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ABSTRACT

Mitoxantrone is an anti-cancer agent used in the
treatment of breast and prostate cancers. It is
classified as a topoisomerase Il poison, however
can also be activated by formaldehyde to generate
drug-DNA adducts. Despite identification of this
novel form of mitoxantrone-DNA interaction, exces-
sively high, biologically irrelevant drug concentra-
tions are necessary to generate adducts. A search
for mitoxantrone analogues that could potentially
undergo this reaction with DNA more efficiently
identified Pixantrone as an ideal candidate. An in
vitro crosslinking assay demonstrated that
Pixantrone is efficiently activated by formaldehyde
to generate covalent drug-DNA adducts capable of
stabilizing double-stranded DNA in denaturing con-
ditions. Pixantrone-DNA adduct formation is both
concentration and time dependent and the reaction
exhibits an absolute requirement for formaldehyde.
In a direct comparison with mitoxantrone-DNA
adduct formation, Pixantrone exhibited a 10- to
100-fold greater propensity to generate adducts at
equimolar formaldehyde and drug concentrations.
Pixantrone-DNA adducts are thermally and tempo-
rally labile, yet they exhibit a greater thermal
midpoint temperature and an extended half-life at
37°C when compared to mitoxantrone-DNA
adducts. Unlike mitoxantrone, this enhanced stabi-
lity, coupled with a greater propensity to form
covalent drug-DNA adducts, may endow formalde-
hyde-activated Pixantrone with the attributes
required for Pixantrone-DNA adducts to be biologi-
cally active.

INTRODUCTION

The anthracycline doxorubicin (Figure 1) is among
the most versatile chemotherapeutic agents currently

used in the clinic (1,2). The proven clinical utility
of doxorubicin, a DNA-directed drug, has been
tempered by dose-limiting cardiotoxicity, and this
prompted a search for analogues with comparable
therapeutic efficacy yet lacking the characteristic
cardiotoxicity (3-5).

The anthracenedione class of compounds were identi-
fied as good drug candidates designed to satisfy these
criteria. The anthracenediones, most notably mitoxan-
trone (Novatrone™) and its 5,8-dehydroxy analogue
ametantrone, are simplified anthracycline analogues,
which retain the planar ring structure characteristic of
anthracyclines that permits intercalation between base
pairs of DNA (6,7) (Figure 1). The biochemical mecha-
nism by which mitoxantrone exerts its cytotoxic effects
is likely to be multifaceted, however its role as a
topoisomerase II poison and subsequent induction of
cytotoxic double-strand DNA breaks has been well
established (8-10).

Despite an improved clinical tolerability of mitoxan-
trone chemotherapy, it still exerts a range of toxic
side-effects including myelosuppression and cardiotoxicity
(11-13). This cardiotoxicity may be attributed to the
5,8-dihydroxy substituents of mitoxantrone since mice
treated with this drug exhibited a delayed mortality (14)
yet those treated with ametantrone did not.

A second-generation group of anthracenediones were
prepared in an effort to develop compounds endowed
with better therapeutic efficacy and reduced side-effects.
These compounds retained the anthraquinone nucleus of
mitoxantrone, however, the 5,8-substituents implicated in
its cardiotoxicity were removed and nitrogen atoms
introduced into the chromophore. Krapcho et al. (15)
rationalized that these nitrogen atoms may provide basic
sites or improved hydrogen bonding, therefore providing
the analogues with a potentially greater affinity for DNA
and topoisomerase I1.

A series of these novel anthracenediones were prepared
and included compounds bearing either one (mono-aza)
or two (di-aza) nitrogen atoms within the chromophore
(15-17). Interestingly, an in vitro and in vivo screen of
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Figure 1. Chemical structures of doxorubicin, mitoxantrone and
Pixantrone.

these compounds for anti-tumour activity revealed that
only mono-aza analogues comprising the nitrogen atom
at position 2 of the chromophore demonstrated significant
anti-cancer efficacy (15-18). Within this select group
of compounds, BBR 2778 (6,9-bis[(2-aminoethyl)amino]
benzol[glisoquinoline-5,10-dione dimaleate) emerged as
the most promising drug candidate. BBR 2778 (subse-
quently named Pixantrone'™; Figure 1) demonstrated
superior anti-leukemic activity in mice over a wide, well-
tolerated range of doses when compared with mitoxan-
trone (15). Further preclinical studies in mice showed that
Pixantrone has a wide spectrum of anti-tumour activity,
and a marked efficacy against haematological malignan-
cies, particularly lymphomas and leukemias (19).
Histopathological evaluation of the heart tissue in these
studies revealed that Pixantrone induced no detectable
delayed cardiotoxicity (19). These key findings prompted
the entry of Pixantrone into clinical trials for further
development. The drug is progressing through these trials
with encouraging results as a single agent and in
combination regimens, and is currently in Phase-111
studies in the treatment of indolent and aggressive non-
Hodgkin’s lymphoma (20).

Like mitoxantrone, the mechanism of action of
Pixantrone is not fully understood but likely to be
multimodal. Pixantrone interacts with DNA with modest
affinity via intercalation (21-23). The drug can function as
a topoisomerase Il poison by stabilizing the normally
transiently bound protein—-DNA complex (21,22,24),
giving rise to double-strand DNA breaks. However,
these breaks do not correlate directly with the potency
of Pixantrone as a cytotoxic compound (21,22). This
suggests that Pixantrone may be operating via an
additional, currently unknown, mechanism of action.

Although mitoxantrone functions as a topoisomerase
II poison via its ability to intercalate within DNA, a novel
form of mitoxantrone—DNA interaction has been identi-
fied. Mitoxantrone can be readily oxidatively metabolized
to generate reactive species that bind covalently to DNA
(25-27). A common theme amongst these studies was that
each of the oxidative systems utilized hydrogen peroxide
which can generate in vitro formaldehyde by oxidation of
substrates present in the system (28). Subsequent studies
using cell-free systems revealed that formaldehyde alone,
rather than oxidative metabolism, was sufficient for
activation of mitoxantrone and subsequent covalent
binding of the drug to DNA (29).

Presently, it is believed that these DNA adducts are
linked via a ‘secondary’ amino function of a single side-
chain of mitoxantrone (29-32). Although mitoxantrone
and Pixantrone share close structural similarity,
Pixantrone bears a ‘primary’ amino group in each of its
side-chains and is therefore more susceptible to formalde-
hyde activation and consequently has a greater potential
to form DNA adducts. The present study explored the
potential of Pixantrone to bind covalently to DNA
through pre-activation by formaldehyde.

MATERIALS AND METHODS
Materials

Pixantrone was provided by Cell Therapeutics Europe,
Bresso, Italy. Mitoxantrone dihydrochloride and forma-
mide were purchased from Sigma Chemical Co., St. Louis,
MO, USA. Formaldehyde solution (40% v/v) was
obtained from BDH. The plasmid pCC1 containing the
lac UVS5 promoter was constructed by Carleen Cullinane
(Peter MacCallum Cancer Centre, Melbourne, VIC,
Australia). A Maxi Plasmid Purification Kit was pur-
chased from Qiagen, Valencia, CA, USA. Ultra-pure
dNTPs, [o¢’*P] dATP (3000 Ci/mmol), [¢°*P] dCTP
(3000 Ci/mmol) and ProbeQuant G-50 micro-columns
were purchased from GE Healthcare, Piscataway, NJ,
USA. The restriction enzyme HindIII was purchased from
Promega, Madison, WI, USA and calf thymus DNA was
from Worthington Biochemical Corporation, Lakewood,
NJ, USA. Klenow fragment from Escherichia coli DNA
polymerase I and BSA were both from New England
Biolabs, Beverly, MA, USA. Tris-saturated phenol was
obtained from Invitrogen, Carlsbad, CA, USA and
glycogen was from Roche Molecular Biochemicals,
Nutley, NJ, USA. The remaining chemicals and reagents
were of analytical grade. Distilled water passed through a



four stage Milli-Q purification system was used to prepare
all solutions.

Drugs

Pixantrone and mitoxantrone stock solutions (stored at
—20°C) were prepared by dissolving each in Milli-Q water
to an approximate concentration of 2mM. The precise
concentrations of each drug were determined spectro-
photometrically using ¢ =19 200 M~'em ™! at 608 nm and

1% =296 at 641 nm for mitoxantrone and Pixantrone,
respectively. Formaldehyde solutions were freshly pre-
pared on the day of each experiment.

DNA source

Escherichia coli HB101 cells containing the plasmid
pCCl were grown overnight in selective LB broth
containing 50 pg/ml ampicillin. The plasmid was subse-
quently isolated using a Qiagen Maxi Plasmid Purification
Kit. The plasmid was linearized by restriction digestion
with the sticky-end generating enzyme HindIIl. The
5'-overhang of the fragment was filled in using the
Klenow fra%ment of DNA polymerase I in the presence
of either [o°*P] dATP or [o¢**P] dCTP. Unincorporated
label was removed from the labelled fragment by passing
the reaction mixture through a G-50 ProbeQuant chro-
matography column. The eluted fragment was subse-
quently subjected to phenol/chloroform extraction,
ethanol precipitated and then resuspended in 1x TE
(100mM Tris, ImM EDTA, pH 8.0). The final DNA
concentration was adjusted to 400 uMy,, by the addition of
sonicated calf thymus DNA.

In vitro crosslinking assay

Covalent drug-DNA adducts were formed in a reaction
mixture typically consisting of the following: end-labelled
DNA (25 uMyy) was reacted with Pixantrone or mitoxan-
trone and formaldehyde in phosphate-buffered saline
(pH 7.0) at 37°C. Intercalated drug (but not covalently
bound drug) was removed from DNA by extraction with
Tris-saturated phenol twice followed by a single chloro-
form extraction. DNA was then precipitated with ethanol
and sodium acetate in the presence of glycogen as an inert
carrier. Samples were subsequently resuspended in 10 pl
I1x TE buffer and denatured in two volumes of loading
dye (90% formamide, 10 mM EDTA, 0.1% bromophenol
blue and 0.1% xylene cyanol) at 52°C for 5 min.

Stability studies

DNA adduct stability studies were performed as described
above, however an additional extraction procedure was
employed following incubation of drug-DNA adducts
for defined time periods. Samples were extracted once
with phenol, once with chloroform and then ethanol
precipitated to remove any non-covalently bound drug
resulting from dissociation as a consequence of the
thermal lability of the adducts.
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Electrophoresis, phosphorimaging and quantitation

Samples were subjected to electrophoresis through 0.8%
agarose gels overnight at 3040V in 1x TAE buffer. Gels
were dried under vacuum in a Bio-Rad Model 583 gel
drier and subsequently exposed to a phosphor screen
overnight. Phosphorimaging analysis of each dried gel was
performed using a Molecular Dynamics Model 400B
Phosphorlmager and the bands quantitated using
ImageQuant software.

RESULTS

The basis of the in vitro crosslinking assay is that
DNA-stabilizing drug adducts will prevent the complete
denaturation of double-stranded DNA (ds DNA) upon
exposure to denaturing conditions (33). When samples are
subjected to electrophoresis, ds DNA will migrate more
slowly compared to rapidly moving single-stranded DNA.
Stabilization of ds DNA is a functional consequence of the
formation of some types of drug-DNA adducts.
Consequently, the percentage of ds DNA provides a
direct measure of drug-DNA adduct formation. Each of
the following experiments included controls to confirm
that DNA reacted in the absence of drug was efficiently
denatured, indicating that the denaturation conditions
were appropriate.

Pixantrone and formaldehyde concentration-dependence of
drug-DNA adduct formation

Initially, it was necessary to determine if Pixantrone binds
covalently to DNA in the presence of formaldehyde,
and this was confirmed using a simple drug concentration-
dependence assay. Samples were prepared by incubating
end-labelled DNA (25 pM,,,) with varying concentrations
of Pixantrone in the presence of 2mM formaldehyde
and phosphate-buffered saline (pH 7.0). The reaction was
performed at 37°C and allowed to proceed overnight.
Following a cleanup procedure to remove non-covalently
bound drug, samples were denatured at 52°C in 60%
formamide for 5 min, and resolved electrophoretically. The
phosphorimage in Figure 2A reveals that Pixantrone-
reacted samples stabilize a large percentage of ds DNA
even at relatively low drug concentrations. Quantitation
of these bands (Figure 2B) showed that 50% ds DNA
stabilization was achieved by ~2.5uM Pixantrone.
By comparison, mitoxantrone required ~10-fold more
drug to generate a similar level of ds DNA stabilization.
Using the Poisson distribution to calculate adduct levels
(34), this percentage of ds DNA stabilization reflects
adduct levels of ~0.7 adducts per fragment (or 2.1 adducts
per 10kb). Results were presented as percentage ds
DNA stabilization rather than adducts per fragment
because the Poisson distribution is not meaningful for
values approaching 100% stabilized DNA. With regards to
the range of adduct levels that can be calculated accurately,
it should be noted that 20% ds DNA stabilization reflects
0.2 adducts per fragment while 80% ds DNA stabilization
reflects 1.6 adducts per fragment (35).

To confirm that the Pixantrone-DNA interaction
required formaldehyde, a formaldehyde concentration-
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Figure 2. Pixantrone binds covalently to DNA in the presence
of formaldehyde and stabilizes ds DNA in denaturing conditions.
(A) DNA samples were reacted with 2mM formaldehyde and either
0-20 uM Pixantrone or 0-60 uM mitoxantrone overnight. Each sample
was routinely subjected to phenol/chloroform extraction, ethanol
precipitated, denatured and subsequently electrophoresed through an
agarose gel. Control ss DNA (+) was generated by subjecting
unreacted DNA to thermal denaturation while the corresponding ds
DNA control (—) was not thermally denatured. (B) The relative
amount of ds DNA represented in (A) was quantitated and is expressed
as a function of Pixantrone (solid squares) or mitoxantrone (open
squares) concentration.

dependence study was performed. Samples were reacted as
outlined above with increasing concentrations of formal-
dehyde, and processed as described previously. The
phosphorimage in Figure 3A demonstrates a clear
formaldehyde-dependence for Pixantrone-DNA adduct
formation, which is reflected by the increasing stabiliza-
tion of ds DNA with increasing formaldehyde concentra-
tion. Importantly, no DNA adducts were formed in the
absence of formaldehyde, indicating a critical role for
formaldehyde in the activation of Pixantrone to form
drug-DNA adducts. Quantitation of this gel (Figure 3B)
reveals that stabilization of ds DNA by Pixantrone-DNA
adducts is maximal at 2 mM formaldehyde. Mitoxantrone
also requires formaldehyde for reaction with DNA but is
~100-fold less efficient in this reaction at equivalent
concentrations.

Time dependence of Pixantrone—-DNA adduct formation

The time dependence of Pixantrone-DNA adduct
formation was then investigated (Figure 4). Samples
were reacted with formaldehyde as outlined above
with either 10 uM Pixantrone or mitoxantrone. Samples
were incubated at 37°C for defined time periods
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Figure 3. Formaldehyde is an absolute requirement for the formation
of Pixantrone-DNA adducts. (A) Samples were reacted with increasing
concentrations of formaldehyde (0-3mM as indicated) and either
15puM Pixantrone or 15puM mitoxantrone overnight. Each sample was
routinely processed and analysed as described previously. C is a control
incubated in the absence of drug. (B) The relative amount of ds DNA
represented in (A) was quantitated and is expressed as a function of
formaldehyde concentration (Pixantrone, solid squares; mitoxantrone,
open squares).

and frozen at —20°C until all samples were
obtained. Figure 4A demonstrates that Pixantrone-DNA
adduct formation is a time-dependent process, reaching a
steady state within 4h (Figure 4C). Mitoxantrone did
not form adducts at an equimolar concentration of
drug, regardless of the length of time of incubation
(Figure 4B).

pH dependence of Pixantrone—DNA adduct formation

The pH dependence of formation of Pixantrone and
mitoxantrone-DNA adducts was also examined by
incubating end-labelled DNA with Pixantrone or mito-
xantrone and formaldehyde in PBS adjusted to various
pHs ranging from 5 to 9 (Figure 5A). Quantitation of
these bands revealed that Pixantrone-DNA adduct for-
mation was independent of pH in the range examined
(Figure 5B). In contrast, mitoxantrone—-DNA adduct
formation was highly sensitive to extremes of pH and
favoured neutral pH for optimal adduct formation
(Figure SB).

Thermal stability of Pixantrone-DNA adducts

Given the thermal lability of mitoxantrone-DNA adducts
(29), it was important to probe the potential thermal
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Figure 4. Time-dependence of Pixantrone-DNA adduct formation.
Samples were reacted with 2mM formaldehyde and either (A) 10 uM
Pixantrone or (B) 10 uM mitoxantrone for increasing time periods up
to 12h as indicated. Samples were then typically processed and
analysed as described in the Materials and Methods section. (C) The
relative amount of ds DNA represented in (A) and (B) was quantitated
and is expressed as a function of time (Pixantrone, solid squares;
mitoxantrone, open squares).

instability of Pixantrone-DNA adducts. DNA was
reacted with formaldehyde and Pixantrone to generate
partially ds DNA samples (~70-80%) that were subse-
quently incubated at various temperatures in a non-
denaturing (1x TE, pH 8.0) environment. Figure 6A
reveals that, like mitoxantrone, Pixantrone-DNA
adducts are lost with increasing temperature, indicating
thermal lability of the drug—-DNA adducts. Quantitation
of the bands in Figure 6A and B yielded a melting
curve (Figure 6C). The Pixantrone curve revealed
that 50% of DNA adducts are lost at 62.5°C. In contrast,
the same percentage of mitoxantrone—-DNA adducts
were lost at the much lower temperature of 49°C
(Figure 6C), suggesting that Pixantrone adducts exhibit
greater thermal stability than the mitoxantrone
equivalent.
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Figure 5. pH-dependence of Pixantrone-DNA adduct formation.
(A) Each DNA sample was incubated with 2mM formaldehyde and
either 10 uM Pixantrone or 50 uM mitoxantrone in phosphate-buffered
saline adjusted to various pHs ranging from 5.3 to 9 for 4h. Each
sample was routinely processed and analysed as described in the
Materials and Methods section. (B) The relative amount of ds DNA
represented in (A) was quantitated and is expressed as a function of pH
(Pixantrone, solid squares; mitoxantrone, open squares).

Temporal stability of Pixantrone-DNA adducts at 37°C

Next, it was important to investigate the stability of
Pixantrone-DNA adducts at a physiologically relevant
temperature. Following reaction of DNA with formalde-
hyde and Pixantrone to generate a sub-maximal level of ds
DNA, samples were incubated at 37°C for defined time
periods up to 10h. Figure 7A and B demonstrates that
both Pixantrone and mitoxantrone adducts are lost with
time, indicating that the drug—DNA adducts are labile at
37°C. Pixantrone-DNA adducts exhibited a half-life
of 80min at 37°C, considerably more stable than
mitoxantrone-DNA adducts with a half-life of 25min.
The loss of these adducts was a single first-order decay
process, as indicated by a linear plot of In(ds DNA) with
time (inset, Figure 7C).

DISCUSSION

A relatively small but growing body of evidence has
recently implicated formaldehyde in the activation of
mitoxantrone, which can subsequently bind covalently to
DNA (29-31). The strong structural similarity between
Pixantrone and mitoxantrone prompted an investigation
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Figure 6. Pixantrone—-DNA adducts are thermally labile. DNA samples
were reacted with 2mM formaldehyde and either (A) 15uM Pixantrone
or (B) 50 uM mitoxantrone for 4h and then subjected to a standard
phenol/chloroform extraction and ethanol precipitation. Following
resuspension in TE, samples were exposed to various temperatures
ranging from 47.5 to 75°C for Smin as indicated. C is a drug-treated
control that remained on ice for this Smin incubation. DNA was
subsequently cleaned via a second round of phenol/chloroform
extraction and the samples prepared for electrophoresis as usual.
(C) The relative amount of ds DNA represented in (A) and (B) was
quantitated and is expressed as a function of temperature (Pixantrone,
solid squares; mitoxantrone, open squares).

into the possible activation of Pixantrone by formalde-
hyde to form similar covalent drug—-DNA adducts.

Formaldehyde-activated Pixantrone forms covalent
drug-DNA adducts

The drug concentration-dependence curve (Figure 2)
indicates that both Pixantrone and formaldehyde combine
to generate a product capable of stabilizing ds DNA,
which is detected via the in vitro crosslinking assay.
Indeed, neither agent alone was sufficient to stabilize
duplex DNA. By analogy with formaldehyde-activated
mitoxantrone, the identity of this duplex-stabilizing
product is the covalent formaldehyde-mediated
Pixantrone-DNA adduct.

The generation of these adducts is also strongly
dependent upon the level of formaldehyde (Figure 3),
indicating a crucial role for formaldehyde in the formation
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Figure 7. Pixantrone-DNA adducts are temporally labile at 37°C.
DNA samples were reacted with 2mM formaldehyde and either
(A) 15uM Pixantrone or (B) S0 uM mitoxantrone for 4h and then
subjected to a standard phenol/chloroform extraction and ethanol
precipitation. Following resuspension in TE, samples were incubated at
37°C for defined time periods up to 10h as indicated. DNA was
subsequently cleaned via a second round of phenol/chloroform
extraction and the samples prepared for electrophoresis as normal.
(C) The relative amount of ds DNA represented in (A) and (B) was
quantitated and is expressed as a function of time (Pixantrone, solid
squares; mitoxantrone, open squares). The inset shows the first-order
decay of adducts.

of Pixantrone—-DNA adducts. Presumably, formaldehyde
undergoes nucleophilic attack by either amine within the
side-chains of Pixantrone to form a highly reactive Schiff
base intermediate. This reactive intermediate provides at
least one potential binding site to DNA and enables the
subsequent formation of a Pixantrone-DNA adduct.
Extending the analogy even further, it is likely that the
nature of the covalent linkage forged between Pixantrone
and DNA is a methylene bridge provided by
formaldehyde.

An additional feature of both concentration-depen-
dence curves is that Pixantrone demonstrates a far greater
propensity to form covalent drug-DNA adducts than
mitoxantrone (Figures 2 and 3). While Pixantrone
possesses a primary amino group in each side-chain,



mitoxantrone contains a secondary amine function in the
corresponding positions. The primary amino groups of
Pixantrone may be favourable for adduct formation for
several reasons. First, the primary amino group is
expected to be more reactive because it is more
nucleophilic and more accessible (i.c. less steric restriction)
than a secondary amino group. Second, since the primary
amino group is expected to be substantially more reactive,
this should provide a greater concentration of reactive
Pixantrone—Schiff  base  precursor.  Finally, the
Pixantrone—Schiff base may be relatively more stable,
thus ensuring a sustained time for reaction with its
molecular target, DNA. It is not clear which of the
many steps involved in adduct formation contribute to the
observed pH dependence, but it is likely that it is due
primarily to the secondary amino being more basic than
the primary amino group, making it less nucleophilic and
less likely to form an imine with formaldehyde at lower
pHs.

Pixantrone—DNA adducts are thermally and temporally labile

The results also demonstrate that Pixantrone—-DNA
adducts are lost with increasing temperature (Figure 6)
and time (Figure 7), indicating that the adduct is
intrinsically unstable. The lability of this drug—-DNA
interaction suggests that Pixantrone-DNA adducts do not
form conventional stable covalent crosslinks. In this case,
both DNA strands are covalently coupled together by
the drug, generating a genuine cross-link, which is
characteristically much more stable. Rather, Pixantrone—
DNA adducts function as ‘virtual’ crosslinks, which
are responsible for stabilizing ds DNA in the in vitro
crosslinking assay. The Pixantrone adduct is covalently
bound via a methylene bridge (provided by formaldehyde)
to a single DNA strand. This monoadduct is presumably
stabilized by strong hydrogen bonding to the opposite
DNA strand with the drug chromophore intercalated
between neighbouring base pairs.

Cellular implications for Pixantrone-DNA adducts

Formaldehyde can be derived from a variety of sources in
biological systems. It occurs naturally at low levels as a
consequence of normal cellular metabolism (36) and is
elevated in some cancers, including haematological
malignancies (37). Indeed, Pixantrone has shown promis-
ing anti-cancer activity against some of these tumours
(20,38,39) and it may be that elevated formaldehyde
levels naturally predispose these cancers to Pixantrone
cytotoxicity. A sensitive technique for detecting endoge-
nous levels of formaldehyde involves a complex precon-
centration-chemical  ionization mass  spectrometry
technique being utilized (40). Intracellular levels of
formaldehyde in cancer cells in vitro were found to
range from 1.5 to 4uM using this technique, and this
generally correlated well with doxorubicin cytotoxicity.
Although these levels are well below the formaldehyde
concentrations utilized to form Pixantrone adducts in
the current study, it would be interesting to study a
broad range of cell lines for formaldehyde levels and
Pixantrone cytotoxicity to assess a possible correlation.
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To address the question of whether Pixantrone forms
adducts in cells in the absence of externally supplied
formaldehyde, ['*C] labelled Pixantrone was utilized.
Preliminary results employing liquid scintillation analysis
of DNA isolated from ['*C] Pixantrone-treated cells
indicate that adduct formation only occurs in the presence
of formaldehyde-releasing prodrugs. However due to a
lack of sensitivity using this technique, more reliable data
for cells treated with Pixantrone as a single agent need to
be generated using accelerator mass spectrometry as
described (41).

Formaldehyde can be introduced at high levels into
biological systems by formaldehyde-releasing prodrugs.
AN-9 (pivaloyloxymethyl butyrate; Pivanex ™) is
amongst the most promising drug candidates of this
class. Originally designed as a histone deacetylase
inhibitor, AN-9 undergoes cellular hydrolysis by esterases
to release butyric acid, pivalic acid and formaldehyde (42).
Cutts et al. (35) reported that the combination of AN-9
and the anthracycline doxorubicin dramatically enhanced
the formation of doxorubicin—-DNA adducts in human
cancer cells. This study attributed the generation of
doxorubicin—-DNA adducts to formaldehyde release via
cellular hydrolysis of AN-9 and this provided a molecular
rationale for the synergistic response observed between
doxorubicin and AN-9.

Mitoxantrone can also form covalent DNA adducts in
cells when administered in combination with AN-9,
however excessively high (i.e. >20uM) drug levels are
required (32). This suggests that it is unlikely that the
induction of mitoxantrone-DNA adducts contributes
significantly to the biological activity of this drug.

A highlight of the present study is that formaldehyde-
activated Pixantrone reacts far more efficiently with DNA
in vitro to generate covalent drug-DNA adducts than
mitoxantrone. The enhanced efficiency of this reaction can
potentially be harnessed in a cellular environment by
combining Pixantrone with AN-9 to generate Pixantrone—
DNA adducts in cells. Indeed, efficient formation of
Pixantrone-DNA adducts was achieved with drug
concentrations ranging from 0.5 to 20uM Pixantrone
(Figure 2A), levels that typically correspond with ICs
values reported for Pixantrone in experimental cancer cell
lines (15,19,21,22).

A second key feature of this study is that Pixantrone—
DNA adducts also exhibit greater stability than the
corresponding mitoxantrone species. This may also be
important in a cellular context since an extended
Pixantrone-DNA adduct half-life may maximize DNA
damage and enable an enhanced disruption of critical
cellular processes such as DNA replication and transcrip-
tion. Moreover, these adducts have the potential to elicit a
potent apoptotic response, as recently demonstrated for
doxorubicin—-DNA adducts that were mediated by AN-9
(43). Studies utilizing growth inhibition and clonogenic
assays are currently in progress to establish whether
Pixantrone exhibits a similar favourable interaction with
AN-9. Preliminary results (Mansour,O.C. et al., unpub-
lished data) using tumour cells in culture indicate that
Pixantrone and AN-9 have a greater than additive effect in
growth inhibition and cell death assays, while the
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mitoxantrone/AN-9 interaction is additive, indicating that

formaldehyde-activated Pixantrone

indeed possesses

superior biological activity.
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