eck,M.J., Tenen,D.G. et al. (2005)
EGFR mutation and resistance of non-small-cell lung cancer to
gefitinib. N. Engl. J. Med., 352, 786–792.

4. Lynch,T.J., Bell,D.W., Sordella,R., Gurubhagavatula,S.,
Okimoto,R.A., Brannigan,B.W., Harris,P.L., Haserlat,S.M.,
Supko,J.G. et al. (2004) Activating mutations in the epidermal
growth factor receptor underlying responsiveness of non-small-cell
lung cancer to gefitinib. N. Engl. J. Med., 350, 2129–2139.

5. Pao,W., Miller,V., Zakowski,M., Doherty,J., Politi,K., Sarkaria,I.,
Singh,B., Heelan,R., Rusch,V. et al. (2004) EGF receptor gene
mutations are common in lung cancers from ‘‘never smokers’’ and
are associated with sensitivity of tumors to gefitinib and erlotinib.
Proc. Natl Acad. Sci. USA, 101, 13306–13311.

6. Shigematsu,H. and Gazdar,A.F. (2006) Somatic mutations of
epidermal growth factor receptor signaling pathway in lung cancers.
Int. J. Cancer, 118, 257–262.

7. Kheterpal,I. and Mathies,R.A. (1999) Capillary array electrophor-
esis DNA sequencing. Anal. Chem, 71, 31A–37A.

8. Mitchelson,K.R. (2001) The application of capillary electrophoresis
for DNA polymorphism analysis. Methods Mol. Biol., 162, 3–26.

9. Hacia,J.G. (1999) Resequencing and mutational analysis using
oligonucleotide microarrays. Nat. Genet., 21, 42–47.

10. Wong,C.W., Albert,T.J., Vega,V.B., Norton,J.E., Cutler,D.J.,
Richmond,T.A., Stanton,L.W., Liu,E.T. and Miller,L.D. (2004)
Tracking the evolution of the SARS coronavirus using high-
throughput, high-density resequencing arrays. Genome Res., 14,
398–405.

11. Ahmadian,A., Ehn,M. and Hober,S. (2006) Pyrosequencing:
history, biochemistry and future. Clin. Chim. Acta, 363, 83–94.

12. Thomas,R.K., Nickerson,E., Simons,J.F., Janne,P.A., Tengs,T.,
Yuza,Y., Garraway,L.A., Laframboise,T., Lee,J.C. et al. (2006)
Sensitive mutation detection in heterogeneous cancer specimens by
massively parallel picoliter reactor sequencing. Nat. Med., 12,
852–855.

e84 Nucleic Acids Research, 2007, Vol. 35, No. 12 PAGE 10 OF 11



13. Margulies,M., Egholm,M., Altman,W.E., Attiya,S., Bader,J.S.,
Bemben,L.A., Berka,J., Braverman,M.S., Chen,Y.J. et al. (2005)
Genome sequencing in microfabricated high-density picolitre
reactors. Nature, 437, 376–380.

14. Larsen,L.A., Christiansen,M., Vuust,J. and Andersen,P.S. (2001)
Recent developments in high-throughput mutation screening.
Pharmacogenomics, 2, 387–399.

15. Davies,H., Hunter,C., Smith,R., Stephens,P., Greenman,C.,
Bignell,G., Teague,J., Butler,A., Edkins,S. et al. (2005) Somatic
mutations of the protein kinase gene family in human lung cancer.
Cancer Res., 65, 7591–7595.

16. Nollau,P. and Wagener,C. (1997) Methods for detection of point
mutations: performance and quality assessment. IFCC Scientific
Division, Committee on Molecular Biology Techniques.
Clin. Chem., 43, 1114–1128.

17. Yeung,A.T., Hattangadi,D., Blakesley,L. and Nicolas,E. (2005)
Enzymatic mutation detection technologies. Biotechniques, 38,
749–758.

18. Cotton,RG. and Campbell,R.D. (1988) Reactivity of cytosine and
thymine in single base pair mismatches with hydroxylamine and
osmium tetroxide and its application to the study of mutations.
Proc. Natl Acad. Sci. USA, 83, 4397–4401.

19. Khrapko,K., Coller,H.A., Li-Sucholeiki,X.C., Andre,P.C. and
Thilly,W.G. (2001) High resolution analysis of point mutations by
constant denaturant capillary electrophoresis (CDCE).
Methods Mol. Biol., 163, 57–72.

20. Chou,L.S., Lyon,E. and Wittwer,C.T. (2005) A comparison of
high-resolution melting analysis with denaturing high-performance
liquid chromatography for mutation scanning: cystic fibrosis
transmembrane conductance regulator gene as a model.
Am. J. Clin. Pathol., 124, 330–338.

21. Maulik,G., Botchway,S., Chakrabarti,S., Tetradis,S., Price,B. and
Makrigiorgos,G.M. (1999) Novel non-isotopic detection of MutY
enzyme-recognized mismatches in DNA via ultrasensitive detection
of aldehydes. Nucleic Acids Res., 27, 1316–1322.

22. Zhang,Y., Kaur,M., Price,B.D., Tetradis,S. and Makrigiorgos,G.M.
(2002) An amplification and ligation-based method to scan for
unknown mutations in DNA. Hum. Mutat., 20, 139–147.

23. Makrigiorgos,G.M. (2004) PCR-based detection of minority point
mutations. Hum. Mutat., 23, 406–412.

24. Youil,R., Kemper,B.W. and Cotton,R.G. (1995) Screening for
mutations by enzyme mismatch cleavage with T4 endonuclease VII.
Proc. Natl Acad. Sci. USA, 92, 87–91.

25. De Gregorio,L., Gallinari,P., Gariboldi,M., Manenti,G.,
Pierotti,M.A., Jiricny,J. and Dragani,T.A. (1996) Genetic mapping
of thymine DNA glycosylase (Tdg) gene and of one pseudogene in
the mouse. Mamm. Genome, 7, 909–910.

26. Yang,B., Wen,X., Kodali,N.S., Oleykowski,C.A., Miller,C.G.,
Kulinski,J., Besack,D., Yeung,J.A., Kowalski,D. et al. (2000)
Purification, cloning, and characterization of the CEL I nuclease.
Biochemistry, 39, 3533–3541.

27. Oleykowski,C.A., Bronson Mullins,C.R., Godwin,A.K. and
Yeung,A.T. (1998) Mutation detection using a novel plant
endonuclease. Nucleic Acids Res., 26, 4597–4602.

28. Janne,P.A., Borras,A.M., Kuang,Y., Rogers,A.M., Joshi,V.A.,
Liyanage,H., Lindeman,N., Lee,J.C., Halmos,B. et al. (2006)
A rapid and sensitive enzymatic method for epidermal growth
factor receptor mutation screening. Clin. Cancer Res., 12, 751–758.

29. Till,B.J., Reynolds,S.H., Greene,E.A., Codomo,C.A., Enns,L.C.,
Johnson,J.E., Burtner,C., Odden,A.R., Young,K. et al. (2003)
Large-scale discovery of induced point mutations with high-
throughput TILLING. Genome Res., 13, 524–530.

30. Till,B.J., Burtner,C., Comai,L. and Henikoff,S. (2004) Mismatch
cleavage by single-strand specific nucleases. Nucleic Acids Res., 32,
2632–2641.

31. Perry,J.A., Wang,T.L., Welham,T.J., Gardner,S., Pike,J.M.,
Yoshida,S. and Parniske,M. (2003) A TILLING reverse genetics

tool and a web-accessible collection of mutants of the legume Lotus
japonicus. Plant Physiol., 131, 866–871.

32. Hurlstone,A.F., Haramis,A.P., Wienholds,E., Begthel,H.,
Korving,J., Van Eeden,F., Cuppen,E., Zivkovic,D., Plasterk,R.H.
et al. (2003) The Wnt/beta-catenin pathway regulates cardiac valve
formation. Nature, 425, 633–637.

33. Till,B.J., Zerr,T., Bowers,E., Greene,E.A., Comai,L. and
Henikoff,S. (2006) High-throughput discovery of rare human
nucleotide polymorphisms by Ecotilling. Nucleic Acids Res.,
34, e99.

34. Gilchrist,E.J., O’Neil,N.J., Rose,A.M., Zetka,M.C. and
Haughn,G.W. (2006) TILLING is an effective reverse genetics
technique for Caenorhabditis elegans. BMC Genomics, 7, 262.

35. (2005) Rapid amplification of 50 complementary DNA ends
(50 RACE). Nat. Methods, 2, 629–630.

36. Morrison,T., Hurley,J., Garcia,J., Yoder,K., Katz,A.,
Roberts,D., Cho,J., Kanigan,T., Ilyin,S.E. D. et al. (2006)
Nanoliter high throughput quantitative PCR. Nucleic Acids Res.,
34, e123.

37. Steger,G. (1994) Thermal denaturation of double-stranded nucleic
acids: prediction of temperatures critical for gradient gel electro-
phoresis and polymerase chain reaction. Nucleic Acids Res., 22,
2760–2768.

38. Blake,R.D. and Delcourt,S.G. (1998) Thermal stability of DNA.
Nucleic Acids Res., 26, 3323–3332.

39. Behn,M., Qun,S., Pankow,W., Havemann,K. and Schuermann,M.
(1998) Frequent detection of ras and p53 mutations in brush
cytology samples from lung cancer patients by a restriction
fragment length polymorphism- based ‘‘enriched PCR’’ technique.
Clin. Cancer Res., 4, 361–371.

40. Kaur,M., Zhang,Y., Liu,W.H., Tetradis,S., Price,B.D. and
Makrigiorgos,G.M. (2002) Ligation of a primer at a mutation:
a method to detect low level mutations in DNA. Mutagenesis, 17,
365–374.

41. Liu,W.H., Kaur,M. and Makrigiorgos,G.M. (2003) Detection of
hotspot mutations and polymorphisms using an enhanced PCR-
RFLP approach. Hum. Mutat., 21, 535–541.

42. Behn,M., Qun,S., Pankow,W., Havemann,K. and Schuermann,M.
(1998) Frequent detection of ras and p53 mutations in brush
cytology samples from lung cancer patients by a restriction
fragment length polymorphism-based ‘‘enriched PCR’’ technique.
Clin. Cancer Res., 4, 361–371.

43. Huang,C., Taki,T., Adachi,M., Konishi,T., Higashiyama,M. and
Miyake,M. (1998) Mutations in exon 7 and 8 of p53 as poor
prognostic factors in patients with non-small cell lung cancer.
Oncogene, 16, 2469–2477.

44. Huang,C.L., Taki,T., Adachi,M., Konishi,T., Higashiyama,M.,
Kinoshita,M., Hadama,T. and Miyake,M. (1998) Mutations of p53
and K-ras genes as prognostic factors for non-small cell lung
cancer. Int. J. Oncol., 12, 553–563.

45. Steger,G. (1994) Thermal denaturation of double-stranded nucleic
acids: prediction of temperatures critical for gradient gel electro-
phoresis and polymerase chain reaction. Nucleic Acids Res., 22,
2760–2768.

46. Hernandez-Boussard,T., Rodriguez-Tome,P., Montesano,R. and
Hainaut,P. (1999) IARC p53 mutation database: a relational
database to compile and analyze p53 mutations in human tumors
and cell lines. International Agency for Research on Cancer.
Hum. Mutat., 14, 1–8.

47. Lipsky,R.H., Mazzanti,C.M., Rudolph,J.G., Xu,K., Vyas,G.,
Bozak,D., Radel,M.Q. and Goldman,D. (2001) DNA melting
analysis for detection of single nucleotide polymorphisms.
Clin. Chem., 47, 635–644.

48. Liew,M., Pryor,R., Palais,R., Meadows,C., Erali,M., Lyon,E. and
Wittwer,C. (2004) Genotyping of single-nucleotide polymorphisms
by high-resolution melting of small amplicons. Clin. Chem., 50,
1156–1164.

PAGE 11 OF 11 Nucleic Acids Research, 2007, Vol. 35, No. 12 e84


