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ABSTRACT

This article presents a new method for analyzing
microarray time courses by identifying genes that
undergo abrupt transitions in expression level,
and the time at which the transitions occur. The
algorithm matches the sequence of expression
levels for each gene against temporal patterns
having one or two transitions between two expres-
sion levels. The algorithm reports a P-value for the
matching pattern of each gene, and a global false
discovery rate can also be computed. After match-
ing, genes can be sorted by the direction and time
of transitions. Genes can be partitioned into sets
based on the direction and time of change for
further analysis, such as comparison with Gene
Ontology annotations or binding site motifs. The
method is evaluated on simulated and actual time-
course data. On microarray data for budding yeast,
it is shown that the groups of genes that change in
similar ways and at similar times have significant
and relevant Gene Ontology annotations.

INTRODUCTION

An obvious approach to studying a biological processes,
such as the reaction of cells to a stimulus, is to measure the
activity of the cell at a sequence of time points. However,
when the measurements consist of high-throughput
gene expression microarrays, it is not obvious how to
extract biologically meaningful results. We describe a new
computational method, called StepMiner, the primary goal
of which is to assist biologists in understanding the
temporal progression of genetic events and biological
processes following a stimulus, based on gene expression
microarray data.

At the most basic level, StepMiner identifies genes
which undergo one or more binary transitions over short
time courses. It directly addresses the one of the more
basic questions one can ask of time course data: ‘Which
genes are up-regulated or down-regulated as a result of

the stimulus?’ and ‘When does the gene transition to
up- or down-regulated?’

MATERIALS AND METHODS

StepMiner extracts three types of binary temporal
patterns. The first type, shown in Figure 1(a and b),
describe ‘one-step’ transitions, where the expression
level of a gene transitions from a high to a low value or
from a low to a high value. The second type, shown in
Figure 1(c and d), describes two-step transitions. Genes in
this category turn on then back off or vice versa. The third
type consists of genes for which the one- or two-step
patterns do not fit appreciably better than a constant
mean value (the null hypothesis). This can result when the
gene expression level is genuinely constant, or when the
other patterns fit no better than the constant because
the behavior of the gene is complex. The expression levels
for up- and down-regulated are chosen that best fit the
data.
Fitting the patterns of one- and two-step transitions

requires an algorithm that evaluates every possible
placement of the transitions (or step) between time
points, and chooses the one that gives the best fit. This
process is called adaptive regression.
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Figure 1. Signals of interest. Different types of binary temporal
patterns that need to be extracted from the time course microarray
data. (a) Gene expressions transition from a low value to a high value.
(b) Gene expressions transition from a high value to a low value.
(c) Gene expressions transition from low to high and return to the same
low value. (d) gene expressions transition from high to low and return
to the same high value.
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Fitting one- or two-step functions

The objective of StepMiner is to find a one- or two-step
function that best fits n time points, X1,X2, . . .Xn.
The algorithm evaluates all possible step positions. For
each position, it finds the values of constant segments
using linear regression. The fitted values bX1, bX2, . . . , bXn for
each step give the square error (SSEstep). The adaptive
regression scheme chooses the step positions that minimize
the square error. For the two-step curve, the first and third
constant segments are assumed to have the same value.

Let bX1, bX2, . . . , bXn be the fitted value from the adaptive
regression and X be the mean of the n original time points.
The total sum of squares is defined to be

SSTOT ¼
Xn
i¼1

ðXi � XÞ2:

The degrees of freedom for SSTOT is n� 1 (the
calculation of degrees of freedom appears subsequently).
The sum of squares error SSE is defined to be

SSE ¼
Xn
i¼1

ðXi � bXiÞ
2:

Let the degrees of freedom for SSE be n�m. The
regression sum of squares SSR is

SSR ¼
Xn
i¼1

ðbXi � XÞ2 ¼ SSTOT� SSE

Therefore, the degrees of freedom for SSR is
ðn� 1Þ � ðn�mÞ ¼ m� 1. We define the regression
mean square MSR as

MSR ¼ SSR=ðm� 1Þ

and the error mean square MSE as

MSE ¼ SSE=ðn�mÞ

The regression test statistic is

F ¼
MSR

MSE

This F-statistic follows an F-distribution with
ðm� 1, n�mÞ degrees of freedom. Let Fm�1

n�m be a
random variable that has this distribution. The P-value
corresponding to the tail probability of this distribution is
computed as

P ¼ Pr½Fm�1
n�m > F�:

A low P-value represents a good fit of the curve to
the data.

Selecting the best step function

The P-values for the three different patterns can be
computed, using the statistic mentioned in the previous
subsection. Let F1 and F2 be the F-statistic described in
Fitting One- or Two-step Functions section for the one-
step and two-step patterns. The algorithm selects the best
step positions adaptively for patterns. Let SSE1 and SSE2

be the sum of squares error for one-step and two-step, and
let n�m1 and n�m2 be their corresponding degrees of
freedom.

F12 represents the relative goodness of fit of a one-step
versus a two-step pattern. This is an F-distribution whose
P-value represents the probability of the same result on
random data.

F12 ¼
ðSSE1 � SSE2Þ=ðm2 �m1Þ

SSE2=ðn�m2Þ

StepMiner uses the following algorithm to select the
best patterns for each gene:

SelectBestModelsðÞf

oneStep ¼ F-SignificantðF1Þ && Not-F-SignificantðF12Þ
twoStep ¼ F-SignificantðF2Þ && NotInðoneStepÞ

other ¼ NotInðoneStep, twoStepÞ

g

This algorithm was found in simulation to be superior
to the standard forward stepwise and backward stepwise
algorithms (see Supplementary Data—S2). It first selects
the genes for which a one-step pattern fits well and a
two-step pattern does not fit significantly better, based on
whether the appropriate P-values fall under the specified
threshold. Next, genes are selected from those remaining
where two-step patterns fit very well according whether
the P-value F2 is under the threshold. Genes that do not
fall into any of the above categories are added to the
‘other’ category of genes for which the previous two
patterns fit no better than the mean.

Degrees of freedom

The construction of a regression test statistic involves
estimating degrees of freedom for the fitted pattern, which
adjusts the statistic to eliminate the advantage that a more
complex curve has over a simpler curve in fitting a given
set of points. The degrees of freedom is estimated using
random simulation, since it is non-trivial to derive
it analytically in an adaptive framework. Gaussian
Nð0, 1Þ data for 10 000 simulated genes with 15 time
points for each gene was generated. The SSR for both the
one-step and the two-step pattern was calculated and the
tail probabilities (#fSSR > alphag=10000 for different
alpha) were plotted as shown in Figure 2 �2-distribution
with different degrees of freedom was also plotted in the
figure. As can be easily seen from the figures the degrees of
freedom for SSR1 and SSR2 can be approximated as 3 and
4. The estimated degrees of freedom is in the range 2–3 for
one step and 3–4 for two step. (This is consistent with
the results of Owen (1), who estimated that a broken line
uses 2–3 degrees of freedom.)

False discovery rate

A ‘false discovery’ occurs when the algorithm finds a one-
step or two-step pattern, but the data contains no steps; a
‘true discovery’ occurs when the algorithm finds a one-step
or two-step pattern, when the data contains a one-step or
two-step pattern (the algorithm does not have to find the
correct number of steps or a step at the correct time
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to produce a true discovery as defined here). The ‘false
discovery rate’ (FDR) in StepMiner is the ratio of
false discoveries to true discoveries.

To estimate the FDR, many random permutations of
the time points are computed, and StepMiner is run on
all of them. The number of significant genes in the
original order and the average number of significant genes
in the random permutations are computed. The ratio of
the average number of significant genes to the original
number of significant genes is an estimate of the FDR (2).
The FDR can be adjusted by setting the P-value threshold
used in the matching algorithm.

RESULTS

Analysis of simulated data

The algorithm was evaluated on simulated time
course microarray data with 15 non-uniform time
points. Noise-free data was generated for both one-step
and two-step categories; Gaussian Nð0, 1Þ noise was then
added to the original data, and then StepMiner was
used to recover the original behavior, with a P-value
threshold of 0.05. A total of 4000 genes with 15 time
points were artificially created, with 2000 one-step genes
and 2000 two-step genes.

Figure 3A describes the proportion of correctly
identified gene expression patterns as a function of
different step heights, where the position of the steps are
fixed at certain time points. All single steps are fixed at the
fifth position and all binary two steps are fixed at the fifth
and nineth positions. As can be seen in the figure, when
the step height is 5�, StepMiner identifies genes correctly
over 90% of the time. As the step height is reduced relative
to the noise level, the proportion of correct identifications
drops dramatically (as expected). The drop in accuracy is

higher for two-step signals because of the greater degrees
of freedom for those signals.
Figure 3B describes the proportion of correctly identi-

fied time courses using the same setting as Figure 3A
except that the steps are placed between random time
points. As the figure shows, there is a small reduction in
the accuracy compared to Figure 3A. The behavior of
StepMiner is similar in both Figure 3A and B. Higher
confidence matches occur if all constant segments in
a curve have several time points. This result shows that
most matches where the steps are not at the beginning or
end of the time course are reasonably high confidence.
Hence, it would be desirable to design experiments so that
there are several points before the first interesting
transition and after the last interesting transition.
Figure 3C shows the sensitivity of StepMiner to the

number of time points and the P-value threshold. As can
be seen from the figure, accurate matching of two-step
signals requires more time points than matching of one-
step signals. The proportion of matches can be increased
by increasing the P-value threshold, but only at the cost of
an increased FDR (which can be measured and adjusted
as described in False Discovery Rate section).
The number of time points between the steps is an

important factor in determining the accuracy of extrac-
tion. Intuitively, a few consecutive measurements that are
higher or lower than average could represent noise instead
of a real change in gene expression level.
Figure 3D describes the proportion of two-step genes

correctly identified when the number of time points
between steps is varied. This figure is based on 2000
genes with 15 time points. The first step is fixed at fourth
position and the spacing between steps is varied from
1 to 9. The height of the step is varied from 1� to 5� to
observe the desired effect. As can be seen from the figure, a
spacing of at least three time points is required for over
95% accuracy, when the step height is > 3�. Also, as the
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Figure 2. Estimating degrees of freedom. (Left) Estimating degrees of freedom for the one-step model. (Right) Estimating degrees of freedom for the
two-step model.
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second step approaches the end of the time points,
the proportion of correct identifications decreases.
The steps are also required to be placed at least three
time points from the end points to achieve 95% accuracy.

Analysis of diauxic shift data

It is important to demonstrate the value of the method on
real microarray data for at least two reasons: the true
signals may not be step functions, and the noise from the
actual experiment may not be Gaussian. Hence, StepMiner
was applied to a publicly available time course of
microarrays monitoring gene expression levels in yeast
during the diauxic shift in a glucose-limited culture http://
genomics-pubs.princeton.edu/DiauxicRemodeling/data.shtml.
In this experiment, the yeast utilizes fermentative metabo-
lism when glucose is abundant. As the glucose is depleted,
the metabolism shifts abruptly to oxidative metabolism.
RNA samples were collected approximately every 15 min
and measured with microarrays.
An analysis of the results was published in 2005

[Brauer et al. (3)]. In that article, the data were analyzed
using hierarchical clustering by gene [Gollub et al. (4)].

Of the many clusters generated, the authors picked
seven clusters that had fairly high correlations and
that, by visual inspection of the dendrogram, appeared
to consist of genes with temporal behavior related to
the diauxic shift.

In the original article, the sets of genes in the selected
clusters were examined using GO-TermFinder (5) to
identify GO annotations of genes that are enriched. The
article lists several GO annotations that had extremely
small P-values according to GO-TermFinder. Many of the
annotations are obviously related to diauxic shift. Based
on these annotations, three of the clusters of genes
appeared to be highly relevant to diauxic shift, three
were enriched with annotations of unknown relevance to
diauxic shift and one cluster was not significantly enriched
with any GO annotations.

For comparison, it is possible to reanalyze the data
using gene sets derived from StepMiner. Binary signals
were extracted from the diauxic shift data, using a P-value
cutoff of 0.05, resulting in an FDR of 15%. Out of a total
of 2284 genes in the diauxic shift data, 1088 were matched
to single steps, 267 were matched to binary two steps and
929 did not match anything. The fitting step functions are
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Figure 3. Evaluating StepMiner on artificial data. (A) Proportion of correctly classified steps using 15 time points and different step heights with the
step position fixed at 5 for one-step. For two-step patterns, the step positions were ‘up’ at 5 and ‘down’ at 9. � is the SD of the 0-mean additive
Gaussian noise. The number of false steps found in a random Gaussian data was 10%. (B) Proportion of correctly classified steps using different step
heights with random step position and 15 time points. � is the SD of the 0-mean additive Gaussian noise added. Ten percent of the steps are false.
(C) Sensitivity of StepMiner to the number of time points, using random step positions and step height 5�. A total of 2000 one-step and 2000
two-step functions were used in the analysis. (D) Sensitivity of StepMiner to the spacing between steps. The first step is fixed at the fourth position
and the second step is varied according to the spacing. The height of the step is varied from 1� to 5� in a data set of 15 time points.
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shown for three genes in Figure 4. A heat map of the genes
expression profiles appears in Figure 4. In the heat map,
the top genes are those that change once, the rising genes
first, and falling genes second. Lower, there is a group of
genes that go up then down, and last, the genes that go
down then up. Each of these groups is sorted by the time
of first change. The ordered response of genes to stimuli is
immediately evident when so depicted. The heat map also
makes apparent two discontinuities, at 8.25 h and 9.25 h.
These correspond to observed changes in the growth rate
of the yeast around 9 h.

The genes are then automatically collected into five
generic gene sets: ‘up’, ‘down’, ‘up then down’, ‘down then
up’. The generic gene sets are further divided into specific
gene sets based on the position and the direction of the
transition. This process resulted in 80 different generic and
specialized gene sets, which were analyzed using GO-
TermFinder with a P-value cutoff of 0.001. A table of the
120 low P-value GO annotations, in ascending order, is
included in the Supplementary Data S3. Many of the GO
annotations are directly related to metabolism.

The GO annotations and FDR-corrected P-values
for the clusters reported in Brauer et al. were recomputed
with the latest yeast gene annotations from the Gene
Ontology Consortium website (6). To compare with the
results of Brauer et al., Table 1 shows the GO annotations
from that article that had low P-values, and shows the
corresponding P-values from the StepMiner groups. The
annotations that had the lowest P-values in Brauer et al.

had even lower P-values in the StepMiner groups.
Further, the GO annotations are obtained fully auto-
matically using StepMiner — it is not necessary to select
interesting clusters manually. In most cases, the P-values
in the reanalysis are lower than Brauer et al.’s, which

Figure 4. Application of StepMiner to real microarray time course data. Comparison of StepMiner to hierarchical clustering for the analysis of
diauxic shift time course microarray data on glucose-limited budding yeast. The expression level of each gene in StepMiner is centered around the
midpoint of the step to display the transitions clearly. Fitted steps for three example genes are shown on the right.

Table 1. GO annotations of different groups and P-values according to

GO-TermFinder perl module

GO Annotations Group P-value P-value1

Protein biosynthesis Down-9.25 3.4E–51 9.7E–33
Ribosome biogenesis
and assembly

Down 1.2E–39 1.4E–33

Generation H of M precursor
metabolites and energy

Up 7.4E–24 6.1E–14

Oxidative phosphorylation Up 4.9E�14 6E�08
Amino acid and derivative
metabolism

Up-Down 1.7E�11 6.2E�25

Amine biosynthesis U-D-9 1.7E�12 1.1E�24
Hexose catabolism U-8.25-D 0.00046 0.044
Monosaccharide catabolism U-8.25-D 0.0012 0.091
Siderophore transport – – 0.013
Intracellular transport – – 1.6E�08
Secretory pathways – – 1.5E�06

‘P-value1’ is the P-value using the list of genes from the clusters
reported by Brauer et al. ‘Down-9.25’ uses all the genes that turn off
significantly at 9.25h time step. ‘Up’ uses all the genes that turn on at
some time step. ‘U-D-9’ uses the list of genes that turn on at some
point before 9 h but turn off at 9 h. ‘U-8.25-D’ genes turn on at 8.25 h
and turn off later.
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suggests that grouping by time-of-change is at least as
effective as hierarchical clustering at identifying relevant
genes.
Four GO annotations had significant results in Brauer

et al.’s analysis, but not in the StepMiner analysis:
‘siderophore transport’, ‘intracellular transport’, and
‘secretory pathways.’ Interestingly, these GO annotations
were associated with clusters that, in the words of Brauer
et al. were ‘less interpretable in terms of diauxic shift’.

DISCUSSION

Comparing StepMiner to other tools

Even though many tools are available for analyzing
microarray time course microarray data, StepMiner is the
only one that directly identifies the time and direction of
step-wise temporal transitions in a statistically rigorous
manner. While other tools may be more suitable for their
intended purpose, they do not identify expression-level
transitions as conveniently as StepMiner.
Other tools developed for the analysis of time course

microarray data can be classified broadly as being either
clustering or model based. In time course studies,
clustering-based techniques partition genes into sets
based on their proximity according to some measure of
distance between gene expression profiles (7–15). Some
of these methods take into account the temporal ordering
of measurements, but most do not. A user may be able to
select clusters of genes that appear to be up- or down-
regulated at a particular time, but doing so is a hit-or-miss
process that requires additional effort and is likely to yield
uncertain results. Unlike StepMiner, these methods do not
directly identify the time and direction of step-wise
changes in the gene expression temporal profile.
Many tools are based on matching models of gene

behavior to time-course data. For example, the models
could be piecewise linear models(16), rising/falling (17),
transition intervals (18) or hidden Markov models
(HMMs) (19,20), differential equations(21), Bayesian
models (22), or Boolean models (23).
StepMiner is also a model-based method, but the one-

and two-step patterns are different from the models of
other methods. The transition interval method from
Hottes et al. (18) is perhaps the most similar, but their
models have a transition interval segment between
constant-level segments. The transition interval in their
model is defined as the change from 25 to 75% of the
maximum. The Boolean model proposed by Shmulevich
et al. (23) binarizes genes without considering the time
component. These methods do not provide P-values, FDR
or other statistically justifiable measures of confidence.
Other methods for analyzing time courses are not easily

categorized, including identification of differentially
expressed genes (24–28) and alignment of time series
(29,30). It is unclear how these methods could be used to
identify the direction and times of expression level
transitions.
For a more concrete view of the differences among

tools, StepMiner and four other widely used publicly
available programs were run on the same publicly

available microarray time course, tracing the response of
fibroblasts to the addition of serum (31,32). The time
course consists of 13 arrays, taken at the time 0, 1, 2, 3, 4,
6, 8, 10, 12, 16, 20, 24 and 36 h. The data for all of
the 5,289 genes with no missing time points were used.
The time course was analyzed using hierarchical cluster-
ing (8), SAM (2), EDGE (25), STEM (12) and StepMiner.
There is a more detailed discussion, with examples, in the
Supplementary Data S1, including figures showing the
results of each program on the above mentioned data set.

A side-by-side comparison of these algorithms does not
necessarily show one to be superior, since the algorithms
were developed for different purposes, but it does clarify
the differences between them. For example, it is tempting
to try to use SAM to find transition points in genes by
looking for significant differences in average expression
before and after a specified time point. However, many of
the genes selected by this method do not, in fact, have a
transition at the specified time point.

Hierarchical clustering sometimes finds clusters of genes
that seem to transition at the same time point. However,
using hierarchical clustering to find transitions involves
subjective and time-consuming manual search through the
clusters, and the selected clusters only imperfectly capture
the genes with transitions at a particular time. EDGE
retrieves the list of differentially expressed genes over the
time course, which answers a question that is different
from finding the seems to be totally unrelated to finding
direction and times of transitions. STEM provides model
profiles and their significance; but the profiles generally
look nothing like step functions, and are not helpful for
locating transitions.

Strengths and limitations of StepMiner

StepMiner is an appropriate tool for users who are
interested in binary models of gene expression time
courses. Although a binary model abstracts away from
many complexities of gene expression, it has several
advantages: it is easy to understand; it has few parameters;
and, in many cases, the details of the behavior between
transitions may not be as biologically interesting as the
transition. Moreover, StepMiner is very fast. It can
process 15 microarrays of 40 000 genes each in 5 15 s.
(The optional FDR calculation in StepMiner for this
microarray data using 100 permutations takes � 12 min.)

Even when the gene expression level over time is only
approximately binary, we find that the results produced by
StepMiner are sensible. For example, consider the
measurements for the genes in Figure 4. In each case,
the behavior of the gene may be complex or noisy, but
StepMiner reports reasonable (and objective) results
about when each gene becomes up-regulated.

The P-value for an individual gene captures the degree
to which the binary model fits the temporal variation in
gene expression. Large variations in the supposedly down-
regulated and up-regulated intervals will lead to worse
P-values than approximately constant behavior. Signals
that transition between two levels, but transition slowly,
will have worse P-values than signals that transition
rapidly. For a slowly transitioning signal, the best

3710 Nucleic Acids Research, 2007, Vol. 35, No. 11



placement of the transition is not obvious; StepMiner will
tend to put it in the middle of the transition. In the
extreme case of purely linear behavior, StepMiner will
place a transition in the middle—but the P-value will be
poor and the gene is likely to end up in the ‘other’ category
depending on the user-specified P-value cutoff.

The current version of StepMiner is most appropriate for
experiments that measure the transcriptional response to a
stimulus, and for time courses with 10 – 30 measurements
(however, a time course of five time points with three
replicated arrays at each time point gives the confidence of
15 measurements).

There are two ways that a low P-value match can occur:
(1) there could be several consecutive points that are
consistently low or high, or (2) there could be one or two
measurements that deviate greatly from the others. In
practice, a low P-value from multiple points is more
trustworthy than a low P-value from large differences,
because a single deviant measurement could be an outlier
resulting from non-Gaussian measurement error.

Very short time courses are problematic, because
reliable low P-value matches are unlikely to occur. There
is simply too little evidence to support the matching of
steps, even when steps exist. On the other hand, very long
time courses are problematic because the data may
actually have more than two steps, and neither the one-
step nor two-step patterns will match well. There is
currently an upper limit of two steps in StepMiner because
the running time of adaptive regression algorithm
increases exponentially with the number of steps.

The StepMiner algorithm can deal gracefully with
missing measurements, which are common in microarray
data. Omission of one or two measurements for a gene
simply degrades the confidence in the results for that gene.
However, in practice, it is probably better to fill in missing
data points using one of a variety of existing imputation
algorithms for microarrays (33).

Optimizing time course experiments for StepMiner

Simulations suggest several guidelines for experimental
design that can lead to more meaningful results with
StepMiner. There should be enough time points, spaced
closely enough, so that there will be multiple points during
the constant segments of the step patterns. In particular,
there should be several time points before a transition that
is expected—otherwise, there will be little evidence to
distinguish the first responses to a stimulus from noise.

Replicated measurements at the same time point should
not be averaged. Instead, they should be handled using the
same matching algorithm as sequential measurements,
except that the algorithm should not try to put a step
between simultaneous measurements. With this proces-
sing, they can directly improve the P-values of extracted
signals.

If the only concern is getting the most accurate results
from a given number of microarrays, it is better to take
more frequent measurements than to follow the common
practice of repeating several microarrays at the same
time, if the results are to be analyzed with StepMiner.
For example, given 10 h time course, it is better to use

30 arrays by using one every 20 min than to use three
arrays simultaneously every hour. Since StepMiner tries
inserting steps between every pair of transitions, the time
resolution of the results nearly triples, at the cost of
a small loss of accuracy in recognizing the correct kind
of step.
This conclusion is supported by simulation results

shown in Table 2. Each of the four different step types
was simulated, with time of each step ts from a uniform
distribution over the entire interval. As discussed above,
the measurements at each time point were taken, and
Gaussian noise was added so that the step height is 5�.
When a step is found between time points ti and tiþ1, the
time of the step is estimated to be ðti þ tiþ1Þ=2. The ‘time
error’ of the step is jts � ðti þ tiþ1Þ=2j. The number of
correctly classified steps is shown.

Combining StepMiner with other tools

Once StepMiner is run on a given data set, the genes that
are identified as undergoing binary transitions can easily
be partitioned into sets based on the number, direction,
and timing of transitions. Using other tools, these sets can
be merged at the user’s discretion (e.g., the set of one-step
genes that rise at time 3 could be merged with the two-step
genes that rise at time 3).
The sets can be placed in a specific order for visualiza-

tion in a heat map using a tool such as TreeView (34).
First, genes are categorized by the direction of change and
number of steps into five generic gene sets: ‘up’, ‘down’, ‘up
then down’, and ‘down then up’ and ‘other’. The one-step
sets are further subdivided into more specific sets by time of
change, and the two-step categories were divide by time of
the first change, and, secondarily, by the time of the second
change.
The resulting gene sets also facilitate analysis by other

tools that can compare different kinds of gene sets for
unexpectedly large overlaps. Many programs perform this
kind of analysis (5,35–38).
The basic gene sets found by StepMiner can be

combined into larger sets of genes with common
characteristics. For example, a user might be interested
in the set of all genes that contain a step up during a range
of time points, regardless of how many steps there are.

Table 2. Identification of steps and average deviation from the true

step positions by StepMiner with replication versus the addition of

more time points

Type True Missed False Average
Step Step Step Deviation(Min)

Addition 99% 1% 8% 11
Replication 100% 0% 8% 34

The Addition method uses 30 different time points. The Replication
method uses 10 time points with three replicates. The analysis was
performed on artificial data for 1000 genes with 500 single steps (Step
height ¼ 5� ) placed uniformly randomly across the time-course of 10
h. ‘True Step’ is the number of correctly identified steps. ‘Missed Step’
is number of steps missed. ‘False Step’ is the number of steps detected
in random data.
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