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ABSTRACT

Topoisomerase Il removes supercoils and cate-
nanes generated during DNA metabolic processes
such as transcription and replication. Vertebrate
cells express two genetically distinct isoforms
(x and B) with similar structures and biochemical
activities but different biological roles.
Topoisomerase lla is essential for cell proliferation,
whereas topoisomerase lIf is required only for
aspects of nerve growth and brain development.
To identify the structural features responsible for
these differences, we exchanged the divergent
C-terminal regions (CTRs) of the two human
isoforms (o 1173-1531 and  1186-1621) and tested
the resulting hybrids for complementation of a
conditional topoisomerase llo. knockout in human
cells. Proliferation was fully supported by all
enzymes bearing the o« CTR. The o CTR also
promoted chromosome binding of both enzyme
cores, and was by itself chromosome-bound, sug-
gesting a role in enzyme targeting during mitosis. In
contrast, enzymes bearing the  CTR supported
proliferation only rarely and when expressed at
unusually high levels. A similar analysis of the
divergent N-terminal regions (¢ 1-27 and [ 1-43)
revealed no role in isoform-specific functions. Our
results show that it is the CTRs of human topo-
isomerase Il that determine their isoform-specific
functions in proliferating cells. They also indicate
persistence of some functional redundancy
between the two isoforms.

INTRODUCTION

The enzyme topoisomerase II is responsible for resolving
catenanes and supercoils in chromosomal DNA that are
generated during DNA metabolic processes. It plays an
essential role in condensation and segregation of chromo-
somes at mitosis (1-3). Topoisomerase II is of consider-
able interest to human medicine, because it is an
important target for cancer therapy (4). It is also suspected
that topoisomerase Il can be converted into a potent
DNA toxin by minor (and as such repairable) DNA
lesions frequently induced by environmental factors (e.g.
UV radiation, oxidative stress) (5,6). Moreover, certain
nutritional constituents (e.g. flavonoids) are known to
disturb the enzyme’s normal catalytic cycle (7,8), which is
thought to contribute to translocations within the MLL-
locus that trigger infant leukemia (9). These adverse
properties of topoisomerase Il could be the ultimate
reason why vertebrates maintain two genetically distinct
isoforms (denoted o and B) (10-14), while lower eukar-
yotes have only one.

The divergence of vertebrate topoisomerase Il into o
and [ isoforms remains enigmatic, because the two
enzymes are very similar in structure and function. They
share a high degree of overall sequence homology with
68% identity and 86% similarity (15,16). So far, the only
major in vitro difference between the two isoforms is a
preferential relaxation of positive supercoils by the Il
isoform (17), whereas other basic catalytic aspects are very
similar (18-21). Moreover, they have the same capacity
for complementing essential topoisomerase II functions
in temperature-sensitive Atop2 yeast mutants (22,23).
Despite these similarities, the two isozymes apparently
play different biological roles in vertebrate cells (24).
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Human cell lines lacking the o isoform encounter serious
problems at mitosis because chromosome segregation is
deficient (25,26). For similar reasons, mouse embryos
lacking the TOP2a gene, fail to develop beyond the
4-8-cell stage (27). In contrast, mammalian cell lines
lacking topoisomerase 11 pass normally through mitosis,
and their most prominent phenotype is a decreased
sensitivity towards topoisomerase II poisons (28-30).

These findings indicate that all essential topoisom-
erase Il functions in cell-cycle-related events, such as
DNA replication and sister chromatid segregation, can
be performed by the o isozyme, while the B isozyme
does not play an essential role in proliferating cells.
And yet, TOP2B —/— mice are not viable. They
suffocate shortly after birth due to developmental
defects of motor and sensory neurons (31) and the
brain (32). These defects most likely reflect a require-
ment of topoisomerase IIf activity in regulating the
expression of genes important at later stages of
neuronal differentiation (33). This view has convincingly
been confirmed by the recent finding that the B isoform
plays an important role in the regulation of gene
transcription, in as much as it introduces double-strand
breaks at promoter regions of several genes, which are
required for the proper signal-dependent activation of
these genes (34). In this respect, it is of interest that
topoisomerase IIf is constitutively expressed in all cells
of the mammalian organism (35), probably because
expression is driven by a promoter with features
characteristic of housekeeping genes (36), whereas
expression of topoisomerase Ilo is repressed as soon
as cells stop proliferating (37,38). Therefore, the [
isoenzyme is the only type II topoisomerase available in
quiescent cells. In synopsis, the data available clearly
suggest that the two isoforms have different biological
functions in vertebrate organisms.

Here, we address the question of precisely which
features render topoisomerase Ilo essential for cell
proliferation, and conversely, lack of which features
prevents topoisomerase 11 from adopting these functions.
We have approached this problem by identifying those
parts of topoisomerase Ilo. and I1f that are responsible for
isoform-specific functioning inside the living mammalian
cell. We started from the assumption that those portions
of the enzymes that are most divergent between o and P
forms would be most likely to mediate isoform-specific
functions. Sequence comparisons, limited proteolysis
experiments and crystallographic studies suggest that
topoisomerase Il is composed of three major structural
and functional domains (15,16,39—42). With the exception
of brief stretches at the N-terminal ends (first 27 or 43
amino acids of o and B, respectively), the ATPase and the
central breakage/reunion domains are similar between the
two isoforms, whereas the C-terminal regions differ both
in size and sequence (16). Thus, divergent and homol-
ogous portions of human topoisomerase Ilo and IIf were
combined in a varied manner to form o/B-chimeric
enzymes that were tested for unique, isoform-specific
functions in human cells, most notably for localization of
the enzymes at mitosis (43,44) and for complementation
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of a conditional topoisomerase Ilae knockout in human
cells (26).

MATERIALS AND METHODS

Alignment, plasmid construction, cell culture and live cell
imaging

We aligned amino acid sequences of topoisomerase Ila
and IIB using the default settings for ClustalW v.1.83
(WWW Service at the European Bioinformatics Institute,
http://www.ebi.ac.uk/clustalw) (45). Exchange of defined
regions between cDNAs of human topoisomerase I1a and
IIB at the positions indicated in Figure 1B was accom-
plished by overlap-extension PCR (46). Fragments
encompassing the divergent C-terminal regions alone
were generated by PCR. Chimeric and truncated cDNAs
were inserted into a bicistronic expression vector (47) used
previously for stable expression of biofluorescent human
topoisomerase Ilo and 1If in human cells (44). Here, the
vector was modified to provide C-terminal fusion with
enhanced yellow fluorescent protein (YFP). To facilitate
simultaneous visualization of topoisomerase I1o and 1B, a
tricistronic expression plasmid was generated, in which
topoisomerase Ilo fused to CFP was placed in the first,
and topoisomerase IIf fused to YFP in the second cistron
(47). A vector expressing YFP alone served as a control.
All new constructs were checked by DNA sequencing.
Human embryonal kidney 293 cells (# DSMZ ACC 305,
German Collection of Microorganisms and Cell Culture,
Braunschweig, Germany) were transfected with these
constructs. Stable transgenic cell clones were selected
and maintained in medium containing 0.4 pgml~' puro-
mycin (details see:48). Epifluorescence microscopy was
done with a Zeiss Axiovert 100 inverted light microscope
equipped with an on-stage heating chamber (ATC3 from
Bioptechs, Butler, PA, USA), a heated 63x/1.4NA oil
immersion objective system, a mercury lamp and appro-
priate filter sets. Confocal imaging was done with a Zeiss
LSM 510 META inverted confocal laser-scanning micro-
scope equipped with a 63x/1.4 NA oil immersion objec-
tive. To maintain a constant temperature of 37°C for live
cell imaging, the confocal microscope was built in a ZEISS
Incubator XL. Cells were cultured under the microscope
in COj-independent medium (Invitrogen, Karlsruhe,
Germany). To analyze complementation of topoisomerase
IToe function, we used human HT-1080 cells, in which both
alleles of the TOP2A gene are disrupted. The cells are
rescued by transgenic expression of human topoisomerase
I from a tetracycline repressible construct stably
integrated into the genome (26). Upon transfection of
these cells (designated HTETOP) with the various
chimeric constructs, complementation of topoisomerase
ITa function was determined by comparing the number of
stable cell clones obtained by selection with tetracycline
(1 ugml™") versus puromycin (0.4 pgml™") (details see:26).
For fluorescence activated cell sorting, cells were grown to
~80% confluence, washed in PBS, trypsinized and
resuspended in ice cold PBS at 10° cellsml™'. For each
measurement, 20000 cells were analyzed in a FACScan
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flow cytometer (BD bioscience) at a high flow rate setting
with an Argon ion laser tuned to 488 nm.

Immunoblotting and band depletion assay

Isolation of cell nuclei and extraction of nuclear proteins
(400mM NaCl) followed published procedures (48).
Whole cell lysate was prepared from 3 x 10° cells
suspended in D-PBS (Invitrogen, Karlsruhe, Germany)
by addition of an equal volume of 2-fold lysis buffer
(62.5mM Tris-HCI, pH 6.8, 10% glycerol, 4% SDS,
20mM DTT, 500mM urea, 5mM AEBSF, 0.04%
bromophenol blue) followed by ultrasound treatment
(15s, 14 W, 20kHz, tip diameter 2mm). For assessment
of in vivo activity by immunoband depletion, cells were
cultured with 100 uM VM26 (teniposide, Bristol-Myers
Squibb, Munich, Germany) for 30 min prior to harvesting.
Cell lysate (5 x 10* cells/lane) was subjected to SDS PAGE
and transferred to PVDF membranes (Immobilon P,
Millipore, Bedford, Maryland, USA). Blots were probed
with the following antibodies: (i) mouse monoclonal
antibodies against GFP (clone JL8, Clontech,
Heidelberg, Germany), which cross react with YFP and
subsequently are referred to as ‘YFP antibodies’; (ii)
rabbit peptide antibodies raised against a peptide of amino
acid residues 1514-1531 of human topoisomerase Ilo
(CIC, Genosys Cambridge, England); (iii) rabbit poly-
clonal antibodies raised against a peptide of amino acid
residues 1586-1621 of human topoisomerase I1B (desig-
nated 670) (49); (iv) various other antibodies against
C-terminal epitopes of human topoisomerase IIf serving
as a control for results obtained with 670. These include
rabbit polyclonal antibodies against amino acid residues
1341-1621 (designated H-286, Santa Cruz, Heidelberg,
Germany) and 1611-1621 (designated 779) (49), and
mouse monoclonal antibodies against amino acid residues
1583-1601 (clone 3H10) (50).

Immunoprecipitation and KkDNA decatenation

Magnetic beads (Dynabeads M-280, Dynal/Invitrogen,
Oslo, Norway) coupled to sheep anti-mouse IgG were
loaded with YFP antibodies (Anti-GFP, mixture of two
mouse monoclonal antibodies, Roche, Basel, Switzerland)
according to the manufacturer’s instructions (60ug of
antibodies per 10® beads). Loaded beads (4 x 107) were
incubated (2h at 4°C) with nuclear extract (200 pg total
protein) in a final volume of 400 pl binding buffer (5.5 mM
Na,HPOy,, 1.2mM NaH,POy, pH 7.4, 265 mM NaCl, 5%
FCS, 13.75% glycerol, 2.25mM EDTA, 0.35mM DTT,
10 pgml~" aprotinin, 1 mM AEBSF). Subsequently, beads
were washed once with three volumes of binding buffer
(20 min, 4°C), followed by four washes (10 min, 4°C) with
three volumes of washing buffer (5.5mM Na,HPO,,
1.2mM NaH,PO,, pH 7.4, 890mM NaCl, 13.75%
Glycerol, 2.25mM EDTA, 0.35mM DTT, 10pgml~’
aprotinin, | mM AEBSF). These washing steps were
found crucial for disrupting non-covalent interactions of
YFP-fused topoisomerase II with endogenous topoisom-
erase species. Immunoprecipitates were finally eluted from
the beads by boiling for 10min in sample buffer
(31.25mM Tris-HCI, pH 6.8, 5% glycerol, 3% SDS,

2mM DTT, 2mM EDTA, 10pugml™! aprotinin, 1 mM
AEBSF). Eluates were subjected to SDS PAGE and silver
staining (4 x 10° beads per lane) or western blotting
(2 x 10° beads per lane). Alternatively, immunoprecipi-
tates were washed twice with decatenation buffer (50 mM
Tris-HCI, pH 7.6, 100mM KCI, 10mM MgCl,, | mM
ATP, 0.5mM DTT, 0.5mM EDTA, 30 ugml~' BSA) and
incubated (2h, 37°C) with 300 ng catenated kinetoplast
DNA from Crithidia fasciculata (kDNA, TopoGen Inc.,
Columbus, USA), with or without 1mM ICRF-187
(Zinecard, Pharmacia & Upjohn, Kalamazoo, MI,
USA), in a final volume of 27pul decatenation buffer.
The reaction was stopped by adding 1% SDS and
0.1mgml~" proteinase K, and DNA reaction products
were analyzed by agarose gel electrophoresis.

RESULTS
Construction of topoisomerase I/} chimeras

Topoisomerase Iloe and IIf are composed of three
functional domains, which are bordered by protease-
sensitive sites. Limited proteolysis experiments revealed
that the C-terminal domains begin at residues 1263 (Ila)
and 1296 (IIB), respectively (39,41). However, sequence
alignment shows that the region of high diversity between
the two isoforms extends beyond this domain border and
reaches up to amino acid positions 1171-1179 (Ile) or
1185-1191 (1IB) (16,51). Interestingly, type II enzymes
from chlorella viruses lack this divergent C-terminal
region (52-54), and truncation of human topoisomerase
Iloe at amino acid 1175 produced a catalytically active
variant in vitro (53). An extended truncation at position
1121, however, destroyed enzyme activity (55) probably
due to deletion of the primary dimerization region (56).
In summary, these findings suggested to us residues
1173-1531 and 1186-1621 of human topoisomerase Ilo
and IIB, respectively, as candidate regions for the isoform-
specific regulation. These regions encompass a maximum
of heterogeneity (bearing only ~32% identical amino acid
residues) and can be exchanged between the two isoforms
without interfering with the basic enzymatic functions. In
fact, it has been reported that exchanging of the
C-terminal regions of murine topoisomerase II isoforms
at positions corresponding to amino acids 1173 and 1186
of human topoisomerase Ilo and IIp, respectively, gives
rise to chimeric enzymes that are fully active upon
heterologous expression in yeast (57). Therefore, we
chose to exchange the same C-terminal regions of the
human enzymes. Because these regions extend beyond the
C-terminal domains defined by limited proteolysis (39.,41),
they are herein referred to as C-terminal regions (CTRs).
We also selected short divergent stretches at the
N-terminal ends of human topoisomerase Iloe and IIp
(first 27 or 43 amino acids, respectively) to be exchanged
between isoforms. These regions are only ~14% identical,
whereas the rest of the N-terminal domains and the core
domains (amino acids 28-1172 and 44-1185 of Ila and
1B, respectively) are very similar with ~81% identical
amino acid residues. A synopsis of sequence homologies



and sites chosen for exchanging regions between topo-
isomerase [lo and I1P is shown in Figure 1A.

Constitutive expression of active topoisomerase
IIo/B-chimeras in HEK 293 cells

When transfected into HEK 293 cells, each of the
constructs depicted in Figure 1B gave rise to viable cell
lines supporting stable expression of the YFP-fused
proteins. Cell clones with intermediate expression levels

A NTS  Conserved enzyme core CTR
topo llo ! | ! !
127 Y805 1172 1531
topo lI " : | |
143 Y821 1185 1621
Ident.: ~14% ~81% ~32%
Simil.: ~35% ~93% ~47 %
topo llo
1 [ M_YFP |
topo II
BNTS/ o
3 E H_YFP |

o CTR

M YFP |

B CTR
8

Figure 1. (A) Comparison of human topoisomerase Il and 11B. Amino
acid sequence alignment of the two isoforms indicates two regions with
low and one with high sequence homology. Short stretches of the
N-terminal ends (denoted ‘NTS’) and the CTR have highly divergent
sequences, whereas most of the ATPase domains and the catalytic cores
(denoted ‘Conserved enzyme core’) are similar. Y805 and Y821 are the
active site tyrosines. Numbers indicate last residues of the respective
regions selected for fission/fusion and truncation of enzyme variants.
Amino acid identities and similarities for each region are indicated
below. (B) Schematic synopsis of the constructs studied. All constructs
were fused to YFP at their C-terminal ends; topo Ila, topo IIf:
full-length human topoisomerases Iloe and I1If; B NTS/o: chimeric
human topoisomerase IIf (1-43) — Ila (28-1531); o NTS/B:
chimeric human topoisomerase o (1-27) —> IIf (44-1621); o/B
CTR: chimeric human topoisomerase Ilo (1-1172) —> IIf (1186-1621);
B/o CTR: chimeric human topoisomerase IIf (1-1185) —> Ilo (1173—
1531); o CTR: truncated human topoisomerase Ila (A1-1172); § CTR:
truncated human topoisomerase 113 (A1-1185).
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were selected and expanded for further analysis. All clones
exhibited growth rates and gross morphologies similar to
cells not transfected or expressing YFP alone. To assess
the integrity of the fusion proteins and to compare their
relative expression levels, we subjected the cells to western
blotting and probed the blots with YFP antibodies. YFP-
fused full-length, non-chimeric topoisomerase o and I1f
and the various topoisomerase Ila/B chimeras were
detected as single protein bands of expected size. There
were no smaller bands detected in addition by YFP
antibodies (Figure 2A, top, odd numbered lanes). Thus,
we could exclude rearrangements of the transgenes and
safely assume that yellow fluorescence of the cells was
entirely due to the desired YFP-fused protein. All
constructs supported similar expression levels allowing a
comparison of data between these cells. To compare YFP-
fused and endogenous enzymes, blots were probed with
isoform-specific antibodies against C-terminal epitopes of
topoisomerase Ila or IIP (Figure 2A, middle and bottom,
respectively). The YFP-fused proteins could clearly be
discriminated from the corresponding endogenous
enzymes as additional bands of slower migration. From
comparison of lanes it became evident that endogenous
levels of topoisomerase Ila and II were similar in all
transfected cell clones (Figure 2A, middle and bottom,
odd numbered lanes) and similar to those in untransfected
cells (not shown), indicating that none of the YFP-fused
enzymes interfered with endogenous topoisomerase II
expression. It should also be noted that the desired
exchanges of CTRs outlined in Figure 1B were confirmed
by the presence of unique C-terminal epitopes of
topoisomerase Iloo and I1If in the products of the
various constructs shown in middle and bottom panel of
Figure 2A. To compare expression levels of endogenous
and YFP-fused proteins within each clone, we intended to
compare signal intensity within the lanes of western blots
stained with isoform-specific topoisomerase II antibodies
(Figure 2A, middle and bottom, odd numbered lanes).
However, upon testing several antibodies directed at
various unique epitopes of human topoisomerase I1f3, we
found that all antibodies tested did not exhibit the same
preference for the endogenous form and heterologously
expressed YFP-fused variants of the enzyme. On the
contrary, the antibodies preferentially recognized one or
the other form of the enzyme (Figure 2B). Thus,
conclusions about expression levels drawn from such
analyses are in our eyes unreliable. However, it should be
noted that all cell clones expressing YFP-fused enzyme
constructs exhibited growth rates and morphologies
indistinguishable from untransfected cells, suggesting
that the enzymes were at least expressed at physiologically
tolerable levels. Similar analyses were carried out on cell
clones expressing YFP fusion proteins of the CTRs of
topoisomerase Iloe and IIf alone (Figure 2C). These
constructs also gave rise to single protein bands. However,
the apparent molecular weight (~100kDa in both cases)
was larger than expected from the amino acid sequence
(70kDa for oo CTR-YFP and 80kDa for § CTR-YFP).
This could be due to phosphorylation, since these regions
harbor the majority of phosphorylation sites (38).
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Figure 2. Immunoblot analysis of YFP-fused topoisomerase II con-
structs expressed in HEK 293 cells. Positions of marker proteins are
indicated on the right margin. See Figure 1B for nomenclature of the
constructs. (A) Topoisomerase II immunoband depletion assay. Lysates
of whole cells expressing full-length human topoisomerase IIa (lanes 1
and 2), or IIf (lanes 3 and 4), or enzyme chimeras (lanes 5-12) were
subjected to SDS PAGE (6% gels) and western blotting. Blots were
stained with YFP antibodies (top), or antibodies against human
topoisomerase Iloe (middle), or IIf (mixture of antibodies 779 and
3H10, bottom). Cells in even lanes were first cultured with 100 uM
VM26 for 30min. (B) Specificity of topoisomerase IIf antibodies in
immunostaining of western blots. Whole cell lysates of cells expressing
full-length human topoisomerase IIB, were subjected to SDS PAGE
(6% gels) and western blotting. Blot membranes were probed with YFP
antibodies (lane 1, JL-8) or antibodies against topoisomerase IIf, as
follows. Lane 2 (670), lane 3 (779), lane 4 (3H10), lane 5 (a mixture of
antibodies 779 and 3H10) and lane 6 (H286). (C) Lysates of whole cells

To determine whether the exogenous enzymes were as
active in the cells as the endogenous enzymes, we employed
immunoband depletion. The assay is based on the
stabilization of covalent complexes of topoisomerase II
and genomic DNA by specific poisons (4). As a conse-
quence, signals specific for active topoisomerase II
molecules are depleted from immunoblots due to retention
of topoisomerase [leDNA complexes in the gel slots. As
demonstrated in Figure 2A, treatment with the topo-
isomerase II poison VM26 depleted YFP-fused non-chi-
meric full-length enzymes and topoisomerase Ilat/p
chimeras from immunoblots to a similar extent (Figure
2A, top, compare lanes 1-4 with lanes 5-12). The extent of
depletion was also comparable to that of endogenous
topoisomerase Ila (Figure 2A, middle) and 11 (Figure 2A,
bottom). It should be noted that in this analysis antibody-
derived biases (compare Figure 2B) did not play a role since
they apply in the same manner to the bands to be compared
in quantitative terms. These results confirm that all the
topoisomerase Ilo/f chimeras were active in the cells.
Moreover, it could be deduced that activity levels were
comparable to those of non-chimeric enzymes (exogenous
or endogenous) because bands were depleted to similar
extent. Corresponding analyses of cells expressing the
YFP-tagged oo CTR or B CTR confirmed that these proteins
were catalytically inactive, as predicted (not shown).

Impact of non-conserved regions on localization of
topoisomerase Il in living cells

We have previously shown by immunohistochemistry (43)
as well as in vivo localization of biofluorescent topoisom-
erase Ilo and IIP (44) that the most obvious difference
between the isoforms is their association with metaphase
chromosomes. This observation is demonstrated in the
first two rows of Figure 3B. YFP-fused topoisomerase Ila
(row 1) and IIP (row 2) exhibit a similar distribution in the
interphase nucleus (left). However, at metaphase (right)
the o isoenzyme accumulates on the condensed chromo-
somes, whereas the B isoenzyme diffuses mostly into the
cytosol and shows only a marginal association with
chromosomes. The phenomenon is even more clearly
seen in Figure 3A showing cells co-expressing topoisom-
erase [lo and 11 fused to CFP and YFP, respectively. At
interphase (left panel), the two isoenzymes colocalize,
whereas at mitosis (right panel) topoisomerase Ila (shown
in red) is chromosome bound, and topoisomerase IIf
(shown in green) predominantly resides in the cytosol.
Thus, binding to metaphase chromosomes can be used as
experimental readout of isoform-specific functioning of
topoisomerase Ilao and IIf in proliferating mammalian
cells, and we have used it to characterize the various
topoisomerase Ilo/p chimeras (Figure 3B, rows 3-6) and
the two CTRs alone (Figure 3B, rows 7 and 8). It becomes
readily apparent, that the ability to bind to metaphase
chromosomes is fully retained in all enzyme varieties

expressing human topoisomerase Iloe A1-1172 (o CTR, odd numbered
lanes) or IIf A1-1185 (B CTR, even numbered lanes) were subjected to
SDS PAGE (10% gels) and western blotting. Blots were probed with
YFP-antibodies (left), or antibodies against human topoisomerase Ilo
(middle), or IIf (right).
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A B
interphase metaphase interphase ____Mmetaphase

Figure 3. In vivo localization of topoisomerase II constructs in interphase nuclei and during metaphase. (A) Representative examples of HEK 293
cells stably co-expressing topoisomerase Ila fused to CFP (pseudo-colored in red) and topoisomerase IIf fused to YFP (green) visualized by confocal
imaging at interphase (left column) and mitosis (right column). (B) Each row of images shows representative images of living HEK 293 cells stably
expressing the YFP-fused topoisomerase II construct indicated on the left margin (see Figure 1B for nomenclature) or YFP alone (row 9). Each pair
of images visualizes the same cell by transmitted light (left) and confocal imaging of YFP-fluorescence in mid plane (right). Left and right columns of
image pairs show representative examples of cells at interphase and metaphase, respectively.

bearing the oo CTR (Figure 3B, rows 1, 3 and 6) and to CTR is replaced with that of the o isoform (Figure 3B,

some extent also in this enzyme portion alone (Figure 3B, row 6). Similar effects are not apparent upon exchanging
row 7). Moreover, enrichment in mitotic chromosomes is the non-conserved N-terminal stretches of the isoenzymes
lost from topoisomerase Ila, when its CTR is replaced (Figure 3B, compare rows 3 and 4). It should be noted

with that of the p isoform (Figure 3B, row 5). Conversely, that the B CTR alone had a diffuse distribution in the cell
this property is fully gained by topoisomerase I, when its at metaphase, but it was not entirely excluded from
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chromosomes, as was YFP alone (Figure 3B, row 9).
In summary, these observations suggest that (i) the
non-conserved CTR of topoisomerase Ilo promotes
binding of the enzyme to metaphase chromosomes, (ii)
the corresponding CTR of topoisomerase I is much less
capable of performing this function, and (iii) the non-
conserved N-terminal stretches of the two isozymes do not
play a role in targeting the enzymes to metaphase
chromosomes.

The dimerization state of topoisomerase Ilo/3 chimeras

Given that topoisomerase II functions as a dimer,
unambiguous deductions from the data in Figure 3 can
only be made, when dimerization of topoisomerase Ila/3
chimeras with endogenous enzyme varieties can be
excluded, because this would render the behavior of the
YFP-linked moiety attributable to an unpredictable
mixture of homo- and heterodimers. In fact, we have
previously assumed dimerization between GFP-fused,
wild-type topoisomerase II and corresponding endoge-
nous enzyme molecules based on GFP-directed immuno-
precipitation (IP) protocols (44). We therefore wanted to
clearly define the dimerization state of the topoisomerase
ITo/B chimeras by YFP-directed IP followed by SDS
PAGE, protein staining and immunoblotting. When we
applied previously described low-salt IP conditions (44) to
extracts from cell lines investigated here, the results were
highly inconsistent, and non-reproducible; often both
endogenous topo II isoforms were detected in the IPs by
immunoblotting (data not shown). To address these
problems we applied harsher buffer conditions with
higher salt concentrations. Under these conditions, no
prominent protein bands, other than the expected YFP-
chimeras, were detected in silver-stained gels of any of the
IPs (Figure 4A, top), at least not in the size range where
endogenous topoisomerase Ilo or I would migrate (i.e.
170-180 kDa). Similarly, endogenous topoisomerase Ila
or IIf were undetectable in immunoblots of the IPs
(Figure 4A, middle-bottom and bottom), the only protein
species detected being the ones directly targeted by the
precipitating  YFP antibody. It is unlikely that this
difference to our previous results was brought about by
experimental dissociation of topoisomerase II dimers
because they are known to be extremely salt-stable (58).
We find it more likely that the presence of endogenous
topoisomerase II isoforms in IPs of GFP-tagged topo-
isomerase II, as reported previously by us (44), was due to
the multimerization of topoisomerase II homodimers (59),
which is known to decrease with increasing ionic strength
(59). To further demonstrate that topoisomerase II dimers
were not disrupted during high salt IP, we tested whether
the enzymes retained their catalytic activity (indicative of
functional dimeric enzymes) in the final IPs. As demon-
strated in Figure 4B, IPs of all the YFP-tagged proteins
exhibited strong DNA decatenation activity, thus attesting
to the integrity of the enzyme dimers throughout the IP
procedure. Thus, the most plausible conclusion is that all
the exogenous topoisomerase II species heterologously
expressed in HEK 293 cells undergo homodimer forma-
tion. Because these observations were based on IPs of
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Figure 4. Immunoprecipitation of YFP-fused topoisomerase II con-
structs followed by determination of enzyme activity in vitro. (A)
Topoisomerase constructs indicated at the top (see Figure 1B for
nomenclature) were stably expressed in HEK 293 cells and subjected to
YFP-directed immunoprecipitation. Precipitates were analyzed by SDS
PAGE (6% gels) and protein silver staining (top), or subjected to
western blotting and probed with YFP antibodies (middle top), or
antibodies against topoisomerase Ilo (middle bottom), or IIf (bottom).
Migration distances of molecular weight marker proteins are indicated
on the right margin. (B) Alternatively, precipitates were reacted with
300ng kDNA in the absence (odd numbered lanes) or presence (even
numbered lanes) of 1mM ICRF-187. DNA-reaction products were
separated by agarose gel electrophoresis and visualized with ethidium
bromide. Positions of catenated DNA network and free DNA circles
are indicated on the right margin. The first lane on the left (c) shows
the kDNA substrate alone.

YFP-tagged proteins, they do not rule out the formation
of endogenous topoisomerase II heterodimers (60). They
do, however, allow for an unambiguous interpretation of
the data obtained here with the various topoisomerase
ITat/B chimeras. Thus, in vivo localization of these proteins
(Figure 3B) clearly indicates a decisive role of the



non-conserved oo CTR in targeting the core portion of
topoisomerase II to metaphase chromosomes.

The CTR of topoisomerase Il is required for the efficient
support of cell proliferation

Our observation that targeting to metaphase chromo-
somes is promoted by the oo CTR (Figure 3) suggests
that this region may also enable topoisomerase Ilo to
perform its essential functions in proliferating cells. We
tested this hypothesis by complementation studies
making use of human HT-1080 cells, in which both
alleles of the TOP2a gene are disrupted and cell
proliferation is supported by expression of topoisom-
erase Ilo from a tetracycline repressible vector stably
integrated into the genome (26). These HTETOP cells,
which die when topoisomerase Ilo is depleted by the
addition of tetracycline, were stably transfected with the
YFP-fused topoisomerase II constructs investigated here
(Figure 1B) and the frequency with which colonies could
form in the presence of tetracycline was measured. The
results are summarized in Table 1. In the absence of any
transfected constructs, no viable cell clones emerged in
the presence of tetracycline (row 7), but the YFP-fused
version of topoisomerase Iloe was able to support
proliferation of the cells in the presence of tetracycline,
as expected (row 1). The YFP-fused version of
topoisomerase IIB, however, consistently gave rise to a
much lower frequency of clones (row 2). Most interest-
ingly, topoisomerase Ilo lost most of its ability to
support cell proliferation upon replacement of its CTR
with that of the B isoform (row 5), whereas topoisom-
erase IIf furnished with the oo CTR gained this ability
(row 6). A similar effect was not observed upon
exchanging the non-conserved N-terminal stretches of
the isozymes (rows 3 and 4). In summary, all versions of
human topoisomerase II bearing the o CTR were
capable of supporting cell proliferation (rows 1, 3 and
6), whereas all those furnished with the B CTR (rows 2,
4 and 5) were highly inefficient in this respect. It is,
however, important to note that the latter constructs
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were not completely incapable of supporting cell

proliferation.

Support of cell proliferation by topoisomerase 113 requires
highly elevated enzyme levels

The average complementation index for all constructs
bearing the o CTR was 1.21 (derived from Table 1,
rows 1, 3 and 6). In contrast, the average complementa-
tion index for all constructs bearing the B CTR was 0.13
(derived from Table 1, rows 2, 4 and 5). Because no
viable cell clones emerged from mock transfection
(Table 1, row 7), these observations suggest that
topoisomerase IIf (or enzyme chimeras bearing the
CTR) can also support cell proliferation to some extent.
Two explanations for this result can be considered: (i)
topoisomerase IIf could be able to substitute for the «
isoform, when present at much higher levels; (i) binding
sites normally occupied by topoisomerase Ila (e.g. sites
on mitotic chromosomes) could become freely accessible
to the B isoform when the o isoform is absent. These
sites could then be occupied by topoisomerase IIf§
irrespective of its concentration in the cell. To investi-
gate these hypotheses, we compared expression levels
and localization of YFP-fused topoisomerase Ila or IIJ
in clones supporting cell growth in the presence of
tetracycline (Figure 5). From comparison of representa-
tive cell clones subjected to western blotting and
probing with YFP antibodies (Figure 5A, top) it
became readily apparent that complementation by
YFP-fused topoisomerase IIf (lanes 3, 4 and 5) requires
much higher expression levels than complementation by
YFP-fused topoisomerase Ila (lane 2). Flow cytometry
confirmed this finding, showing that YFP-fluorescence
was ~10-fold brighter in various cell clones comple-
mented by YFP-fused topoisomerase IIf than in a
reference cell clone complemented by YFP-fused topo-
isomerase Ila (Figure 5B). Notwithstanding our hesita-
tions about quantitative comparisons between YFP-
fused and endogenous topoisomerase I species based on
topoisomerase Il-directed immunoblotting (see Figure
2B), it should be noted that the cellular complement of

Table 1. HTETOP complementation with topoisomerase Ilo, IIp and Ilo/B-chimeras®

Construct® TET® (%) PUROC (%) cre

Topo 1o 100 100 0.91+0.20
Topo 1Ip 113+5.6 69.8+18.1 0.14+0.10
B NTS/a 128.6£18.2 73.0+11.6 1.64+0.61
o NTS/B 51433 85.6+16.8 0.11+0.05
o/p CTR 3.9+4.7 120.9 £42.1 0.14+0.11
B/ CTR 69.54+32.2 7114133 1.08 +0.35
Mock transfection 0 0 -

YHTETOP: human HT-1080 cells in which both alleles of the TOP2a gene are disrupted and which are salvaged by transgenic expression of human
topoisomerase Ila from a tetracycline repressible construct stably integrated into the genome (26).
Constructs tested for complementation of tetracycline-induced shutdown of heterologous topoisomerase Ila expression. All constructs also confer

puromycin resistance. For nomenclature of constructs refer to Figure 1B.

°Number of stable cell clones obtained after transfection of 3 x 10° HTETOP cells and selection with puromycin (PURO, 0.4 pg-ml~',48h) or
tetracycline (TET, 1 ug-ml~", 48 h). Numbers are normalized to those obtained with topoisomerase ITo. (row 1). Mean values + SEM of three similar

experiments are given.

dComplementation index: ratio of stable cell clones obtained upon selection with tetracycline versus puromycin. Values are not normalized.

Mean values = SEM of at least three similar experiments are given.
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Figure 5. Characterization of HTETOP clones rescued by topoisomerase Iloo or IIB. (A) Immunoblot analysis of YFP-fused topoisomerase II
constructs expressed in HTETOP cells. Whole cell lysates of untransfected HTETOP (lane 1) or tetracycline resistant HTETOP clones expressing
topoisomerase Ila (lane 2) or topoisomerase IIf (lanes 3, 4 and 5) were subjected to SDS PAGE (6% gels) and western blotting. Blots were stained
with YFP antibodies (top), or antibodies against human topoisomerase Ilo (middle), or IIf (bottom). Positions of marker proteins are indicated on
the right margin. (B) Yellow fluorescence level of untransfected HTETOP (HTETOP) or tetracycline resistant HTETOP clones expressing
topoisomerase Ilo (topo Ilae compl-1) or topoisomerase IIf (topo IIf compl-1, topo I compl-2 and topo IIf compl-3) was measured by flow
cytometry and shown as histograms. (C) In vivo localization of YFP-fused topoisomerase II constructs in interphase nuclei and during metaphase.
Tetracycline resistant HTETOP clones stably expressing topoisomerase Iloo (row 1) or IIf (rows 1, 2 and 3) were visualized by fluorescence
microscopy. Corresponding phase contrast images (left) and YFP images (right) are shown. Left and right of image pairs show representative

examples of cells at interphase and metaphase respectively.

YFP-fused topoisomerase Ila enabling full cell prolif-
eration was hardly detectable by topoisomerase-directed
immunoblotting (Figure S5A, middle, compare lane 1
with lane 2), whereas YFP-fused topoisomerase IIf
complementing topoisomerase Ilo function gave a much
more intense signal than corresponding bands of
endogenous topoisomerase IIf (Figure S5A, compare
bands within lanes 3, 4 and 5). Thus, in our model
system, the B isoform seems only able to substitute for
topoisomerase Il when it is highly (at least 10-fold)
overexpressed. Figure 5C further suggests that, upon
repression of topoisomerase Ila expression, binding sites
on mitotic chromosomes normally occupied by this

enzyme do not become freely accessible to the f isoform
and are not readily occupied by it. If that were the case,
topoisomerase I should accumulate on metaphase
chromosomes upon repression of topoisomerase Ila.
However, this was clearly not the case in any of the cell
clones complemented by YFP-fused topoisomerase IIf
(Figure 5C, rows 2-4). In all these cell clones, YFP-
fused topoisomerase IIf was mostly localized in the
cytoplasm during mitosis. We failed to detect an
accumulation of the enzyme on metaphase chromo-
somes, as seen in the same cell model with YFP-fused
topoisomerase Ila (Figure 5C, row 1). It should also be
noted that localization of YFP-fused topoisomerase IIf



during interphase (Figure 5C, left) and metaphase
(Figure 5C, right) was identical to that observed in HEK
293 cells where endogenous expression of topoisomerase
IIf was not silenced (Figure 3A and B). In summary,
these morphological data suggest that the binding equili-
brium of topoisomerase IIf at metaphase chromosomes is
(1) independent of the absence or presence of topoisomerase
ITa, and (i1) not significantly influenced by the total cellular
level of topoisomerase Iloo and IIB. Thus, the weak but
notable ability of the B isoform to complement the function
of the o isoform cannot be due to an increase in its
propensity to interact with mitotic chromosomes upon
removal of topoisomerase I1a.

DISCUSSION

It is well established that the C-terminal domains of both
yeast and human topoisomerase II are dispensable for
the enzyme’s basic catalytic activity (55,61). On the
other hand, a large body of evidence suggests that the
C-terminal domain plays a role in regulating the cellular
functioning of topoisomerase II. Most notably, it contains
crucial nuclear localization signals (55,62,63) and sites
phosphorylated in a cell-cycle-related manner (38). Since
the C-terminal domains are the most divergent portions of
the two mammalian isoforms of topoisomerase II (16), it
has been proposed that they determine specific functions
differing between these two isoforms in vivo (39). Here,
we provide direct evidence in support of this view. We
demonstrate that the divergent CTRs of topoisomerase
Ilo and IIB govern two features in which the two isoforms
characteristically differ, namely binding to mitotic
chromosomes and support of cell proliferation. We show
that YFP-fused topoisomerase Ila is preferentially chro-
mosome-bound during mitosis and fully supports prolif-
eration of cells lacking endogenous topoisomerase Ila. In
contrast, the majority of YFP-fused topoisomerase IIf is
not chromosome-bound at mitosis, and clones emerged
from complementation experiments at greatly reduced
frequencies. The specific features of the o isoform were
stringently linked to the presence of the o CTR. Replace-
ment of the CTR in topoisomerase II3 with the o« CTR
produced an enzyme chimera that behaved like topoi-
somerase [lo, whereas the converse experiment produced
an enzyme chimera behaving like topoisomerase 11f.

The requirement of topoisomerase Ila for proper cell
division has been suggested by indirect evidence showing
an essential role in chromosome segregation, which is not
readily adopted by the B-isoform (e.g. 25). More recently,
depletion of topoisomerase Iloe by various experimental
strategies resulted in each case in an impaired separation
of chromosomes in anaphase. (26,27,64). Here we describe
a striking coincidence between the ability of all versions of
topoisomerase Il furnished with the o« CTR to comple-
ment such a lack of endogenous topoisomerase Ilo and
the propensity of the complementing construct to bind to
mitotic chromosomes. We even observe that the oo CTR
alone preferentially binds to metaphase chromosomes.
It remains unclear whether chromosome binding is due
to direct DNA-interactions, as suggested for various
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prokaryotic type II topoisomerases (65,66), or to
interactions with other proteins, e.g. condensins (67) or
HSP90 (68). However, the strict correlation between the
binding to metaphase chromosomes and the support of
cell proliferation suggests a mechanistic connection
between the two. It can be hypothesized (i) that efficient
separation of sister chromatids and proper cell division
depend on a high, local concentration of active topoi-
somerase Il at the mitotic chromosome, (ii) that under
physiological conditions only the o isoform accumulates
in sufficient concentrations at the mitotic chromosome,
and (ii1) that this feature is promoted by an intrinsic ability
of the o CTR to bind to metaphase chromosomes. These
hypotheses would assign to the oo CTR the function of an
adaptor that shifts the binding equilibrium of the entire
enzyme molecule towards the bound state and thus
provides the chromosome at mitosis with sufficient
topoisomerase Il activity to perform extensive DNA-
decatenation in the course of sister chromatid segregation.
Our finding that topoisomerase II can also support cell
proliferation when expressed at extremely high levels
supports such a hypothesis: sufficient local concentration
of active topoisomerase II at the mitotic chromosome
cannot only be acquired by expressing normal levels of an
enzyme having a high affinity (due to the o CTR), but also
by expressing highly increased levels of an enzyme having
a much lower one (due to the p CTR).

The above interpretation is more difficult to fit with
complementation studies carried out in yeast that show
that both mammalian isoforms are equally capable of
rescuing temperature-sensitive Atop2 yeast mutants
(22,23). One explanation could be that yeast might be
unable to discriminate between the two mammalian
isoforms. However, this explanation is unlikely because
mouse topoisomerase Iloe and IIP can be discriminated by
yeast, in as much as they are distributed in a distinguish-
able manner in yeast cell nuclei (57). Another explanation
could be that yeast is more tolerant to changes in
topoisomerase II expression levels than human cells,
which are readily killed by overexpression of these
enzymes (69). Since high copy number vectors were used
in the yeast studies for expression of the complementing
enzymes, expression levels of the B isoform could have
been high enough to enable efficient complementation of
topoisomerase Il functions in the same manner as seen
here in a human cell line.

Another possible interpretation of our data is that the
topoisomerase Ila plays an essential role during replica-
tion. It has been shown in yeast that topoisomerase II is
required for DNA replication, when topoisomerase I is
lacking (70), because movement of DNA replication
complexes through the DNA double helix induces positive
supercoils ahead of this machinery. Recent work in yeast
demonstrates that topoisomerase II relaxes chromatin
even more efficiently than topoisomerase I (71). In
mammals, topoisomerase Ila, but not IIf3, appears to be
a key player in removal of this type of torsional stress
during replication (17), and it was postulated that this
isoform-specificity is determined by the divergent
C-terminal regions (72). The residues that were suggested
to play this role in replication are all within the oo CTRs
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analyzed here. In addition, a study in chicken fibroblast
showed that topoisomerase Ila, but not IIf, co-localizes
with sites of replication, and this targeting was also
mediated by the oo CTR (73). Unfortunately, it is difficult
to determine whether topoisomerase Ilo plays a truly
essential role during replication that cannot be comple-
mented by other proteins (e.g. topoisomerase I or
topoisomerase IIf). Although silencing of topoisomerase
Ilo in human cells (26) and mice (27) causes a defect in
chromosome segregation, suggesting that its essential role
is during mitosis rather than S-phase, this phenotype
could conceivably be caused by loss of an essential
topoisomerase Ilo function during the late phases of
replication. Lack of such a function could still allow for a
progression into metaphase followed by mitotic catas-
trophes due to unresolved DNA catenanes. Thus, an
essential role of topoisomerase Ila in relaxation of positive
supercoils generated at late stages of replication cannot be
excluded, and our observation that the oo CTR is required
for efficient support of cell proliferation by topoisomerase
II may just as well reflect a specific involvement of the o
isoform in DNA replication (72).

Regardless of the exact role of the o CTR, we
demonstrate in this article that it confers a unique,
proliferation-associated functionality to the topoisom-
erase II core enzyme (either version of it), whereas the 8
CTR is much less efficient in this respect. It is therefore
plausible that the two versions of the CTR cooperate in
differential targeting of topoisomerase Iloe and IIP, thus
providing unique functionality of the two isoforms in
proliferating cells.
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