Skip to main content
Journal of Virology logoLink to Journal of Virology
. 1997 Oct;71(10):8048–8055. doi: 10.1128/jvi.71.10.8048-8055.1997

The sequence and structure of the 3' arm of the first stem-loop of the human immunodeficiency virus type 2 trans-activation responsive region mediate Tat-2 transactivation.

C Browning 1, J M Hilfinger 1, S Rainier 1, V Lin 1, S Hedderwick 1, M Smith 1, D M Markovitz 1
PMCID: PMC192170  PMID: 9311903

Abstract

Human immunodeficiency virus type 2 (HIV-2) causes AIDS, but generally after a much longer asymptomatic period than that which follows infection with HIV-1. At the molecular level, HIV-2 is much more closely related to the simian immunodeficiency viruses than to HIV-1 and our previous studies have demonstrated that HIV-2 and HIV-1 enhancer stimulation is mediated by different sets of cellular proteins following T-cell activation. Similar to HIV-1, HIV-2 encodes a transactivating protein, Tat, which appears to be necessary for viral replication and stimulates viral transcriptional initiation and/or elongation. While Tat-1 binds to the RNA of the trans-activation responsive (TAR) region of HIV-1 and HIV-2, cellular factors that bind to the RNA transcript are also necessary for Tat to function in vivo. Since almost all previous investigations of cellular cofactors for Tat had focused on HIV-1, we undertook studies aimed at understanding the interaction between the TAR RNA region of the HIV-2 promoter (TAR-2) and cellular proteins. By using extension inhibition analysis (toeprinting) and RNA electrophoretic mobility shift assays, we demonstrated binding of a nuclear factor(s) in T cells to the base of the promoter-proximal stem-loop structure. Mutational analysis of this region revealed that both the sequence of the 3' arm and the stem structure itself are important for activation of the promoter by Tat-2. In contrast, the structure is necessary for activation of TAR-2 by Tat-1 but the sequence is less important. These results suggest that a cellular factor interacts with the 3' arm of the proximal stem-loop structure of TAR-2 and mediates Tat-2-induced increases in the level of HIV-2 transcripts.

Full Text

The Full Text of this article is available as a PDF (973.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arya S. K., Guo C., Josephs S. F., Wong-Staal F. Trans-activator gene of human T-lymphotropic virus type III (HTLV-III). Science. 1985 Jul 5;229(4708):69–73. doi: 10.1126/science.2990040. [DOI] [PubMed] [Google Scholar]
  2. Baker B., Muckenthaler M., Vives E., Blanchard A., Braddock M., Nacken W., Kingsman A. J., Kingsman S. M. Identification of a novel HIV-1 TAR RNA bulge binding protein. Nucleic Acids Res. 1994 Aug 25;22(16):3365–3372. doi: 10.1093/nar/22.16.3365. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Berkhout B., Gatignol A., Silver J., Jeang K. T. Efficient trans-activation by the HIV-2 Tat protein requires a duplicated TAR RNA structure. Nucleic Acids Res. 1990 Apr 11;18(7):1839–1846. doi: 10.1093/nar/18.7.1839. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bordonaro M., Saccomanno C. F., Nordstrom J. L. An improved T1/A ribonuclease protection assay. Biotechniques. 1994 Mar;16(3):428–430. [PubMed] [Google Scholar]
  5. Chang Y. N., Kenan D. J., Keene J. D., Gatignol A., Jeang K. T. Direct interactions between autoantigen La and human immunodeficiency virus leader RNA. J Virol. 1994 Nov;68(11):7008–7020. doi: 10.1128/jvi.68.11.7008-7020.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Cheng S. W., Lynch E. C., Leason K. R., Court D. L., Shapiro B. A., Friedman D. I. Functional importance of sequence in the stem-loop of a transcription terminator. Science. 1991 Nov 22;254(5035):1205–1207. doi: 10.1126/science.1835546. [DOI] [PubMed] [Google Scholar]
  7. Clark N. M., Hannibal M. C., Markovitz D. M. The peri-kappa B site mediates human immunodeficiency virus type 2 enhancer activation in monocytes but not in T cells. J Virol. 1995 Aug;69(8):4854–4862. doi: 10.1128/jvi.69.8.4854-4862.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Dayton A. I., Sodroski J. G., Rosen C. A., Goh W. C., Haseltine W. A. The trans-activator gene of the human T cell lymphotropic virus type III is required for replication. Cell. 1986 Mar 28;44(6):941–947. doi: 10.1016/0092-8674(86)90017-6. [DOI] [PubMed] [Google Scholar]
  9. Fenrick R., Malim M. H., Hauber J., Le S. Y., Maizel J., Cullen B. R. Functional analysis of the Tat trans activator of human immunodeficiency virus type 2. J Virol. 1989 Dec;63(12):5006–5012. doi: 10.1128/jvi.63.12.5006-5012.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Fu G. K., Grosveld G., Markovitz D. M. DEK, an autoantigen involved in a chromosomal translocation in acute myelogenous leukemia, binds to the HIV-2 enhancer. Proc Natl Acad Sci U S A. 1997 Mar 4;94(5):1811–1815. doi: 10.1073/pnas.94.5.1811. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Gao F., Yue L., White A. T., Pappas P. G., Barchue J., Hanson A. P., Greene B. M., Sharp P. M., Shaw G. M., Hahn B. H. Human infection by genetically diverse SIVSM-related HIV-2 in west Africa. Nature. 1992 Aug 6;358(6386):495–499. doi: 10.1038/358495a0. [DOI] [PubMed] [Google Scholar]
  12. García-Martínez L. F., Mavankal G., Peters P., Wu-Baer F., Gaynor R. B. Tat functions to stimulate the elongation properties of transcription complexes paused by the duplicated TAR RNA element of human immunodeficiency virus 2. J Mol Biol. 1995 Dec 1;254(3):350–363. doi: 10.1006/jmbi.1995.0622. [DOI] [PubMed] [Google Scholar]
  13. Gatignol A., Buckler-White A., Berkhout B., Jeang K. T. Characterization of a human TAR RNA-binding protein that activates the HIV-1 LTR. Science. 1991 Mar 29;251(5001):1597–1600. doi: 10.1126/science.2011739. [DOI] [PubMed] [Google Scholar]
  14. Gaynor R. B. Regulation of HIV-1 gene expression by the transactivator protein Tat. Curr Top Microbiol Immunol. 1995;193:51–77. doi: 10.1007/978-3-642-78929-8_3. [DOI] [PubMed] [Google Scholar]
  15. Gorman C. M., Moffat L. F., Howard B. H. Recombinant genomes which express chloramphenicol acetyltransferase in mammalian cells. Mol Cell Biol. 1982 Sep;2(9):1044–1051. doi: 10.1128/mcb.2.9.1044. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Hannibal M. C., Markovitz D. M., Clark N., Nabel G. J. Differential activation of human immunodeficiency virus type 1 and 2 transcription by specific T-cell activation signals. J Virol. 1993 Aug;67(8):5035–5040. doi: 10.1128/jvi.67.8.5035-5040.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Hannibal M. C., Markovitz D. M., Nabel G. J. Multiple cis-acting elements in the human immunodeficiency virus type 2 enhancer mediate the response to T-cell receptor stimulation by antigen in a T-cell hybridoma line. Blood. 1994 Apr 1;83(7):1839–1846. [PubMed] [Google Scholar]
  18. Hartz D., McPheeters D. S., Green L., Gold L. Detection of Escherichia coli ribosome binding at translation initiation sites in the absence of tRNA. J Mol Biol. 1991 Mar 5;218(1):99–105. doi: 10.1016/0022-2836(91)90876-8. [DOI] [PubMed] [Google Scholar]
  19. Hilfinger J. M., Clark N., Smith M., Robinson K., Markovitz D. M. Differential regulation of the human immunodeficiency virus type 2 enhancer in monocytes at various stages of differentiation. J Virol. 1993 Jul;67(7):4448–4453. doi: 10.1128/jvi.67.7.4448-4453.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Jones K. A. HIV trans-activation and transcription control mechanisms. New Biol. 1989 Nov;1(2):127–135. [PubMed] [Google Scholar]
  21. Kaczmarski W., Khan S. A. Lupus autoantigen Ku protein binds HIV-1 TAR RNA in vitro. Biochem Biophys Res Commun. 1993 Oct 29;196(2):935–942. doi: 10.1006/bbrc.1993.2339. [DOI] [PubMed] [Google Scholar]
  22. Kozak C. A., Gatignol A., Graham K., Jeang K. T., McBride O. W. Genetic mapping in human and mouse of the locus encoding TRBP, a protein that binds the TAR region of the human immunodeficiency virus (HIV-1). Genomics. 1995 Jan 1;25(1):66–72. doi: 10.1016/0888-7543(95)80110-8. [DOI] [PubMed] [Google Scholar]
  23. Laspia M. F., Rice A. P., Mathews M. B. HIV-1 Tat protein increases transcriptional initiation and stabilizes elongation. Cell. 1989 Oct 20;59(2):283–292. doi: 10.1016/0092-8674(89)90290-0. [DOI] [PubMed] [Google Scholar]
  24. Leiden J. M., Wang C. Y., Petryniak B., Markovitz D. M., Nabel G. J., Thompson C. B. A novel Ets-related transcription factor, Elf-1, binds to human immunodeficiency virus type 2 regulatory elements that are required for inducible trans activation in T cells. J Virol. 1992 Oct;66(10):5890–5897. doi: 10.1128/jvi.66.10.5890-5897.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Lu X., Welsh T. M., Peterlin B. M. The human immunodeficiency virus type 1 long terminal repeat specifies two different transcription complexes, only one of which is regulated by Tat. J Virol. 1993 Apr;67(4):1752–1760. doi: 10.1128/jvi.67.4.1752-1760.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Markovitz D. M., Hannibal M. C., Smith M. J., Cossman R., Nabel G. J. Activation of the human immunodeficiency virus type 1 enhancer is not dependent on NFAT-1. J Virol. 1992 Jun;66(6):3961–3965. doi: 10.1128/jvi.66.6.3961-3965.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Markovitz D. M., Hannibal M., Perez V. L., Gauntt C., Folks T. M., Nabel G. J. Differential regulation of human immunodeficiency viruses (HIVs): a specific regulatory element in HIV-2 responds to stimulation of the T-cell antigen receptor. Proc Natl Acad Sci U S A. 1990 Dec;87(23):9098–9102. doi: 10.1073/pnas.87.23.9098. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Markovitz D. M. Infection with the human immunodeficiency virus type 2. Ann Intern Med. 1993 Feb 1;118(3):211–218. doi: 10.7326/0003-4819-118-3-199302010-00010. [DOI] [PubMed] [Google Scholar]
  29. Markovitz D. M., Smith M. J., Hilfinger J., Hannibal M. C., Petryniak B., Nabel G. J. Activation of the human immunodeficiency virus type 2 enhancer is dependent on purine box and kappa B regulatory elements. J Virol. 1992 Sep;66(9):5479–5484. doi: 10.1128/jvi.66.9.5479-5484.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Mavankal G., Ignatius Ou S. H., Oliver H., Sigman D., Gaynor R. B. Human immunodeficiency virus type 1 and 2 Tat proteins specifically interact with RNA polymerase II. Proc Natl Acad Sci U S A. 1996 Mar 5;93(5):2089–2094. doi: 10.1073/pnas.93.5.2089. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Nabel G., Baltimore D. An inducible transcription factor activates expression of human immunodeficiency virus in T cells. Nature. 1987 Apr 16;326(6114):711–713. doi: 10.1038/326711a0. [DOI] [PubMed] [Google Scholar]
  32. Ou S. H., Wu F., Harrich D., García-Martínez L. F., Gaynor R. B. Cloning and characterization of a novel cellular protein, TDP-43, that binds to human immunodeficiency virus type 1 TAR DNA sequence motifs. J Virol. 1995 Jun;69(6):3584–3596. doi: 10.1128/jvi.69.6.3584-3596.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Perkins N. D., Edwards N. L., Duckett C. S., Agranoff A. B., Schmid R. M., Nabel G. J. A cooperative interaction between NF-kappa B and Sp1 is required for HIV-1 enhancer activation. EMBO J. 1993 Sep;12(9):3551–3558. doi: 10.1002/j.1460-2075.1993.tb06029.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Queen C., Baltimore D. Immunoglobulin gene transcription is activated by downstream sequence elements. Cell. 1983 Jul;33(3):741–748. doi: 10.1016/0092-8674(83)90016-8. [DOI] [PubMed] [Google Scholar]
  35. Rappaport J., Arya S. K., Richardson M. W., Baier-Bitterlich G., Klotman P. E. Inhibition of HIV-1 expression by HIV-2. J Mol Med (Berl) 1995 Dec;73(12):583–589. doi: 10.1007/BF00196351. [DOI] [PubMed] [Google Scholar]
  36. Ratnasabapathy R., Sheldon M., Johal L., Hernandez N. The HIV-1 long terminal repeat contains an unusual element that induces the synthesis of short RNAs from various mRNA and snRNA promoters. Genes Dev. 1990 Dec;4(12A):2061–2074. doi: 10.1101/gad.4.12a.2061. [DOI] [PubMed] [Google Scholar]
  37. Reddy T. R., Suhasini M., Rappaport J., Looney D. J., Kraus G., Wong-Staal F. Molecular cloning and characterization of a TAR-binding nuclear factor from T cells. AIDS Res Hum Retroviruses. 1995 Jun;11(6):663–669. doi: 10.1089/aid.1995.11.663. [DOI] [PubMed] [Google Scholar]
  38. Rhim H., Rice A. P. Functional significance of the dinucleotide bulge in stem-loop1 and stem-loop2 of HIV-2 TAR RNA. Virology. 1994 Jul;202(1):202–211. doi: 10.1006/viro.1994.1336. [DOI] [PubMed] [Google Scholar]
  39. Rhim H., Rice A. P. HIV-1 Tat protein is able to efficiently transactivate the HIV-2 LTR through a TAR RNA element lacking both dinucleotide bulge binding sites. Virology. 1995 Jan 10;206(1):673–678. doi: 10.1016/s0042-6822(95)80087-5. [DOI] [PubMed] [Google Scholar]
  40. Rhim H., Rice A. P. TAR RNA binding properties and relative transactivation activities of human immunodeficiency virus type 1 and 2 Tat proteins. J Virol. 1993 Feb;67(2):1110–1121. doi: 10.1128/jvi.67.2.1110-1121.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Rittner K., Churcher M. J., Gait M. J., Karn J. The human immunodeficiency virus long terminal repeat includes a specialised initiator element which is required for Tat-responsive transcription. J Mol Biol. 1995 May 5;248(3):562–580. doi: 10.1006/jmbi.1995.0243. [DOI] [PubMed] [Google Scholar]
  42. Rothblum C. J., Jackman J., Mikovits J., Shukla R. R., Kumar A. Interaction of nuclear protein p140 with human immunodeficiency virus type 1 TAR RNA in mitogen-activated primary human T lymphocytes. J Virol. 1995 Aug;69(8):5156–5163. doi: 10.1128/jvi.69.8.5156-5163.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Rounseville M. P., Kumar A. Binding of a host cell nuclear protein to the stem region of human immunodeficiency virus type 1 trans-activation-responsive RNA. J Virol. 1992 Mar;66(3):1688–1694. doi: 10.1128/jvi.66.3.1688-1694.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Roy S., Agy M., Hovanessian A. G., Sonenberg N., Katze M. G. The integrity of the stem structure of human immunodeficiency virus type 1 Tat-responsive sequence of RNA is required for interaction with the interferon-induced 68,000-Mr protein kinase. J Virol. 1991 Feb;65(2):632–640. doi: 10.1128/jvi.65.2.632-640.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Saccomanno C. F., Bordonaro M., Chen J. S., Nordstrom J. L. A faster ribonuclease protection assay. Biotechniques. 1992 Dec;13(6):846–850. [PubMed] [Google Scholar]
  46. Sheldon M., Ratnasabapathy R., Hernandez N. Characterization of the inducer of short transcripts, a human immunodeficiency virus type 1 transcriptional element that activates the synthesis of short RNAs. Mol Cell Biol. 1993 Feb;13(2):1251–1263. doi: 10.1128/mcb.13.2.1251. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Sheline C. T., Milocco L. H., Jones K. A. Two distinct nuclear transcription factors recognize loop and bulge residues of the HIV-1 TAR RNA hairpin. Genes Dev. 1991 Dec;5(12B):2508–2520. doi: 10.1101/gad.5.12b.2508. [DOI] [PubMed] [Google Scholar]
  48. Svitkin Y. V., Pause A., Sonenberg N. La autoantigen alleviates translational repression by the 5' leader sequence of the human immunodeficiency virus type 1 mRNA. J Virol. 1994 Nov;68(11):7001–7007. doi: 10.1128/jvi.68.11.7001-7007.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Tong-Starksen S. E., Baur A., Lu X. B., Peck E., Peterlin B. M. Second exon of Tat of HIV-2 is required for optimal trans-activation of HIV-1 and HIV-2 LTRs. Virology. 1993 Aug;195(2):826–830. doi: 10.1006/viro.1993.1438. [DOI] [PubMed] [Google Scholar]
  50. Travers K., Mboup S., Marlink R., Guèye-Nidaye A., Siby T., Thior I., Traore I., Dieng-Sarr A., Sankalé J. L., Mullins C. Natural protection against HIV-1 infection provided by HIV-2. Science. 1995 Jun 16;268(5217):1612–1615. doi: 10.1126/science.7539936. [DOI] [PubMed] [Google Scholar]
  51. Wu-Baer F., Lane W. S., Gaynor R. B. Identification of a group of cellular cofactors that stimulate the binding of RNA polymerase II and TRP-185 to human immunodeficiency virus 1 TAR RNA. J Biol Chem. 1996 Feb 23;271(8):4201–4208. doi: 10.1074/jbc.271.8.4201. [DOI] [PubMed] [Google Scholar]
  52. Wu F., Garcia J., Sigman D., Gaynor R. tat regulates binding of the human immunodeficiency virus trans-activating region RNA loop-binding protein TRP-185. Genes Dev. 1991 Nov;5(11):2128–2140. doi: 10.1101/gad.5.11.2128. [DOI] [PubMed] [Google Scholar]
  53. Xie W. Q., Rothblum L. I. Rapid, small-scale RNA isolation from tissue culture cells. Biotechniques. 1991 Sep;11(3):324, 326-7. [PubMed] [Google Scholar]
  54. Yankulov K., Blau J., Purton T., Roberts S., Bentley D. L. Transcriptional elongation by RNA polymerase II is stimulated by transactivators. Cell. 1994 Jun 3;77(5):749–759. doi: 10.1016/0092-8674(94)90058-2. [DOI] [PubMed] [Google Scholar]
  55. Zhou Q., Sharp P. A. Tat-SF1: cofactor for stimulation of transcriptional elongation by HIV-1 Tat. Science. 1996 Oct 25;274(5287):605–610. doi: 10.1126/science.274.5287.605. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Virology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES