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How much blue light should an IOL transmit?
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Older, and even some modern, intraocular lenses (IOLs)
transmit potentially hazardous ultraviolet radiation (UVR)
to the retina. In addition, IOLs transmit more blue and
green light to the retina for scotopic vision than the
crystalline lenses they replace, light that is also potentially
hazardous. The severity of UVR-blue type phototoxicity
increases with decreasing wavelength, unlike the action
spectrum of blue-green type retinal phototoxicity and the
luminous efficiency of scotopic vision which both peak in
the blue-green part of the optical spectrum around
500 nm. Theoretically, UVR+blue absorbing IOLs provide
better retinal protection but worse scotopic sensitivity than
UVR-only absorbing IOLs, but further study is needed to test
this analysis. UVR is potentially hazardous and not useful
for vision, so it is prudent to protect the retina from it with
chromophores in IOLs. Determining authoritatively how
much blue light an optimal IOL should block requires
definitive studies to determine (1) the action spectrum of the
retinal phototoxicity potentially involved in human retinal
ageing, and (2) the amount of shorter wavelength blue light
required for older adults to perform essential activities in
dimly lit environments.
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T
he retina exists in a dangerous environment.
Exposure to high concentrations of light and
oxygen can damage photoreceptors and

retinal pigment epithelial cells.1–3 Intraretinal
defences decline as tissues age.3–9 Cells can self
destruct when chemical triggers are activated.10–15

Intraocular lenses (IOLs) increase light exposure
of an ageing retina as its defences are declin-
ing.16–18 Ageing cannot be stopped but the optical
radiation that IOLs transmit can be controlled.

Ultraviolet radiation (UVR) and visible light
can cause photic retinopathy, also known as
retinal photoxicity or foveomacular retinitis.19–23

Solar and operating microscope maculopathy are
examples of acute retinal phototoxicity. The
cornea and crystalline lens help protect the
retina from photic retinopathy by preventing
UVR from reaching the retina. The cornea blocks
UVR with wavelengths below 300 nm.24–28 The
crystalline lens blocks UVR between 300 nm and
400 nm.24–28 The ageing crystalline lens also
blocks potentially phototoxic shorter wavelength
blue light.24 26 29

Cataract surgery increases the amount of opti-
cal radiation that reaches the retina. Intraocular
lenses can compromise ocular defences against
photic retinopathy, a problem first reported in

1978.16 17 IOLs with UVR blocking chromophores
bonded to optic polymers (UVR-only absorbing
IOLs) were introduced in the early 1980s, but
even some modern IOLs have inadequate UVR
protection.18 30 31 IOLs that absorb blue as well as
UVR radiation (UVR+blue absorbing IOLs) were
introduced in the 1990s.32

UVR is not useful for human vision, so it
makes good sense to use IOL chromophores to
prevent it from reaching the retina. How much
blue light to block is a more difficult decision,
however, because the action spectrum of retinal
phototoxicity potentially involved in macular
ageing is currently unknown, scotopic vision
decreases faster than photopic vision in older
adults, and blue light is more important in
scotopic than photopic vision.33–39 In essence,
light transmission through an IOL is a trade off
between visual performance and protection
against retinal phototoxicity. That balance can
be quantified theoretically using standard data
on scotopic visual sensitivity40 and retinal photo-
toxicity.41–44

SCOTOPIC VISION AND AGEING
Photopic sensitivity for an eye adapted to bright
luminances peaks at 555 nm in the green-yellow
part of the spectrum.40 Scotopic sensitivity for an
eye adapted to dim luminances peaks at 506 nm
in the blue-green part of the spectrum.40 The
Commission Internationale de l’Eclairage (CIE)
standard spectral luminous efficiency functions
for photopic and scotopic vision are Vl and V’l,
respectively.40 They are illustrated in Figure 1,
which shows that scotopic vision is much more
dependent on blue light than photopic vision.
The similarity between scotopic luminosity V’l
and the absorption spectrum for rhodopsin in
human rod photoreceptors (which peaks at
498 nm)45 was a key reason for concluding that
rhodopsin mediates scotopic vision.46 Similarly,
the resemblance between the absorption spec-
trum of rhodopsin and the action spectrum of
blue-green type retinal photoxicity suggests that
rhodopsin may have an important role in this
type of photic retinopathy.6 19 47 48

Visual performance decreases with ageing on
most sensory tests, even in individuals with
normal high contrast visual acuity.49–53 Ageing
has little effect on the number of human foveal
cone photoreceptors, but parafoveal rod photo-
receptors decrease by 30% with increasing
age.38 54 The mechanisms of this loss remain
under investigation, but it probably has a
significant role in the declining scotopic vision
of older adults.55 56 Scotopic visual sensitivity
decreases twice as fast as photopic sen-
sitivity with increasing age, a loss that contri-
butes to older adults’ visual difficulties in dim
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environments and that occurs independent of retinal disease
or ocular optical problems.34 36 38 Rod mediated dark adapta-
tion slows progressively with ageing because of delayed
rhodopsin regeneration.34 Scotopic contrast sensitivity at low
and high spatial frequencies declines with increasing age.35

Ageing related loss of scotopic sensitivity is worst in the blue
part of the spectrum.57 Macular degeneration worsens age
related decreases in scotopic vision.37 38 58 59

Visual difficulties can limit the activities and reduce the
quality of life of older adults.52 60–64 Fear of events such as a
hip fracture from a fall can prompt older individuals to limit
their activities.63 Impaired dark adaptation is associated with
an increased risk of falling.65 Older individuals need to be
closer to road signs to read them effectively at night.66 Vision
problems may prompt older drivers to curtail their night-time
driving activities.39 52 67–69 In general, visual problems in dim
environments increase with ageing, and improved scotopic
vision is an appropriate goal for cataract surgery and IOL
design. The bottom line is that older adults have increasing
problems seeing at night or in dim environments even when
they don’t have crystalline lens or retinal problems.49–53

PHOTIC RETINOPATHY AND AGEING
Photic retinopathy has been studied as an ocular hazard and
used as a technique to investigate retinal degeneration and
cell biology. The oxygen rich environment of the neural retina
and retinal pigment epithelium (RPE) increases their
vulnerability to light damage.48 70–74 Ocular media are the
first line of defence against photic retinopathy, but the retina
has its own internal defences against phototoxicity, including
agents such as superoxide dismutase, catalase, gluta-
thione peroxidase, vitamin E, vitamin C, lutein, and
zeaxanthin.6 71 75–77

Photic retinopathy has been studied extensively since it
was first reported in 1966.19 It occurs at chorioretinal
temperature elevations far too low for retinal photocoagula-
tion.78–80 Retinal photocoagulation is thermal damage caused
by radiant heating of the retina and choroid, whereas photic
retinopathy is actinic damage caused by photochemical
reactions in the neural retina and/or RPE.

Phototoxicity is accelerated by higher body tempera-
ture19 78 81 and elevated blood oxygen concentration.1 2

Genetic factors,82–84 time of day,85–88 and diet89–92 all affect

the susceptibility of experimental animals to photic retino-
pathy. Different mechanisms cause phototoxicity in the
neural retina and RPE, selective damage at each of these
sites being dependent on exposure protocols and animal
species.48 93 94 There is reciprocity between retinal irradiance
(power/area) and exposure time, so longer exposures produce
threshold phototoxicity at lower irradiances.48 Retinal photo-
toxicity is probably additive so that previous exposure
increases the risk of subsequent damage.95

Retinal defences against photic retinopathy decline with
ageing.3–9 Environmental light exposure has been postulated
to be a potential causative factor in macular degeneration
for almost a century,6 17 23 77 96–100 and there are striking
similarities in the retinal abnormalities caused by age
related macular degeneration and repetitive acute photo-
toxicity.17 97 101 102 Unfortunately, epidemiological studies corre-
lating macular degeneration with light exposure are
problematical because individual susceptibility varies and
lifelong photic exposure is difficult to determine accurately
in retrospective studies. Some studies have shown a
correlation between macular degeneration and lifelong
light exposure, whereas others have not found them to
be correlated.103–110 Additionally, studies correlating cataract
surgery with postoperative progression of macular degenera-
tion also have produced conflicting results.111–119

An action spectrum characterises the relative effectiveness
of different wavelengths in producing a photochemical effect.
There are at least two classes of action spectra for retinal
phototoxicity.

For lengthy exposures typically shorter than 12 hours in
aphakic animals, retinal phototoxicity has an action spectrum
that increases with decreasing wavelength, as shown by Al

(for aphakic) in Figure 1.20 41–43 47 48 120–123 This UVR-blue type
of retinal photoxicity has been termed blue light, class 2 or
Ham type photic retinopathy. It has also been termed ‘‘blue
light’’ damage because its action spectrum peaks around
440 nm when a crystalline lens blocks UVR and shorter
wavelength blue light, as shown by Bl (for blue) in Figure 1.41–43

For prolonged exposures typically longer that 12 hours,
phototoxicity has an action spectrum that peaks in the blue-
green part of the spectrum, similar to the absorption
spectrum of rhodopsin or that of scotopic luminous efficiency
(V’l in Fig 1).19 41–43 47 48 121 124 This blue-green type of retinal
phototoxicity has been referred to as white light, class 1, or
Noell type photic retinopathy. Blue-green type retinal
phototoxicity occurs at substantially lower retinal irradiances
than UVR-blue type retinal phototoxicity, but very prolonged
exposures are required to produce damage in a single
irradiation.47 48 121

The photosensitisers responsible for photic retinopathy
have not been determined conclusively. Rhodopsin, its
photoproducts, or cytochrome-c oxidase in mitochondria
may be involved.19 21 93 125–128 A growing body of evidence
suggests that lipofuscin fluorophores—for instance, the
pyridinium bisretinoid A2E,129 may play significant parts in
RPE phototoxicity and macular ageing,15 73 130–137 and that the
photoxidative products of A2E are the agents that damage
cellular molecules.136 138 139

A2E has an excitation maximum of approximately
430 nm,133 140 a property that may contribute to the suscept-
ibility of RPE to blue light damage in vivo.20 141 Most of the
lipofuscin that is amassed by RPE originates from conjugates
generated by visual cycle retinoids in photoreceptor
cells,138 142–144 this material being deposited in RPE cells
subsequent to outer segment disc phagocytosis.145 These
retinoid conjugates accumulate because they are not broken
down enzymatically. Accordingly, lipofuscin levels in the
RPE increase with age,146–148 and the highest levels are
present in macular RPE.148–151 The role of RPE melanin as a

Figure 1 Al and Bl describe how UVR-blue type phototoxicity varies
with wavelength in an aphakic and a phakic eye, respectively.41–43 V’l
and Vl are the relative spectral luminous scotopic and photopic
efficiencies, respectively, of the standard CIE observer.40 They
characterise how scotopic and photopic visual sensitivity vary with
wavelength in a normal phakic eye.40 170
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photosensitiser and/or photoprotective agent in photic
retinopathy remains under investigation,135 152–154 but the
presence of melanin is not essential for RPE phototoxicity.133

IOL PROTECTION AND PERFORMANCE
IOLs were initially fabricated from poly(methylmethacrylate)
(PMMA) without UVR blocking chromophores.16 The dangers
of retinal exposure to near-UVR transmitted by clear PMMA
IOLs were recognised in 197816 17 and most IOLs had UVR
absorbing chromophores by 1986.18 Unfortunately, UVR
protection in contemporary IOLs is inconsistent, and some
manufacturers still produce IOLs that transmit potentially
phototoxic near-UVR to the retina.31

The advantages of UVR-only absorbing IOLs are well
documented. UVR-only protective IOLs transmit more blue
light than a crystalline lens,155 but they decrease the incidence
of erythropsia156–159 and blue cone sensitivity loss in pseudo-
phakes.160 They also decrease blood-retinal barrier disruption
in pseudophakes as measured by vitreous fluorophotome-
try161 and the risk of retinal phototoxicity in experimental
animals.162 163 UVR+blue absorbing IOLs increase photopic
and mesopic contrast sensitivity at intermediate spatial
frequencies.32 UVR-only protective IOLs were reported initi-
ally to decrease the risk of angiographically apparent cystoid
macular oedema (CMO),164 but a later study found no such
effect in individuals with a ultraviolet protective lens in
one eye and a non-ultraviolet-absorbing lens in their other
eye.165

Blocking UVR with IOL chromophores increases protection
from photic retinopathy without decreasing visual sensitivity.
It also seemed appropriate in 1986 to use IOL chromophores
to decrease the amount of shorter wavelength blue light
reaching the retina.18 Now that a growing body of scientific
evidence has demonstrated that ageing related decreases in
scotopic sensitivity cannot be attributed solely to optical
changes but may involve rod and ganglion cell loss as well as
central visual pathway alterations,34–36 38 166 how much shorter
wavelength blue light should be attenuated by IOL chromo-
phores to reduce the potential risk of retinal phototoxicity?

The scotopic luminous efficiency (V’l) and aphakic
phototoxicity (Al) standards shown in Figure 1 can be used
to examine how the optical transmittance spectrum of a
crystalline or intraocular lens affects scotopic vision and the
risk of photic retinopathy. The areas under the V’l and Al

curves in Figure 1 represent total scotopic sensitivity and total
aphakic UVR-blue retinal phototoxicity, respectively. If V’l
and Al are convolved with a transmittance spectrum of a
particular lens, the percentage difference between the
original and convolved areas under the curve represents the
percentage loss in scotopic sensitivity or gain in UVR-blue
phototoxicity protection from the lens.

Calculations were performed for the five lenses shown in
Figure 2, which included two UVR-only absorbing IOLs, one
UVR+blue absorbing IOL, and a 53 year old and 75 year old
crystalline lens. The results of this analysis are presented in
Table 1. As expected, the calculations predict that increasing
retinal protection with an IOL decreases its overall scotopic
performance and that the UVR+blue absorbing IOL affords
better retinal protection but worse scotopic performance than
the conventional UVR-only absorbing IOLs. Only clinical
studies can determine the potential significance of these
theoretical predictions.

The results in Table 1 are subject to numerous limitations:
(1) If chronic environmental light exposure does play an
important part in macular ageing, it probably affects
individuals quite differently depending on unrelated envir-
onmental factors such as smoking and on pigmentation and
other genetic factors such as the rate at which A2E
accumulates in RPE cells, which in turn may be affected by

abcr gene mutations.167 (2) V’l does describe overall scotopic
performance, but it represents the performance of a phakic
‘‘standard CIE observer’’40 168 rather than an aphakic older
adult. Psychophysical studies are needed to determine: (a)
how much shorter wavelength blue light is needed for older
adults to perform essential scotopic tasks in dimly illumi-
nated environments, and (b) whether the shorter wavelength
blue light attenuated by a UVR+blue absorbing IOL but
transmitted by a UVR-only absorbing IOL can compensate in
any significant way for ageing related losses in scotopic
sensitivity. (3) Al does characterise threshold, acute, UVR-
blue type photic retinopathy in experimental animals, but it
may differ significantly from the action spectrum of the
repetitive or chronic retinal phototoxicity potentially involved
in but not conclusively proved to have a significant role in
human retinal ageing. (4) Recent threshold studies on
primate retinal phototoxicity have found that some of the
classic data incorporated into the international Al standard

Figure 2 The percentage spectral transmittance of crystalline and
intraocular lenses listed in Table 1. Spectral transmittance data on 20D
UVR-only absorbing IOL 1 (Alcon AcrySof MA60BM) and 2 (Pharmacia
& Upjohn 720A) 20D lenses are from Lin, et al.31 UVR+blue absorbing
IOL data (Alcon AcrySof Natural 20D lens) are from Mr Raphael Chan,
Alcon Surgical Division, Forth Worth, TX, USA. The 53 and 75 year old
crystalline lens transmittance data are from Boettner and Wolter.24

Table 1 Theoretical predictions of how several IOLs and
human crystalline lenses decrease scotopic visual
sensitivity and increase protection from blue-green type
photic retinopathy

Lens

% decrease in
scotopic visual
sensitivity*

% increase in
protection from
UVR blue type
phototoxicity�

75 year old crystalline lens` 75 93
53 year old crystalline lens` 33 86
UVR+blue absorbing IOL1 27 90
UVR-only blocking IOL, No 1� 1.5 75
UVR-only blocking IOL, No 2** 1.6 76

*The percentage difference between the total areas under the V’l curve in
Figure 1 and that curve convolved with the spectral transmittance of a
particular lens.
�The percentage difference between the total areas under the Al curve in
Figure 1 and that curve convolved with the spectral transmittance of a
particular lens.
`Data on human crystalline lens transmittance are from Boettner and
Wolter.24

1Alcon acrylic AcrySof Natural 20D lens. IOL transmittance data are
from Mr Rafael Chan, Alcon Surgical Division, Forth Worth, TX, USA.
�Alcon acrylic AcrySof MA60BM 20D lens. IOL transmittance data are
from Lin et al.31

**Pharmacia & Upjohn poly(methylmethacrylate) 720A 20D lens. IOL
transmittance data are from Lin et al.31
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may significantly overestimate the UVR-blue type photo-
toxicity of shorter wavelength blue light.169 Thus, interna-
tional phototoxicity standards may change, and results in
Table 1 based on Al probably significantly overestimate the
protection from phototoxicity provided by UVR-only and
UVR+blue absorbing IOLs.

DISCUSSION
Cataract surgery removes the crystalline lens which provides
optical protection against retinal phototoxicity in an ageing
eye. Light absorbing chromophores in an IOL determine
which optical wavelengths are transmitted to the retina,
balancing retinal protection with visual performance.

An ideal IOL would adapt to changing illumination,
transmitting all visible light in dim environments for optimal
scotopic performance, but blocking a variable amount of
visible light in bright environments depending on an
individual’s visual requirements and chorioretinal condition.
Adaptive photochromic IOLs are not available. The two
current choices are UVR-only and UVR+blue absorbing IOLs.
In both cases, sunglasses and other forms of ocular protection
such as a brimmed hat probably should be worn in very
bright environments because of the potential risk of blue-
green type retinal phototoxicity.

As shown in Table 1, UVR only blocking IOLs theoretically
provide less protection from UVR-blue type phototoxicity
than UVR+blue absorbing IOLs. If only the spectral region
between 400–550 nm is considered, this protection is roughly
a third of that of UVR+blue absorbing IOLs. Conversely, UVR-
only blocking IOLs theoretically do not significantly diminish
scotopic visual sensitivity. These data predict that UVR+blue
absorbing IOLs diminish scotopic visual sensitivity by roughly
25%, but the practical significance of that loss is unknown.
The preceding analysis addresses only UVR-blue type retinal
phototoxicity, not the blue-green type retinal phototoxicity
which has an action spectrum similar to the spectral
sensitivity of scotopic vision or the absorption spectrum of
rhodopsin. Any increase in protection against blue-green type
phototoxicity that an IOL provided would be accompanied by
an equivalent percentage decrease in scotopic sensitivity.

One might argue that replacing an ageing crystalline lens
with a UVR-only blocking IOL increases the amount of
potentially hazardous blue light reaching senescent macular
RPE with its increased lipofuscin content, that decreasing
blue light even in non-brilliant photopic environments could
decrease background UVR-blue type phototoxic damage
which might have a role in macular ageing, that shorter
wavelength blue light has not been proved to be valuable for
essential scotopic visual tasks of older adults after IOL
implantation, and that blue light absorbing chromophores in
an IOL are always there for some optical radiation protection
even in individuals who fail to wear sunglasses in appropriate
circumstances.

Conversely, one might argue that UVR-blue type of
phototoxicity has not been proved to have a significant role
in human macular ageing, that improved blue light transmis-
sion might help compensate for visual losses as a result of
decreased rod photoreceptor density in ageing, that the
hypothetical benefit of avoiding fractures from tripping in
dim illumination is more significant than the hypothetical
benefit of decreasing the risk of age related macular
degeneration, and that it’s easier to switch sunglasses than
IOLs should future research demonstrate that shorter
wavelength blue light is useful for the scotopic vision of
older adults.

Neither author has an IOL, but if and when we need one,
we would both make sure that it had appropriate UVR
blocking chromophores. Based on current information, one of
us (MAM) would choose to have a UVR-only blocking IOL

that would provide maximal protection against UVR, and
wear sunglasses in very bright environments, which could be
removed for optimal vision in dim environments. JRS would
choose a UVR+blue absorbing IOL that would provide
maximal protection against UVR, afford roughly the same
protection against phototoxicity and diminution of scotopic
sensitivity as a 50 year old crystalline lens, and wear
sunglasses in very bright environments, which could be
removed for improved vision in dimmer environments. Until
photochromic IOLs become available, the decision on which
strategy is optimal awaits conclusive data on the role of UVR-
blue type retinal phototoxicity in age related macular
degeneration and the value of shorter wavelength blue light
in essential scotopic activities of older adults.
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