### CANADIAN MEDICAL ASSOCIATION THE JOURNAL DB LB

L'ASSOCIATION

MÉDICALE CANADIENNE

NOVEMBER 9, 1963 • VOL. 89, NO. 19

## Studies of Male Survivors of Myocardial Infarction due to "Essential" Atherosclerosis

### II. Lipids and Lipoproteins

J. ALICK LITTLE, M.D., M.A., F.R.C.P.[C] and HENRY M. SHANOFF, M.D., B.Sc. (Med.), F.R.C.P. [C], Toronto

N CANADA, as in other highly developed countries, atherosclerotic coronary heart disease (C.H.D.) is the leading cause of death. Because of this, a long-term comprehensive investigation of persons with this disease was organized. A previous communication<sup>1</sup> described in detail the purposes and procedures of the study and dealt with the characteristics of the patients. In brief, all were men who had survived a myocardial infarction due to "essential" atherosclerosis, i.e. atherosclerosis unaccompanied by any condition believed to be an aggravating factor, such as diabetes or hypertension. The purpose of this selection was to examine the relationship of the serum lipids alone to C.H.D.

This second report compares the serum lipid and lipoproteins of the C.H.D. patients with those of healthy subjects and examines the relative abilities of these fractions to discriminate between the two groups. The relation of the various lipid fractions to one another, and to age, body measurements, physical activity and family history of C.H.D., was also evaluated. Some of the data to be reported here have appeared in interim abstracts.<sup>2-4</sup> The results in the control subjects have already been published.<sup>5</sup>

CLINICAL MATERIAL

Selection

The subjects, all men, were chosen from the files at Sunnybrook (Department of Veterans Affairs) Hospital in Toronto.

The coronary patients had unequivocal evidence, anamnestic and electrocardiographic, of ischemic heart disease as manifested by one or more myocardial infarctions. Any with valvular disease,

#### ABSTRACT

Serum lipids (total, ester and free cholesterol, phospholipid and standard S<sub>f</sub> 0-12, 12-20, 20-100 and 100-400 lipoproteins) were determined in 102 men, ages 30-70, with atherosclerotic coronary heart disease (C.H.D.), free of hypertension, diabetes or other complicating variables. All the lipid fractions had a lognormal distribution. All were significantly higher than in the controls up to the seventh decade. An explanation for the declining serum lipid levels with age was found. Contrary to previous reports, there was no abnormality in the relation of various lipid fractions to one another in C.H.D. A spurious correlation between C/P ratio and total cholesterol was found in both groups. In separating coronary and control subjects, cholesterol and 0-12 lipoproteins were the most reliable criteria and were equal in this respect. The misclassification rises from 20% in the fourth to 33% in the seventh decade. C/P ratio offered no improvement. The triglyceride-containing 100-400 lipoprotein was an inferior discriminator. Employing all the lipid fractions, discriminant analysis provided a minimum 12% misclassification in the fourth decade. There was no demonstrable relationship of cholesterol to body measurements, physical activity or family history of C.H.D.

syphilis, anemia or polycythemia, thromboangiitis obliterans or polyarteritis nodosa were excluded, so that the cause for the ischemia was in every instance almost certainly atherosclerosis. The controls were taken at random from files classified under minor diseases thought not to affect the variates to be studied.

From the Atherosclerosis Project, Sunnybrook (D.V.A.) Hospital, Toronto, and the Department of Medicine, Uni-versity of Toronto. Aided by a grant from the Ontario Heart Foundation.

Both groups were selected in such a way as to be free of hypertension, arbitrarily defined as the persistent elevation of the blood pressure above 150/90 mm. Hg. The availability of military and medical documents afforded the unique opportunity to recognize and exclude those coronary patients with normal blood pressure levels who had hypertension preceding their infarction. There were no important differences in blood pressures between the two groups or between various decades within each group.

All subjects in the study were also free of diabetes, nephrosis and hypothyroidism, diseases commonly associated with secondary hypercholesterolemia. The presence of xanthomatosis in a patient or in his relatives was not cause for exclusion. Nor was any attempt made to exclude essential hypercholesterolemia or triglyceridemia for which satisfactory diagnostic criteria are not as yet established. The presence of any major disease, especially those with important metabolic consequences (hepatobiliary disorders, endocrinopathies, gout or cancer and other wasting diseases), was reason for exclusion from both groups. Any person in either group receiving a special diet or treatment with hormones or anticoagulants was eliminated from the study. All the subjects were ambulant, having been discharged from hospital for at least three months. This criterion was adopted to eliminate the changes that occur in the serum lipids and lipoproteins in the first weeks following myocardial infarction.6,7

To allow for a satisfactory statistical evaluation, some 25 men in each decade, for each of the two groups, were assembled. The coronary group was selected first and a control group was then matched by age. The rate of refusal to participate was less than 10% and was similar in the two groups, so that no significant bias was introduced from this source. It is of interest that only a small fraction of the clinical coronary population could meet the rigorous requirements outlined above.

#### Procedure

After an overnight fast, each subject, coronary and control, was investigated by the authors. The investigation included basal metabolism tests; determination of lipids and lipoproteins on fasting blood specimens drawn between 8.00 and 8.30 a.m. to eliminate the effect of diurnal variation; detailed family, medical and dietary history; complete physical examination; fluoroscopic and orthodiagraphic examinations; 12-lead electrocardiogram; posteroanterior and left lateral chest radiographs; and lateral radiographs of the abdomen for the detection of aortic calcification. A urinalysis, hemogram, determination of blood sugar and non-protein nitrogen levels and a Wassermann reaction were also performed on each subject. Where indicated, determinations of serum protein-bound iodine, radioactive iodine uptake, glucose tolerance test, liver function tests and fasting electrocardiographs were done.

#### LABORATORY METHODS

Serum lipid determinations for each man were performed on a single fasting blood specimen. Total and free serum cholesterol were estimated in duplicate by a modified Schoenheimer and Sperry method;<sup>8</sup> the phospholipid in duplicate by the method of Zilversmit and Davis.<sup>9</sup> All of the cholesterol and phospholipid determinations were done by one biochemist. The duplicates were done simultaneously but were not blind. Serum lipoproteins were determined by the technique of de Lalla and Gofman<sup>10</sup> in the Ultracentrifuge Laboratory, McGill University, Montreal.

The standard technical errors for the determinations of each serum lipid fraction have been given previously<sup>5</sup> and compare favourably with those from other laboratories.

## Composition and Characteristics of the Groups

The number and ages of the men in the two groups are shown in Table I. There are approximately 25 patients in each decade and the mean ages are similar. It is emphasized that this coronary group, by arbitrary selection (Canadian, male, military veterans, survivors of previous myocardial infarction, with no aggravating disease and no associated disease), is not representative of the

TABLE I.—Composition of the Groups: Number and Age

| -<br>Decade |           | Control |     | (    |      |     |  |
|-------------|-----------|---------|-----|------|------|-----|--|
|             | Mean      |         |     | Mean |      |     |  |
|             | n         | age     | 8   | n    | age  | 8   |  |
| Fourth      | 25        | 34.4    | 2.9 | 25   | 36.3 | 2.8 |  |
| Fifth       | <b>25</b> | 43.6    | 2.7 | 26   | 44.5 | 3.0 |  |
| Sixth       | 27        | 56.0    | 2.4 | 28   | 55.5 | 2.4 |  |
| Seventh     | 23        | 64.1    | 2.8 | 23   | 64.3 | 2.7 |  |
|             |           |         |     |      |      |     |  |
|             | 100       |         |     | 102  |      |     |  |

coronary population as a whole. Moreover, the choosing of an equal number of patients in each decade (to facilitate stratified comparisons) greatly alters the age distribution from that seen in an unweighted series. For example, in Cassidy's series of 1000 coronary patients, those in the fourth and fifth decade comprised only 3.2 and 14.6%, respectively, of the total number.<sup>11</sup> It is clear then that the results of the appraisal of this coronary group need not necessarily apply to the general coronary population.

The characteristics of the patients and their controls have been described in detail.<sup>1</sup> In both groups, more than half were born in Canada; most of the remainder had come from the British Isles in their youth. There was one Jew but no Negroes. Various occupational classes were satisfactorily represented and similar. A large proportion of the coronary population was judged in the "minimal physical activity" category at the time of investigation.

A dietary survey<sup>12</sup> showed that the mean daily calorie intake in the coronary group decreased progressively from 2250 in the fourth to 1612 in the seventh decade. In the control group, there was the same trend at a higher level of intake: 2565 calories in the fourth to 2148 calories in the seventh decade. However, in each decade of both groups, the average fat consumption was approximately 38% of the total calories. The coronary group tended to eat a smaller amount of milk-fats and eggs.

#### **RESULTS AND DISCUSSION**

#### Individual Values

The results of the serum lipid fractionations on each individual in the coronary group are recorded in the Appendix to this report.

#### Frequency Distributions

In the control group,5 total, ester, and free cholesterol, phospholipid and standard (Std.) S<sub>f</sub> 0-12 lipoprotein had normal distributions. Std. S<sub>f</sub> 12-20, 20-100 and 100-400 lipoproteins were positively skewed, and their transformation into logarithms resulted in normal distributions.

The cumulative distributions of all the lipid fractions in the coronary group are plotted on probit paper in Figs. 1 and 2. A normal distribution would produce a straight line. Varying degrees of positive skewing, from slight for cholesterol to marked for Std. S<sub>f</sub> 100-400 lipoprotein, are present as indicated by the upward concavity of these curves. As shown by the t values for the index of skewness in Table II, log transformations of each fraction result in normal distributions. In the case of lipoproteins 12-20, 20-100 and 100-400, the log transformation produced skewing that was negative but of lesser degree. Tests of kurtosis, as shown by the t values for the index of skewness in Table

TABLE II.—t VALUES FOR THE INDEX OF SKEWNESS<sup>†</sup> (g<sub>1</sub>) AND INDEX OF KURTOSIS<sup> $\ddagger$ </sup> (g<sub>2</sub>) FOR Each Lipid Fraction in 102 CORONARY PATIENTS

|                   | Sker       | vness           | Kurtosis |               |  |
|-------------------|------------|-----------------|----------|---------------|--|
| Serum fraction    | $t g_1$    | $t g_1 (log)$ § | $t g_2$  | $t g_2 (log)$ |  |
| Total cholesterol | 2.57*      | 0.36            | 1.66     | 0.0           |  |
| Ester cholesterol | 2.22*      | 0.24            | 0.82     | 1.88          |  |
| Free cholesterol  | 3.39**     | 0.71            | 2.70**   | 0.72          |  |
| Phospholipid      | $1.96^{*}$ | 0.40            | 0.49     | 0.0           |  |
| Std. $S_f$ 0-12   | 5.02**     | 0.53            | 5.23**   | 1.84          |  |
| 12-20             | 3.35**     | -3.14**         | 3.67**   | 1.85          |  |
| 20-100            | 3.97**     | -2.18*          | 1.35     | 1.00          |  |
| 100-400           | 10.33**    | -3.38**         | 16.14**  | 2.00*         |  |
| 12-400            | 4.35**     | 1.76            | 1.94     | 0.78          |  |
| 0-400             | 2.80**     | 0.13            | 0.65     | 1.03          |  |

\*Significantly different from a normal distribution, р

<0.05. \*\*Significantly different from a normal distribution, <0.01.

\$\$ Snedecor, G. W.: Statistical methods, The Iowa State College Press, Ames, Iowa.

§t values for the indices of the log transformed distributions.

| SERUM LIPIDS, ARITHMETRIC MEAN AND STANDARD DEVIATI | on§ |
|-----------------------------------------------------|-----|
| Decade                                              |     |

TADLE III

|                     |          | Decade     |            |            |            |  |
|---------------------|----------|------------|------------|------------|------------|--|
| Fraction            | Group    | 4          | 5          | 6          | 7          |  |
| Total cholesterol   |          |            |            |            |            |  |
| mg.%                | Control  | 204.9      | 214.5      | 206.5      | 215.8      |  |
|                     |          | $\pm 28.7$ | $\pm 38.0$ | $\pm 30.5$ | $\pm 36.6$ |  |
|                     | Coronary | 278.9***   | 262.2***   | 250.0***   | 231.3      |  |
|                     |          | $\pm 52.9$ | $\pm 32.4$ | $\pm 46.7$ | $\pm 36.0$ |  |
| Ester cholesterol   |          |            |            |            |            |  |
| mg.%                | Control  | 147.5      | 154.8      | 147.8      | 154.1      |  |
|                     |          | $\pm 20.0$ | $\pm 27.3$ | $\pm 22.9$ | $\pm 25.2$ |  |
|                     | Coronary | 198.4***   | 186.8***   | 177.8***   | 165.6      |  |
|                     |          | $\pm 36.8$ | $\pm 22.8$ | $\pm 34.6$ | $\pm 25.9$ |  |
| Free cholesterol    |          |            |            |            |            |  |
| mg.%                | Control  | 57.4       | 60.1       | 58.7       | 61.7       |  |
|                     |          | $\pm 9.1$  | $\pm 11.4$ | $\pm 8.2$  | ±12.0      |  |
|                     | Coronary | 80.6***    | 75.3***    | 72.3***    | 65.7       |  |
|                     | •        | $\pm 17.7$ | $\pm 10.9$ | $\pm 13.1$ | $\pm 11.8$ |  |
| % free cholesterol. | Control  | 28.0       | 27.8       | 28.4       | 28.5       |  |
|                     |          | $\pm 1.1$  | ±1.4       | $\pm 1.4$  | ±1.4       |  |
|                     | Coronary | 28.8       | 28.7       | 28.9       | 28.4       |  |
|                     |          | $\pm 2.3$  | $\pm 1.6$  | $\pm 1.8$  | ±2.0       |  |
| Phospholipid        |          |            |            |            |            |  |
| mg.%                | Control  | 242.4      | 255.0      | 244.5      | 260.0      |  |
|                     |          | $\pm 29.0$ | $\pm 32.5$ | $\pm 30.3$ | $\pm 36.5$ |  |
|                     | Coronary | 284.2***   | 280.5**    | 274.4***   | 255.4      |  |
|                     |          |            | $\pm 25.6$ | $\pm 36.1$ | $\pm 32.7$ |  |

s p < 0.01\*\*\*p < 0.001\$Geometric means and 95% limits of the coronary groups are in the

Appendix.

II, indicate that log transformations generally improve the normality of the distribution of the lipid and lipoprotein fractions in this regard as well. Therefore, it can be said that all the lipid fractions in this coronary group have a lognormal distribution. However, since this is an age-selected group (vide supra), the distributions of the serum lipids need not necessarily apply to a coronary population unselected for age.

In the further statistical analysis reported herein, log transformations were employed but are not reported, since they did not alter the results of the tests using the unmodified data.

TABLE IV.—SERUM LIPOPROTEINS, ARITHMETIC MEAN AND STANDARD DEVIATION, Mg. %§

|             |          | Decade                                |                                            |                                       |                                       |  |  |  |
|-------------|----------|---------------------------------------|--------------------------------------------|---------------------------------------|---------------------------------------|--|--|--|
| Standard Sf | Group    | 4                                     | 5                                          | 6                                     | 7                                     |  |  |  |
| 0 - 12      | Control  | 286.0                                 | 299.6                                      | 289.1                                 | 281.1                                 |  |  |  |
|             | Coronary | $\pm 40.1$<br>426.2***<br>$\pm 127.8$ | $\pm 51.1$<br>$\pm 407.9**$<br>$\pm 103.8$ | $\pm 45.5$<br>* 343.0**<br>$\pm 61.2$ | $\pm 52.7$<br>* 327.0**<br>$\pm 56.9$ |  |  |  |
| 12 - 20     | Control  | $51.4 \pm 21.3$                       | $54.8 \pm 23.1$                            | $57.3 \pm 28.5$                       | $49.2 \pm 21.3$                       |  |  |  |
|             | Coronary | -21.3<br>75.4**<br>=34.6              | $\pm 23.1$<br>$66.5^*$<br>$\pm 26.3$       | = 28.3<br>= 60.4<br>= 21.4            | 47.7<br>$\pm 19.8$                    |  |  |  |
| 20 - 100    | Control  | $85.2 \pm 41.0$                       | $84.2 \pm 40.8$                            | $77.8 \pm 34.4$                       | $84.0 \pm 76.0$                       |  |  |  |
|             | Coronary | $122.4^*$<br>= 60.4                   | 124.0**<br>= 62.4                          |                                       | $69.9 \pm 44.0$                       |  |  |  |
| 100 - 400   | Control  | $34.3 \pm 31.7$                       | $31.1 \pm 27.8$                            | $20.8 \pm 11.6$                       | $30.3 \pm 39.6$                       |  |  |  |
|             | Coronary | $\pm 51.7$<br>$61.6^*$<br>$\pm 59.3$  | +27.8<br>60.3<br>$\pm 75.9$                | $\pm 37.8$                            |                                       |  |  |  |
| 12 - 400    | Control  | $170.8 \pm 35.6$                      | $170.1 \pm 75.0$                           | $155.9 \pm 56.1$                      | $163.5 \pm 126.5$                     |  |  |  |
|             | Coronary | $259.3^{**}$<br>= 129.3               | $250.8^{**}$<br>$\pm 131.2$                |                                       | $146.3 \pm 86.1$                      |  |  |  |
| 0 - 400     | Control  | $456.9 \pm 93.4$                      | $469.7 \pm 104.8$                          | $445.0 \pm 83.9$                      | $444.6 \pm 153.1$                     |  |  |  |
|             | Coronary | -93.4<br>685.6***<br>$\pm 191.3$      |                                            |                                       |                                       |  |  |  |

from the control group: \*\*p < 0.01 \$ Geometric means and 95% limits of the coronary groups are in the Appendix.

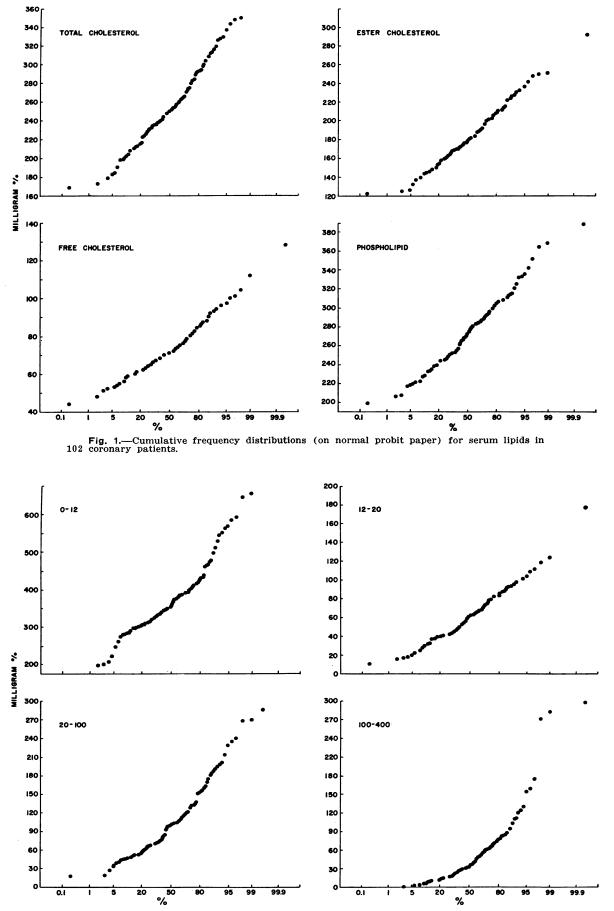



Fig. 2.—Cumulative frequency distributions (on normal probit paper) for standard  $\mathbf{S}_t$  lipoproteins in 102 coronary patients.

#### Mean Values and Age

The mean values for the lipid fractions of the control and coronary groups by decade are shown in Tables III and IV and in Fig. 3. In the control group, there is no important variation with age in any of the fractions. In the coronary group, the maximal elevation of all the fractions occurs in the fourth decade. For most fractions this elevation is highly significant. The levels of all the fractions then progressively decrease with age to the seventh decade, where they are no longer significantly different from those of the control group. This decrease in the serum lipids with age was tested in the case of total cholesterol and found to be significant, the regression coefficient being  $-15.4 \pm 3.9$  (s.e.) mg. % per decade.

Atherosclerosis is present in all adults in this Western civilization. Studies such as this have been criticized as comparing coronary patients with controls who have merely a lesser degree of atherosclerosis. Surely this fact must add to, rather than detract from, the significance of a demonstration of differences in circulating lipids between the two groups. Probably the physiologic mean serum lipid levels for humans are those of primitive societies with a negligible incidence of clinical atherosclerosis, for example, total cholesterol 150 mg. %. Indeed, as previously discussed,<sup>5</sup> the so-called "normal" average cholesterol level of 210 mg. %in Western society probably represents a moderate form of hypercholesterolemia in regard to the association with a high incidence of clinical atherosclerosis. The lipid levels of the coronary subjects in our society could, therefore, be considered as being still more abnormally elevated.

The present results confirm the many previous reports that in countries where C.H.D. is common, groups of men with C.H.D. have higher serum lipid concentrations than their clinically healthy counterparts<sup>7, 13-16</sup> and that the most significant elevation of serum lipids occurs in the earlier decades. Indeed, it is only under the age of  $50^{6, 17, 18}$  that the differences are impressive.

Although some have found important differences in the serum lipids to extend into the seventh decade,<sup>14, 16</sup> as in this investigation, most studies found the differences to be significant up to and including the sixth decade only. This has its parallel in pathological studies in which the incidence of severe atherosclerosis increased from the fourth to a maximum in the sixth decade and decreased somewhat thereafter.<sup>19</sup> Paterson, Dyer and Armstrong<sup>20</sup> found no relationship between the level of serum lipids determined in life and the amount of coronary atherosclerosis demonstrated post mortem in men over 60 years of age.

Why the serum lipids are higher in the younger than in the older C.H.D. patients (as illustrated in Fig. 3) has been the subject of much speculation. Oliver<sup>21</sup> suggested that there may be at least two types of coronary disease—one associated with an

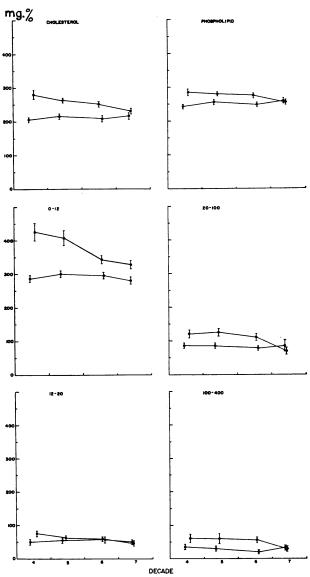



Fig. 3.—Mean serum lipid and lipoprotein values  $\pm$  S.E. in each decade of the coronary (•) and control (°) group.

active metabolic disorder and another associated with advancing age. However, in cases of essential hypercholesterolemia and xanthomatosis there is a continuous transition from patients with very high cholesterol concentrations and extensive deposits, to those with moderate hypercholesterolemia and small deposits, to patients with questionable xanthomas. This latter group merged into the "ordinary" group of patients with cardiac infarction.<sup>22</sup> The decreasing concentrations with age of the lipids in our patients occur in a way which is progressive and thus might support the concept of a single continuous spectrum of C.H.D.

In the present study several observations help to explain the decrease in serum lipid levels in C.H.D. with age. From Fig. 3 it would appear that the higher the serum lipids, the earlier the age of onset of clinical C.H.D. Subsequent to the onset of clinical C.H.D., the high five-year mortality of 40%in each decade of this group<sup>23</sup> means that most coronary patients, including the young ones with their high cholesterol levels, die before entering the next decade. In addition, the repeated determination of serum cholesterol over a five- to seven-year period in individual survivors of a myocardial infarction has shown an average decline in serum cholesterol of 1.3 mg. % per year.<sup>24</sup> Thus at least three factors: (1) earlier onset of clinical disease in hypercholesterolemic subjects, (2) high subsequent mortality, and (3) decreasing cholesterol concentration with age in survivors, are involved in the effect of age on the level of serum lipids in C.H.D. It may be added that, contrary to general expectation, the survival rate in untreated C.H.D. is not related to the level of the serum lipids.<sup>23</sup>

#### Relation Between the Various Lipid and Lipoprotein Fractions

#### Free and Total Cholesterol

As in the control group,<sup>5</sup> the range of percentage of total cholesterol which is free is small, 21.3 to 33.2% (see Appendix). The mean is 28.7%. The correlation coefficient between free and total cholesterol is high (r = .93, p < 0.001). Table III shows that the mean and standard deviations are similar in all decades. It also shows that despite the higher total cholesterol levels in the coronary group, the percentage free cholesterol remains the same as in the controls.

Thus in C.H.D., as in health,<sup>5, 25</sup> the relation between the free and total serum cholesterol is a variable with a very small dispersion about the mean of 28%. Because of this the calculation of further ratios, such as that between the ester and free cholesterol, can only be tautologous. Nor is there anything to be gained by relating the ester or free cholesterol to any variate when the latter's relation to total cholesterol has already been established.

With either severe liver failure or triglyceridemia, free cholesterol may even exceed 50% of the total. Otherwise, a gross variation of the percentage free cholesterol outside the limits established by this and other studies<sup>25</sup> must be attributed to technical error. We have found the percentage free cholesterol to be one means of checking on laboratory technique. It is disconcerting when studies of C.H.D. report grossly abnormal percentage free fractions.<sup>17</sup>

#### Serum Cholesterol and Phospholipid (C/P Ratio)\*

It has been repeatedly implied<sup>17, 26, 27</sup> that the relationship of cholesterol to phospholipid is disturbed in patients with clinical atherosclerosis. Some have also claimed that the C/P ratio discriminates between atherosclerotic and healthy subjects better than total cholesterol.<sup>17</sup> Because of

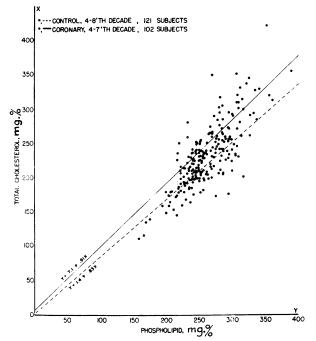



Fig. 4.—The relationship between total serum cholesterol and phospholipid.

this, the C/P ratios were carefully examined in the present study. We have previously reported<sup>5</sup> on the study of the C/P ratio in the healthy control group.

The close relationship between the concentrations of serum cholesterol and serum phospholipid is well known. Since, as described above, the correlation between free and total serum cholesterol is very high, either total or free cholesterol may be used as the numerator in the so-called C/P ratio. Jackson and Wilkinson<sup>28</sup> recommended the use of free cholesterol because its close relationship to phospholipids is maintained even in the presence of liver disease. However, in our subjects there was no liver disease, and total cholesterol was preferred as it has been more widely studied.

The effect of the fasting state on the C/P ratio was investigated. Serum cholesterol and phospholipid concentrations were determined in 23 coronary patients while fasting and again five hours after a fat-containing breakfast (bacon, two eggs, buttered toast, coffee with cream). The results were as follows:

|                                   | Fasting                    | 5 hours p.c.                 | p              |
|-----------------------------------|----------------------------|------------------------------|----------------|
| Total cholesterol<br>Phospholipid | 270.4 (9.8)<br>264.9 (9.8) | 280.8 (13.8)<br>294.0 (10.4) | >0.05<br><0.05 |

It is seen that the concentration of serum phospholopid, but not of cholesterol, is significantly elevated following a fatty meal. The relationship between serum cholesterol and phospholipid must, therefore, be studied in the fasting state. Not all previous workers have fulfilled this requirement.<sup>17, 26, 29</sup>

<sup>\*</sup>Control subjects in the eighth decade are included in some of the work in this section.

TABLE V.—C/P Ratio§, Mean and Standard Deviation

|                              | Decade          |               |                         |                          |  |  |  |
|------------------------------|-----------------|---------------|-------------------------|--------------------------|--|--|--|
| Group                        | 4               | 5             | 6                       | 7                        |  |  |  |
| Control                      | $.845 \pm .062$ | .842<br>±.101 | $.848 \pm .076$         | $.829 \pm .068$          |  |  |  |
| Coronary                     |                 |               | ±.070<br>.909*<br>±.107 | ±.008<br>.907**<br>±.032 |  |  |  |
| Significance<br>from the cor |                 |               | 01                      |                          |  |  |  |

 $C/P = total serum cholesterol (mg. \%) \div phospholipid (mg. \%).$ 

In Table V, the mean C/P ratio appears to be significantly higher in the coronary group. This might suggest an abnormal relationship between total serum cholesterol and phospholipid in C.H.D. However, Fig. 4 shows that the plot between the two lipids is linear in the coronary as well as in the control group. Application of the regression equation in Table VI demonstrates that in each decade the slope and intercept of these lines are not significantly different for the two groups. Furthermore, the correlation coefficients are similar. The averaged data for all decades of each group in Table VI also show no significant difference in the correlation coefficients or slopes. These data then clearly indicate that the relation between serum cholesterol and phospholipid is not disturbed in C.H.D.

In healthy men, Adlersberg and associates<sup>29</sup> found that C/P ratio increased with higher serum cholesterol values. To us it seemed possible that the association between C/P ratio and total serum cholesterol was spurious in nature,<sup>30</sup> arising from the imperfect correlation between serum cholesterol and phospholipid, so that high C/P ratios tend to be associated with high serum cholesterol values.

This was shown to be the case in our study. In Fig. 4 the imperfect correlation between total

TABLE VI.—THE RELATIONSHIP BETWEEN TOTAL SERUM CHOLESTEROL AND PHOSPHOLIPID SHOWN BY THE CORRELA-TION COEFFICIENT (r) AND THE SLOPE (b) AND INTERCEPT (a) OF THE REGRESSION FOULTION

|                    | ILL SSI | ON EQUATION   |                 |
|--------------------|---------|---------------|-----------------|
| Decade             | r       | $b \pm s.e.$  | $a \pm s.e.$    |
| Fourth             |         |               |                 |
| Control            | . 85    | $.83 \pm .10$ | $3.7 \pm 15.5$  |
| Coronary           | . 83    | $.92 \pm .13$ | $20.7 \pm 22.0$ |
| Fifth              |         |               |                 |
| Control            | .73     | $.86 \pm .17$ | $3.3 \pm 16.2$  |
| Coronary           | . 69    | $.87 \pm .19$ | $7.4 \pm 21.7$  |
| Sixth              |         |               |                 |
| Control            | .74     | $.74 \pm .14$ | $3.6 \pm 15.3$  |
| Coronary           | .77     | $.99 \pm .16$ | $.8 \pm 21.2$   |
| Seventh            |         |               |                 |
| Control            | . 88    | $.88 \pm .10$ | $1 \pm 16.6$    |
| Coronary           | .72     | $.78 \pm .16$ | $7 \pm 20.0$    |
| Eighth             |         |               | 1 20.0          |
| Control            | .73     | $.83 \pm .18$ | $1.5 \pm 16.3$  |
| Coronary           |         |               | 1.0 ± 10.0      |
| †Control (4-8th)   | .79     | $.83 \pm .06$ | 1.4             |
| Coronary (4-7th)   | .77     | $.91 \pm .00$ | 1.1<br>         |
| +Coronary (+-1011) |         | .01 ± .00     |                 |

\*"a" is based on average "b".

Pooled data for 121 subjects.

‡Averaged data for 102 subjects.

cholesterol and phospholipid results in a scattering of points above and below the regression line. The points above the line are associated with higher total serum cholesterol values and with higher C/P ratios than those below the line. In Table VII, the correlation coefficient between C/P ratio and total cholesterol is shown to be similar to what is expected from this less than perfect correlation between cholesterol and phospholipid<sup>30</sup> in both groups. Again the C/P ratio is similar in C.H.D. and in health.

 TABLE
 VII.—Correlation
 Coefficient
 "r"
 Between

 C/P
 Ratio
 and
 Total
 Serum
 Cholesterol

|          | n   | r     | $Expected \\ "r"^{\dagger}$ |
|----------|-----|-------|-----------------------------|
| Control  | 121 | 0.63  | 0.60                        |
| Coronary | 102 | 0.59* | 0.62                        |

\*Average value of the four decades.

†Expected from the observed correlations between total serum cholesterol and phospholipid.

As to the discriminating ability of the C/P ratio for coronary and control subjects, it is shown below to be no better than total cholesterol and other lipid fractions. Therefore its use in the study of C.H.D. should be abandoned.

# Lipoproteins With Cholesterol and With Phospholipid

Chemical analyses of the beta lipoproteins<sup>31-33</sup> show that the denser Std. S<sub>f</sub> 0-12 fraction contains a much larger percentage of cholesterol and an equal or slightly larger percentage of phospholipid than the less dense 12-400 fractions. In the control group<sup>5</sup> the statistical correlations of the lipoprotein fractions with cholesterol and with phospholipid were in accord with these chemical findings.

TABLE VIII. Correlation Coefficients of Lipoprotein Fractions with Total Cholesterol and with Phospholipid

|   | Lipoprotein<br>fraction | r, Cholesterol* | r, Phospholipid† |
|---|-------------------------|-----------------|------------------|
|   | Std. S <sub>f</sub>     |                 |                  |
| 1 | 0-12                    | .71             | . 53             |
| 2 | 12-20                   | . 58            | . 51             |
| 3 | 20-100                  | .34             | . 52             |
| 4 | 100-400                 | .23             | . 46             |
|   | 0-400                   | .71             | .73              |

\*p <0.01 for differences between r 1 and 3, 1 and 4, 2 and 3, 2 and 4.

\*p > 0.05 for differences between r 1 and 2, 3 and 4.

p > 0.05 for differences between all pairs of r.

The correlations of the lipoproteins with cholesterol and with phospholipid were determined in each decade of the coronary group. Since there were no significant differences between decades, the data for the entire group were pooled and are presented in Table VIII. The correlation with cholesterol decreases progressively from Std.  $S_r$  0-12 to Std.  $S_f$  100-400, as shown by the significant differences between the correlation coefficients in the subscript to this table. It is of interest that the correlation coefficient between cholesterol and lipoprotein fraction 10-20 was about 0.6, very similar to that reported earlier by Keys<sup>34</sup> in his re-analysis of Gofman's data<sup>35</sup> and by DeWind, Michaels and Kinsell.<sup>36</sup> The correlation with phospholipid is significant and similar for each lipoprotein fraction. Thus, the relation of cholesterol and phospholipid to the lipoproteins is the same in the coronary group as in the control group.<sup>5</sup>

The progressively changing correlation between the beta lipoprotein sub-fractions and cholesterol suggests a progressively increasing concentration of cholesterol as the density of beta lipoprotein increases. Previous chemical studies of beta lipoproteins have been performed on only two subfractions divided at approximately  $S_t$  12. The present results suggest that chemical analysis of smaller beta lipoprotein sub-fractions should be done.

SEPARATION OF CORONARY AND CONTROL SUBJECTS BY SERUM LIPIDS AND LIPOPROTEINS

In the past decade it has become generally accepted that in groups of patients who have had myocardial infarctions, significant elevations of the serum lipids and lipoproteins can be demonstrated. However, there has been considerable-and passionate-disagreement as to the relative merits of the different serum lipids in distinguishing between coronary and non-coronary subjects. In 1950, Gofman et al.<sup>37</sup> developed the flotation technique for analytical ultracentrifugation of serum lipoproteins. The lipoproteins originally incriminated in C.H.D. were those in the  $S_t$  12-20 class, and their correlation with clinical atherosclerosis was claimed to be better than that of cholesterol.<sup>38</sup> However, Keys,<sup>34</sup> after analyzing Gofman's data, denied this and indeed suggested that the ability of this lipoprotein fraction to discriminate between coronary and noncoronary persons might be due to its being (imperfectly) correlated with cholesterol. Gofman's group later devised an "atherogenic index"39 by crediting certain lipoprotein fractions with more importance than others. This was subsequently modified into the "alpha value"40 and, by incorporating the age factor, an "accumulated coronary disease value".41

Paterson *et al.*<sup>20, 42</sup> found no relation between serum cholesterol,  $S_f$  12-20 and  $S_f$  20-100 lipoproteins, the "alpha index" and the "alpha value" estimated serially during life, and the severity of coronary atherosclerosis found at autopsy. However, most of the patients examined were over the age of 60, when hyperlipidemia is infrequent.

The American co-operative prospective study<sup>43</sup> ended in a difference of opinion. Gofman's minority group modified the original method of lipoprotein determination to include additional classes and to correct for the effects of concentration on flotation rate. They concluded that the Std. Sr 12-20 lipoproteins and the "Atherogenic Index" measurements were superior to cholesterol in predicting definite new coronary events. However, the majority disagreed and held that the elevation of serum lipoprotein and cholesterol was not of clinical value in predicting which individuals would develop C.H.D. Since the cholesterol measurement was at least as useful as lipoprotein estimation, it was preferable in a practical sense because it was much easier and cheaper to perform. Lawry et al.<sup>15</sup> and the Albany group<sup>44</sup> found that although the mean serum cholesterol and lipoprotein levels were higher in C.H.D. than in health, the small size and great variability of the difference prevented the clinical prediction of C.H.D. among individuals. In diabetics who developed cardiovascular complications,<sup>45</sup> the predictive value of lipoproteins was no better than cholesterol; and both were applicable to groups but not to individuals. In a small series, Milch's group<sup>46</sup> preferred the lipoproteins as discriminators. In a larger study, Mattingly et al.47 found that the elevation of serum cholesterol was greater and more distinctive than that of the S<sub>f</sub> 12-20 and 20-100 lipoproteins. Rivin, Wong and Yoshino<sup>48</sup> measured total cholesterol, total stainable lipid, and ratio of alpha/beta stainable lipid in about 100 male survivors of myocardial infarction and 100 controls. Below the age of 40 years, all of these measurements partially discriminated the normal group from the coronary group. Above this age, the alpha/beta ratio provided the best segregation. In all studies of coronary and non-coronary groups, there has been considerable overlapping of the distributions of the serum lipids and lipoproteins.

In the present study, it is evident from Table IX that total serum cholesterol, ester cholesterol, free cholesterol, C/P ratio, Std.  $S_t$  0-12 and 0-400 lipoproteins all have approximately similar "t" values and therefore similar abilities to separate coronary and control subjects. The "t" values for the remaining lipid fractions are relatively smaller. Log transformations of the data did not significantly change the results.

That the cholesterol ester and free fractions could not be better than total cholesterol in segregating the two groups must follow from the narrow range of per cent free to total cholesterol (Table III) found in C.H.D. as well as in health. A previous claim of the superiority of cholesterol ester<sup>17</sup> can be attributed to faulty laboratory technique as indicated by the grossly abnormal per cent of free cholesterol. It is of interest that the lipoproteins exhibited no advantages and that Std. S<sub>t</sub> 12-20 lipoproteins, originally suggested as the superior discriminator,<sup>38</sup> were the least impressive, achieving significance only in the fourth decade.

 TABLE IX.—"t"
 Test Between the Control and Coronary Groups for Each Serum Lipid Fraction

| Decade         | Fo   | Fourth  |      | Fifth S |      | xth    | Seventh |     |
|----------------|------|---------|------|---------|------|--------|---------|-----|
|                | t    | p       | t    | p       | t    | p      | t       | p   |
| Total          |      |         |      |         |      |        |         |     |
| cholesterol.   | 6.15 | < .001  | 4.78 | <.001   | 4.07 | <.001  | 1.46    | >.1 |
| Ester          | -    | • • • • |      |         |      |        |         |     |
| cholesterol.   | 6.07 | <.001   | 4.55 | <.001   | 3.78 | <.001  | 1.53    | >.1 |
| Free           |      |         |      |         |      |        |         |     |
| cholesterol.   | 5.84 | <.001   | 4.89 | <.001   | 4.59 | <.001  | 1.14    | >.1 |
| C/P ratio      | 5.95 | <.001   | 3.44 | <.001   | 2.42 | <.05   | 3.12    | <.0 |
| Std. Sf 0-12.  | 5.23 | <.001   | 4.69 | <.001   | 3.70 | <.001  | 2.83    | <.0 |
| Std. Sf 0-400. | 5.37 | <.001   | 5.34 | <.001   | 4.00 | < .001 | 0.72    | >.1 |
| Phospholipid.  | 3.73 | <.001   | 3.11 | <.01    | 3.33 | <.001  |         |     |
| Std. Sf 12-20. | 2.95 | <.01    | 1.69 | >.05    |      |        |         |     |
| Std. Sf 20-100 | 2.55 | <.05    | 2.69 | <.01    | 2.72 | <.01   |         |     |
| Std. Sf        |      | • • • • |      |         |      |        |         |     |
| 100-400        | 2.03 | <.05    | 1.81 | >.05    | 4.59 | <.001  |         |     |
| Std. Sf 12-400 | 2.97 | <.01    | 2.68 | <.01    | 3.20 | < .01  |         |     |

--- = control mean greater than coronary mean.

Another method of assessing distinguishing ability is by "per cent misclassification". The figure half way between the mean lipid levels of the two groups is obtained and the number of individuals whose values place them on the wrong side of this figure is expressed as a percentage of the total number of men. The results are summarized in Table X. Again, total serum cholesterol, ester cholesterol, free cholesterol, C/P ratio, Std.  $S_t$  0-12 and 0-400 lipoproteins all have approximately equal

TABLE X.—PER CENT MISCLASSIFICATION OF CONTROL AND CORONARY SUBJECTS BY EACH SERUM LIPID FRACTION

| Decade                       | Fourth | Fifth           | Sixth | Seventh | Average  |
|------------------------------|--------|-----------------|-------|---------|----------|
| Total                        |        |                 |       |         |          |
| cholesterol                  | 22%    | 24%             | 27%   | 39%     | 28.0%    |
| Ester                        | /0     | /0              | - 70  |         |          |
| cholesterol                  | 18     | 24              | 33    | 41      | 28.9     |
| Free cholesterol             | 22     | $\overline{22}$ | 25    | 39      | 27.0     |
| C/P ratio                    | 16     | 31              | 36    | 28      | 28.0     |
| Std. Sr 0-12                 | 18     | 22              | 29    | 37      | 26.3     |
| Std. S <sub>f</sub> 0-400    | 20     | 24              | 33    | 39      | 28.8     |
| Std. S. 12-20                | 28     | 41              | 42    |         |          |
| Std. S <sub>f</sub> 20-100   | 30     | 37              | 34    |         |          |
| Std. S <sub>f</sub> 100-400. | 46     | 35              | 25    |         |          |
| Std. S <sub>f</sub> 12-400.  | 36     | 37              | 33    |         |          |
| Phospholipid                 | 26     | 31              | 31    |         |          |
| % free                       | 36     | 25              | 40    | —       | <u> </u> |

-- = control mean greater than coronary mean.

ability to distinguish between control and coronary individuals. The remaining lipid fractions in the bottom half of the table give considerably higher per cent misclassifications. Table X also shows that the distinguishing ability of any serum lipid is highest in the fourth and fifth decades and at best has a 20% error. In the older decades increasing numbers are misclassified (approximately 33% in the seventh).

DISCRIMINANT ANALYSIS BETWEEN CONTROL AND CORONARY SUBJECTS COMBINING TOTAL SERUM CHOLESTEROL, PHOSPHOLIPID AND THE STD. S<sub>f</sub> 0-12, 12-20, 20-100 AND 100-400 LIPOPROTEINS

Discriminant analysis was carried out in an attempt to separate all the subjects into coronary and control groups solely on the basis of their serum lipid and lipoprotein levels. The F values in Table XI show significant discrimination by

TABLE XII.—MISCLASSIFICATION OF CONTROL AND CORONARY SUBJECTS CALCULATED FROM THE DISCRIMINANT FUNCTIONS OF THE SERUM LIPIDS AND LIPOPROTEINS

| Decade                                  | No. of<br>subjects<br>total | No. of<br>variables*       | No. of<br>subjects<br>misclassified |  |  |
|-----------------------------------------|-----------------------------|----------------------------|-------------------------------------|--|--|
| 4                                       | 50                          | 1<br>2<br>3<br>4<br>5<br>6 | 11<br>8<br>9<br>8<br>8<br>8<br>6    |  |  |
|                                         |                             | 2                          | 8                                   |  |  |
|                                         |                             | 3                          | 9                                   |  |  |
|                                         |                             | 4                          | 8                                   |  |  |
|                                         |                             | 5                          | 8                                   |  |  |
|                                         |                             | 6                          | 6                                   |  |  |
| 5                                       | 51                          | 1                          | 12                                  |  |  |
|                                         | -                           | 2                          | 12                                  |  |  |
|                                         |                             | 1<br>2<br>3<br>4<br>5<br>6 | 11                                  |  |  |
|                                         |                             | 4                          | 11                                  |  |  |
|                                         |                             | 5                          | 11                                  |  |  |
|                                         |                             | 6                          | 9                                   |  |  |
| 6                                       | 55                          | 1                          | 15                                  |  |  |
| • • • • • • • • • • • • • • • • • • • • | 00                          | $\tilde{2}$                | 17                                  |  |  |
|                                         |                             | 3                          | 13                                  |  |  |
|                                         |                             | 4                          | 14                                  |  |  |
|                                         |                             | 1<br>2<br>3<br>4<br>5<br>6 | 11                                  |  |  |
|                                         |                             | 6                          | 11                                  |  |  |
| 7                                       | 46                          | 1                          | 18                                  |  |  |
| • • • • • • • • • • • • • • • • • • • • | 10                          | 1<br>2<br>3<br>4<br>5<br>6 | 17<br>15<br>13<br>13                |  |  |
|                                         |                             | 3                          | 15                                  |  |  |
|                                         |                             | 4                          | 13                                  |  |  |
|                                         |                             | 5                          | 13                                  |  |  |
|                                         |                             | ĕ                          | 13                                  |  |  |

2. 3. 4.

Total cholesterol. Total cholesterol + (0-12). Total cholesterol + (0-12) + (12-20). Total cholesterol + (0-12) + (12-20) + (20-100). Total cholesterol + (0-12) + (12-20) + (20-100) + (100-400). Total cholesterol + (0-12) + (12-20) + (20-100) + (100-400) + phose-technicity 6 pholipid.

these combined serum lipid fractions in all decades, even in the seventh. The per cent misclassification of the control and coronary subjects, by using the distributions calculated from the discriminant functions, is also given in the final column of Table XI. In each decade, the per cent misclassification tends to be smaller than that for the indi-

TABLE XI.—DISCRIMINANT ANALYSIS AND PER CENT MISCLASSIFICATION BETWEEN CONTROL AND CORONARY SUBJECTS USING ALL THE SERUM LIPID FRACTIONS\*

| <u></u> |                   | Di                |                              |                               |                                |                                 |                            |                        |
|---------|-------------------|-------------------|------------------------------|-------------------------------|--------------------------------|---------------------------------|----------------------------|------------------------|
| Decade  | T.<br>cholesterol | Phospho-<br>lipid | Std S <sub>f</sub><br>0 - 12 | Std S <sub>1</sub><br>12 - 20 | Std S <sub>f</sub><br>20 - 100 | Std S <sub>f</sub><br>100 - 400 | F                          | %<br>misclassification |
| 4       | 00157             | .00111            | 00008                        | .00038                        | 00027                          | 00020                           | 7.76                       | 12                     |
| 5       | 00043             | .00041            | 00032                        | .00003                        | 00011                          | 00029                           | p < .01<br>5.40            | 18                     |
| 6       | 00036             | .000003           | 00025                        | .00064                        | 00020                          | 00093                           | p < .01<br>5.83            | 20                     |
| 7       | 00087             | .00095            | 00041                        | .00076                        | .00012                         | 00021                           | p < .01<br>2.95<br>p < .05 | 28                     |

\*Log transformation of the data made no significant differences in the results.

vidual serum lipid values previously shown in Table X. Also in each decade, as shown in Table XII, there is a tendency toward progressively improved discrimination with the addition of each serum lipid fraction to the analysis. The data from Tables X, XI and XII indicate that by the use of all the serum lipid fractions, there is some improvement in discrimination between control and coronary subjects, but this improvement over the discrimination by total serum cholesterol alone is not sufficient to offer clinical utility. This is not to say that other serum lipid fractions as yet unmeasured, such as the phospholipid sub-fractions, may not have more practical diagnostic usefulness.

#### TRIGLYCERIDES AND THE SERUM LIPIDS

Albrink, Meigs and Man<sup>50, 51</sup> claimed that fasting serum triglycerides or the triglyceride-containing lipoprotein fractions correlate better with clinical atherosclerosis than does cholesterol or other serum lipids. The evidence on which these conclusions are based is unconvincing.49-53 In one widely quoted study<sup>50</sup> there were changing laboratory methods and incomplete presentation and analysis of data. Although in the present study serum triglycerides are not determined as such, the 100-400 Std. St lipoproteins provide some measure of this fraction, since they comprise a large portion of the total serum triglyceride. It is obvious from Tables IX and X that Std. S<sub>f</sub> 100-400 lipoproteins are not as highly correlated with clinical C.H.D. as is total cholesterol.

In Table XIII, the per cent misclassification of coronary and control subjects is determined from triglyceride and lipoprotein data reported in the literature. The serum triglycerides reported by Albrink<sup>51</sup> and the Std. S<sub>f</sub> 12-400 lipoproteins (containing a large portion of the triglyceride), reported by Gofman et al.,49 provide roughly the same misclassification of subjects as cholesterol, phospholipid and Std. S<sub>f</sub> 0-12 lipoprotein in the present study. It seems likely, therefore, that no one of these fractions has any superior discriminating ability over the other. Obviously, none of them can be considered prognostic or diagnostic for C.H.D. in the individual subject. We agree with a recent editorial opinion<sup>54</sup> that the relative merits of serum cholesterol and serum triglycerides in predicting C.H.D. require additional study. Furthermore, we agree that for an individual patient it is desirable to estimate both total cholesterol and serum triglyceride, since one or other or both fractions may be elevated in various lipid metabolic defects predisposing to atherosclerosis.

It is concluded that serum lipid measurements can discriminate between groups of coronary and non-coronary subjects, but the separation is not sufficiently precise to be diagnostic for the individual. However, in context with the clinical history

TABLE XIII. Per Cent Misclassification in Coronary and Control Subjects from Two Studies in the Literature

|                                                                          | Decade |     |     |      |  |  |  |  |  |
|--------------------------------------------------------------------------|--------|-----|-----|------|--|--|--|--|--|
| Serum fraction, author 4                                                 | 5      | 6   | 7   | 8    |  |  |  |  |  |
| Triglyceride, Albrink <sup>52*</sup> . 19%<br>Std. S <sub>f</sub> 12-400 | 35%    | 28% | 30% | 10%† |  |  |  |  |  |
| lipoprotein,<br>Gofman <i>et al</i> . <sup>49</sup> ‡                    | 33%    | 36% | 46% |      |  |  |  |  |  |

 $^{*}\%$  misclassification calculated around a value half way between the medians in Fig. 1.52

†Only six subjects were present in the coronary group. ‡Calculated from the standard scores.<sup>49</sup>

and findings, the concentrations of the serum lipids are of practical usefulness, especially under age 60. For this purpose, estimation of total serum cholesterol and triglyceride gives a reasonably complete picture of the serum lipids. Finally, it must be recognized that although serum lipoproteins do not appear to be superior to total cholesterol in characterizing coronary groups, the study of lipoproteins is of fundamental importance in understanding lipid metabolism and transport, as emphasized by Gofman and his group.

Correlation of Total Serum Cholesterol to Body Measurements

The reliability of the early investigations of the correlation of lipid levels with body build was limited by the difficulty of physique classification. More recently Gertler and White,<sup>18</sup> employing the Sheldon system of somatotyping in their young coronary patients, found the serum cholesterol to be somewhat higher in the mesomorph (the squared, muscular type). Lawry *et al.*<sup>15</sup> concluded that the trend of serum lipid levels to rise with age was partly attributable to fattening with age.

In this study an attempt was made to determine whether, in coronary heart disease, the body measurements taken in "routine" clinical practice could be related to the level of serum cholesterol. The following measurements were recorded on all subjects: (1) height (without shoes, to the nearest half-inch), (2) chest circumference (midsternal level, midway between inspiration and expiration, to the nearest half-inch), (3) weight (in underclothes, to the nearest half-pound). A heightweight index and body build index were calculated as previously described.<sup>5</sup>

The data for these body measurements have been presented previously.<sup>1</sup> In each decade, the average height of the coronary patients was approximately 67.3 (S.E., .5) inches and the average chest circumference approximately 38.0 (S.E., .4) inches. The average weight was 167 pounds in the fourth decade, decreasing progressively to 156 in the seventh (S.E. approximately 4.0). It must be emphasized that the variations within groups are small.

For each decade, correlation coefficients were computed between total serum cholesterol on the one hand and the three body measurements and two body indices on the other. None was significant.

In this coronary group, as in the healthy group,<sup>5</sup> there was no demonstrable relation of total serum cholesterol to body height, chest circumference, weight, *height-weight* index or *body build* index.

Correlation of Total Serum Cholesterol to Physical Activity

The traditional view, based on little scientific evidence, has been that physical activity, by increasing "wear and tear", was at least an aggravating factor in coronary atherosclerosis. Recently,<sup>55, 56</sup> C.H.D. has been found to more prevalent in the sedentary than among those actively engaged. In our study, however, C.H.D. was associated with habitually greater physical activity.<sup>1</sup>

The degree of activity (minimal, moderate, most) at the time of investigation was assessed in the coronary patients. An analysis of variance demonstrated no significant association with the level of serum total cholesterol in any decade.

The practice of noting the subject's last occupation rather than his usual one may lead to fallacious conclusions. This is especially true in C.H.D., where many patients have their activity restricted. Accordingly, "life-long" activity of the patients was considered and classified. Again, there was no association between serum cholesterol and degree of physical activity. In this sample of C.H.D. patients then, as in the healthy group,<sup>5</sup> there was no demonstrable relationship between the level of total serum cholesterol and physical activity, either present or life-long. The possibilities remain that greater amounts of exercise than were found in this group may lower fasting lipids, or that exercise lowers the postprandial serum lipid peaks.

CORRELATION OF TOTAL SERUM CHOLESTEROL AND FAMILY HISTORY OF C.H.D.

An attempt was made to determine whether the familial tendency to C.H.D. could be associated with the level of serum cholesterol. A detailed family history with particular reference to presence of C.H.D. was obtained by direct questioning of each coronary patient. In instances where information was of doubtful validity no record was made. The data for the incidence of C.H.D. in aunts and uncles were too unreliable, and those for the siblings, grandparents and mothers too few in number, to warrant analysis. Table XIV contrasts the cholesterol levels of the coronary patients with

| TABLE XIV.—SERUM TOTAL CHOLESTEROL (MEAN, mg.%)     |
|-----------------------------------------------------|
| RELATED TO HISTORY OF C.H.D. IN FATHERS OF CORONARY |
| PATIENTS                                            |

| Decade  |    |    | Positive    |    | Negative    | Difference<br>between |  |  |
|---------|----|----|-------------|----|-------------|-----------------------|--|--|
|         | n  | n  | Cholesterol | n  | Cholesterol | veiween<br>means      |  |  |
| Fourth  | 25 | 12 | 281.4       | 10 | 281.7       | n.s.                  |  |  |
| Fifth   | 26 | 11 | 264.3       | 13 | 259.6       | n.s.                  |  |  |
| Sixth   | 28 | 6  | 229.8       | 18 | 260.5       | n.s.                  |  |  |
| Seventh | 23 | 2  | 223.0       | 17 | 227.9       | n.s.                  |  |  |

n.s. = not significant.

and without fathers who had C.H.D. There were no significant differences.

C.H.D. is often familial and often associated with hypercholesterolemic states; the level of the serum lipids is genetically influenced. It was expected, therefore, that higher serum cholesterol levels would be demonstrated in patients with a positive family history. The failure to do so may be due to the fact that the mechanisms of the familial occurrence of C.H.D. may be so varied<sup>1</sup> that it would require much larger numbers to show a relationship to serum lipid values clearly.

#### SUMMARY AND CONCLUSIONS

Serum total, free and ester cholesterol, phospholipid, C/P ratio and standard (Std.)  $S_f$  0-400 lipoprotein fractions were determined in 102 male survivors of myocardial infarction evenly distributed from the fourth to the seventh decades. All had atherosclerosis of the "essential" type, that is, not accompanied by high blood pressure or any disease associated with secondary hypercholesterolemia. A hundred men from the same general population, found to be clinically healthy, were matched by age as controls.

In the coronary group, the distributions of all the lipid fractions were lognormal. All the serum lipids were significantly elevated above normal. The maximum elevations occurred in the fourth decade; the concentration of all the fractions then progressively decreased to the seventh decade, where they no longer differed significantly from the controls. The decrease in serum cholesterol with age was 15.4 mg. % per decade. This decrease may be attributed to three facts: (1) The higher the serum cholesterol level, the younger the age of onset of clinical coronary heart disease (C.H.D.). (2) Subsequent to the onset of C.H.D., the high mortality, which is nearly equal in each decade, means that most coronary patients, including the young ones with high cholesterol levels, die before entering the next decade. (3) In individual survivors of a myocardial infarct repeated determinations of serum cholesterol over a five- to seven-year period showed an average decline in serum cholesterol of 1.3 mg. % per year.

As in health, the percentage free to total serum cholesterol was a variable with a small dispersion from the mean of 28.

As in health, the imperfect correlation between total serum cholesterol and phospholipid produced a

spurious correlation between the C/P ratio and total serum cholesterol. Since serum phospholipid but not cholesterol rises significantly following a fatty meal, the C/P ratio must be studied in the postabsorptive state.

As in health, the correlation of serum cholesterol with lipoproteins was greatest for the Std. S<sub>f</sub> 0-12 fraction (r = .71) and progressively decreased for the other fractions, Std. S<sub>f</sub> 12-20, 20-100 and 100-400.

As in health, the correlation of phospholipid with the lipoproteins was similar for each fraction (approximately .5).

In C.H.D., then, there is no abnormality in the relationship of the various cholesterol, phospholipid and lipoprotein fractions to one another.

Total serum cholesterol and Std. S<sub>f</sub> 0-12 and 0-400 lipoproteins have approximately equal ability to separate coronary and non-coronary subjects. The separation is best in the fourth decade (20% misclassification) and decreases progressively to the seventh (33% misclassification). The C/P ratio provides no improvement in discrimination and its use should be abandoned.

The discriminating ability of the triglyceride-containing Std. S<sub>f</sub> 100-400 lipoprotein fraction was not nearly so good as that of total cholesterol or as that of the cholesterol-containing Std.  $S_f$  0-12.

Using all the lipid and lipoprotein fractions in a discriminant analysis improved the separation of these coronary and non-coronary subjects. In the fourth decade the misclassification was only 12%.

Because of comparative accuracy and cheapness, the determination of total serum cholesterol remains the single best screening test for the presence of hyperlipidemia. When combined with estimation of triglycerides it is probable that most of the important serum lipid disturbances will be detected. Quantitative lipoprotein fractionation, while relatively impractical, remains an important research method.

In the coronary group there was no demonstrable relationship of total serum cholesterol to body measurements (weight, height, chest circumference, heightweight index, body build index) to physical activity (past or present) or to family history of C.H.D. However, the variations of these factors within the group were relatively small.

Finally, it should be cautioned that the patients in this retrospective study were highly selected ("essential" atherosclerosis, equal numbers in each decade, etc.). The results, therefore, while showing the relationship of serum lipids to C.H.D. in the absence of other variables, need not necessarily apply to the general coronary population in every respect.

The continued support of Professor R. Ian Macdonald is gratefully acknowledged. The biochemical determinations were done by Mrs. C. Radecka, M.A.; the lipoproteins by the University of McGill Ultracentrifuge Laboratory under the direction of Dr. R. F. Robertson; Dr. E. A. Murphy, Professor D. B. W. Reid and Mrs. A. Csima contributed to the statistical analysis. We are sincerely thankful to our excellent secretary, Miss Ruth Yano.

#### REFERENCES

- 1. SHANOFF, H. M. et al.: Canad. Med. Ass. J., 84: 519, 1961.
- 2. LITTLE, J. A. et al.: Circulation, 10: 585, 1954 (abstract).
- 3. Idem: Ibid., 14: 500, 1956 (abstract).
- 4. LITTLE, J. A. AND SHANOFF, H. M.: Ibid., 16: 482, 1957 (abstract).
- LITTLE, J. A., VAN DER FLIER, R. W. AND SHANOFF, H. M.: Canad. Med. Ass. J., 86: 1045, 1962.
   BIÖRCK, G., BLOMQVIST, G. AND SIEVERS, J.: Acta Med. Scand., 156: 493, 1957.
- 7. Dodds, C. AND MILLS, G. L.: Lancet, 1: 1160, 1959.
- 8. SPERRY, W. M. AND WEBB, M.: J. Biol. Chem., 187: 97, 1950. 9. ZILVERSMIT, D. B. AND DAVIS, A. K.: J. Lab. Clin. Med., 35: 155, 1950.
- DE LALLA, O. F. AND GOFMAN, J. W.: Ultracentrifugal analysis of serum lipoproteins. In: Methods of bio-chemical analysis, vol. 1, edited by D. Glick, Inter-science Publishers, Inc., New York, 1954, p. 459.
- 11. CASSIDY, M.: Lancet, 2: 587, 1946.
- LITTLE, J. A.: Lancet, 2: 587, 1946.
   LITTLE, J. A.: Canad. Med. Ass. J., 83: 1202, 1960.
   DAVIS, D., STERN, B. AND LESNICK, G.: Ann. Intern. Med., 11: 354, 1937.
   OLIVER, M. F. AND BOYD, G. S.: Brit. Heart J., 15: 387, 1953.
- 15. LAWRY, E. Y. et al.: Amer. J. Med., 22: 605, 1957.
- 16. HUNTER, J. D.: New Zeal. Med. J., 60: 235, 1961.
- 17. GERTLER, M. M., GARN, S. M. AND LERMAN, J.: Circula-tion, 2: 205, 1950.
- GERTLER, M. M. AND WHITE, P. D.: Coronary heart disease in young adults, Harvard University Press, Cambridge, Mass., 1954.
- WHITE, N. K., EDWARDS, J. E. AND DRY, T. J.: Circulation, 1: 645, 1950.
- PATERSON, J. C., DYER, L. AND ARMSTRONG, E. C.: Canad. Med. Ass. J., 82: 6, 1960.
- 21. OLIVER, M. F.: Scot. Med. J., 3: 225, 1958.
- 22. HOOD, B. AND ANGERVALL, G.: Amer. J. Med., 26: 30, 1959.
- ROE, R. D., LITTLE, A. AND SHANOFF, H. M.: Circulation, 22: 800, 1960 (abstract).
- 24. LITTLE, J. A. AND SHANOFF, H. M.: Unpublished observa-tions.
- tions.
   PETERS, J. P. AND VAN SLYKE, D. D.: Quantitative clinical chemistry, vol. 1, 2nd ed., Williams and Wilkins Company, Baltimore, 1946, p. 472.
   STEINER, A., KENDALL, F. E. AND MATHERS, J. A. L.: Circulation, 5: 605, 1952.
   MORRISON, L. M., GONZALEZ, P. AND WOLFSON, E.: Ibid., 2: 472, 1950.

- JACKSON, R. S. AND WILKINSON, C. F., JR.: J. Amer. Geriat. Soc., 1: 447, 1953.
   ADLERSBERG, D. et al.: J. A. M. A., 162: 619, 1956.
- 30. PEARSON, K.: Proc. Roy. Soc., 60: 489, 1897.
- LINDGREN, F. T., NICHOLS, A. V. AND FREEMAN, N. K.: Journal of Physical Chemistry, 59: 930, 1955.
- HAVEL, R. J., EDER, H. A. AND BRAGDON, J. H.: J. Clin. Invest., 34: 1345, 1955.
- 33. CORNWELL, D. G. AND KRUGER, F. A.: J. Lipid Res., 2: 110, 1961.
- KEYS, A.: J. A. M. A., 147: 1514, 1951.
   GOFMAN, J. W. et al.: Circulation, 2: 161, 1950.
- DEWIND, L. T., MICHAELS, G. D. AND KINSELL, L. W.: Ann. Intern. Med., 37: 344, 1952.
- GOFMAN, J. W. et al.: Science, 111: 166, 1950.
   JONES, H. B. et al.: Amer. J. Med., 11: 358, 1951.
- GOFMAN, J. W. et al.: Mod. Med. (Minneap.), June 15, 1953, p. 119.
   GOFMAN, J. W.: Industr. Med. Surg., 24: 151, 1955.
- 41. LYON, T. P. et al.: Calif. Med., 84: 325, 1956.
- PATERSON, J. C., CORNISH, B. R. AND ARMSTRONG, E. C.: Circulation, 13: 224, 1956.
   Committee on Lipoproteins and Atherosclerosis, Technical Group, and National Advisory Heart Council, Com-mittee on Lipoproteins and Atherosclerosis: *Ibid.*, 14: 691, 1956, Part 2.
   Dourg, J. T. et al., Chronic Die, 6: 20, 1057.
- 44. DOYLE, J. T. et al.: J. Chronic Dis., 6: 33, 1957.
- 45. LOWY, A. D., JR. AND BARACH, J. H.: Circulation, 17: 14, 1958.
- 46. SCHLESSINGER, B. S. et al.: Ibid., 19: 265, 1959.
- Schlessinder, B. S. et al.: Join., 19: 265, 1959.
   MATTINGLY, T. W. et al.: J. A. M. A., 170: 536, 1959.
   Rivin, A. U., Wong, H. And Yoshino, J.: Amer. J. Cardiol., 5: 784, 1960.
   GOFMAN, J. W. et al.: Physiol. Rev., 34: 589, 1954.
- 50. ALBRINK, M. J., MEIGS, J. W. AND MAN, E. B.: Amer. J. Med., 31: 4, 1961. 51. ALBRINK, M. J.: Arch. Intern. Med. (Chicago), 109: 345, 1962
- 52. CARLSON, L. A.: Acta Med. Scand., 167: 377, 1960.
- 53. SCHRADE, W., BOEHLE, E. AND BIEGLER, R.: Lancet, 2: 1409, 1960.
- 1409, 54. HAVEL, R. J. AND CARLSON, L. A.: Metabolism, 11: 195, 1962.
- MORRIS, J. N. et al.: Lancet, 2: 1053, 1111, 1953.
   BENTON, J. G. AND RUSK, H. A.: Ann. Intern. Med., 41: 910, 1954.

APPENDIX—Serum Lipid Fractionation (mg.%) in Canadian Males with C.H.D.

|                | G4              |             |       | Chole | sterol |          | DL                | C/P          | STD. Sf lipoproteins |       |         |         |       |  |
|----------------|-----------------|-------------|-------|-------|--------|----------|-------------------|--------------|----------------------|-------|---------|---------|-------|--|
|                | Study<br>No.    | Age         | Total | Ester | Free   | % free   | Phospho-<br>lipid | c/P<br>ratio | 0-12                 | 12-20 | 20-100  | 100-400 | 0-400 |  |
|                |                 |             |       |       | Fou    | rth deca | de                |              |                      |       |         |         |       |  |
| 1              | 11              | 38          | 328   | 231   | 97     | 29.6     | 342               | 0.959        | 511                  | 84    | 94      | 17      | 706   |  |
| 2              | 38              | 35          | 265   | 177   | 88     | 33.2     | <b>284</b>        | 0.933        | 177                  | 101   | 285     | 88      | 651   |  |
| 3              | 51              | 30          | 235   | 172   | 62     | 26.6     | 217               | 1.083        | 344                  | 38    | 51      | 14      | 447   |  |
| 4              | 61              | 37          | 348   | 252   | 96     | 27.2     | 369               | 0.943        | 417                  | 177   | 168     | 84      | 846   |  |
| 5              | 86              | 39          | 298   | 213   | 85     | 28.6     | 315               | 0.946        | 391                  | 98    | 116     | 46      | 651   |  |
| 6              | 89              | 33          | 239   | 169   | 70     | 29.4     | <b>244</b>        | 0.979        | 398                  | 83    | 104     | 51      | 636   |  |
| 7              | 92              | 38          | 350   | 249   | 101    | 28.9     | 306               | 1.142        | 587                  | 53    | 68      | 30      | 738   |  |
| 8              | 93              | 39          | 354   | 242   | 112    | 31.8     | 389               | 0.910        | 568                  | 88    | 240     | 271     | 1167  |  |
| 9              | 95              | 33          | 283   | 203   | 80     | 28.3     | 277               | 1.020        | 499                  | 101   | 133     | 83      | 816   |  |
| 10             | 99              | 39          | 253   | 182   | 71     | 28.0     | 293               | 0.864        | 383                  | 69    | 133     | 110     | 695   |  |
| 11             | 100             | 34          | 271   | 197   | 75     | 27.7     | 283               | 0.957        | 404                  | 80    | 189     | 104     | 777   |  |
| 12             | 104             | 39          | 230   | 165   | 65     | 28.3     | 233               | 0.986        | 391                  | 60    | 71      | 28      | 550   |  |
| 13             | 107             | 35          | 222   | 158   | 64     | 28.6     | 232               | 0.956        | 275                  | 54    | 73      | 62      | 464   |  |
| 14             | 112             | 39          | 300   | 213   | 87     | 29.0     | 308               | 0.975        | 473                  | 88    | 159     | 78      | 798   |  |
| 15             | 113             | 38          | 252   | 184   | 68     | 27.0     | 245               | 1.029        | 392                  | 75    | 118     | 38      | 623   |  |
| 16             | 115             | 39          | 421   | 293   | 128    | 31.2     | 352               | 1.169        | 774                  | 119   | 104     | 24      | 1021  |  |
| 17             | 117             | 32          | 255   | 184   | 71     | 27.9     | 279               | 0.915        | 306                  | 65    | 104     | 60      | 535   |  |
| 18             | 120             | 33          | 250   | 197   | 53     | 21.3     | 219               | 1.140        | 333                  | 48    | 54      | 3       | 438   |  |
| 19             | 122             | 34          | 316   | 228   | 88     | 27.8     | 281               | 1.122        | 649                  | 92    | 129     | 17      | 887   |  |
| 20             | 124             | 38          | 319   | 224   | 96     | 29.9     | 307               | 1.039        | 552                  | 112   | 103     | 24      | 791   |  |
| 21             | 131             | 39          | 226   | 159   | 67     | 29.8     | 290               | 0.779        | 374                  | 41    | 163     | 69      | 647   |  |
| 22             | 135             | 39          | 240   | 163   | 77     | 32.1     | 299               | 0.803        | 357                  | 63    | 134     | 46      | 600   |  |
| 23             | 136             | 36          | 216   | 148   | 68     | 31.2     | 222               | 0.974        | 339                  | 16    | 17      | 0       | 372   |  |
| 24             | 137             | 34          | 292   | 206   | 86     | 29.4     | 299               | 0.976        | 426                  | 68    | 181     | 175     | 850   |  |
| 25             | 138             | 37          | 210   | 150   | 60     | 28.5     | <b>221</b>        | 0.950        | 336                  | 11    | 69      | 17      | 433   |  |
| Geometric mean |                 |             | 274.4 | 195.2 | 78.9   |          | 280.4             |              | 408.4                | 66.0  | 0 106.9 | 37.8    | 660.  |  |
|                |                 |             | 192.3 | 137.2 | 52.2   |          | 202.2             |              | 226.0                | 20.5  | 5 34.3  | 3.5     | 378.  |  |
| 95% limits     | • • • • • • • • | • • • • • • | 391.7 | 277.9 | 119.2  |          | 389.1             |              | 738.1                | 212.0 |         |         | 1150. |  |

APPENDIX—Serum Lipid Fractionation (mg.%) in Canadian Males with C.H.D.

|                   | <i>a</i> , 1 |           |            | Chole | sterol    |          | Dhamha            | C/P          |            | STD.      | S <sub>f</sub> lipop | roteins   |            |
|-------------------|--------------|-----------|------------|-------|-----------|----------|-------------------|--------------|------------|-----------|----------------------|-----------|------------|
| Number            | Study<br>No. | Age       | Total      | Ester | Free      | % free   | Phospho-<br>lipid | C/P<br>ratio | 0-12       | 12-20     | 20-100               | 100-400   | 0-400      |
|                   |              |           |            |       | Fif       | th decad | le                |              |            |           |                      |           |            |
| 1                 | 2            | 47        | <b>248</b> | 175   | 73        | 29.5     | 302               | 0.821        | 529        | <b>28</b> | 99                   | <b>56</b> | 712        |
| 2                 | 5            | 47        | 250        | 179   | 71        | 28.2     | <b>26</b> 1       | 0.958        | 415        | 47        | 106                  | 40        | 608        |
| 3                 | <b>34</b>    | 48        | 259        | 184   | 75        | 28.8     | <b>288</b>        | 0.899        | 368        | <b>54</b> | 130                  | 57        | 609        |
| 4                 | 43           | 43        | 266        | 190   | 76        | 28.6     | 269               | 0.875        | <b>314</b> | 63        | 137                  | 84        | 598        |
| 5                 | <b>45</b>    | <b>43</b> | <b>294</b> | 210   | 84        | 28.6     | <b>294</b>        | 1.000        | 330        | 94        | 269                  | 64        | 757        |
| 6                 | 48           | 49        | 289        | 207   | 82        | 28.4     | <b>272</b>        | 1.062        | 386        | 83        | 105                  | 12        | 586        |
| 7                 | 64           | 48        | <b>244</b> | 174   | 70        | 28.5     | 270               | 0.903        | 350        | 30        | <b>62</b>            | 49        | 491        |
| 8                 | 83           | 44        | 238        | 170   | 68        | 28.6     | 292               | 0.815        | 317        | <b>58</b> | 37                   | 9         | 421        |
| 9                 | 91           | 47        | 304        | 223   | 81        | 26.5     | <b>284</b>        | 1.070        | <b>594</b> | 109       | 174                  | 63        | 940        |
| 10                | 101          | 43        | 257        | 184   | 73        | 28.4     | 275               | 0.934        | 376        | 104       | 116                  | 47        | 643        |
| 11                | 105          | <b>42</b> | <b>254</b> | 182   | <b>72</b> | 28.3     | 252               | 1.008        | 432        | 124       | 99                   | 17        | 672        |
| 12                | 106          | 49        | 326        | 222   | 104       | 31.9     | 333               | 0.979        | 564        | 93        | 184                  | 95        | 936        |
| 13                | 108          | 40        | <b>254</b> | 190   | 64        | 25.4     | 283               | 0.893        | 383        | 84        | 86                   | 41        | <b>594</b> |
| 14                | 109          | 46        | 280        | 200   | 80        | 28.4     | 311               | 0.900        | 464        | 78        | 193                  | 154       | 889        |
| 15                | 110          | 42        | 214        | 154   | 60        | 28.3     | <b>248</b>        | 0.863        | 297        | 69        | 103                  | 17        | 486        |
| 16                | 111          | 44        | 226        | 159   | 67        | 29.6     | 251               | 0.900        | 404        | 63        | 157                  | 68        | 692        |
| 17                | 119          | <b>45</b> | 263        | 188   | 75        | 28.4     | 264               | 0.995        | <b>424</b> | 41        | 69                   | 3         | 537        |
| 18                | 121          | <b>42</b> | 291        | 211   | 80        | 27.6     | 299               | 0.973        | <b>544</b> | 73        | 63                   | 3         | 683        |
| 19                | 123          | 49        | 258        | 180   | 78        | 30.2     | 296               | 0.872        | 415        | 83        | 155                  | 39        | 692        |
| 20                | 126          | 45        | 231        | 169   | 62        | 26.8     | 255               | 0.907        | 376        | 39        | 71                   | <b>28</b> | 514        |
| 21                | 127          | 41        | 273        | 202   | <b>72</b> | 26.2     | 266               | 1.027        | 476        | 53        | <b>45</b>            | 0         | 574        |
| 22                | 128          | 48        | 228        | 160   | 68        | 29.8     | 257               | 0.888        | 383        | 84        | 103                  | <b>32</b> | 602        |
| 23                | 129          | 40        | <b>284</b> | 192   | 92        | 32.5     | 336               | 0.846        | 298        | <b>32</b> | 213                  | 297       | 840        |
| 24                | 130          | 42        | 200        | 140   | 60        | 29.9     | 268               | 0.747        | 208        | 43        | 267                  | 282       | 800        |
| 25                | 132          | 40        | 337        | 237   | 100       | 29.9     | 321               | 1.050        | 656        | <b>32</b> | 112                  | 0         | 800        |
| 26                |              | 43        | 248        | 176   | 72        | 29.2     | <b>245</b>        | 1.011        | 303        | 67        | 69                   | 11        | 450        |
| Geometric mean    |              |           | 260.3      | 185.5 | 74.6      |          | 279.4             |              | 395.5      | 61.2      | 2 109.9              | 27.8      | 643.       |
| 0507 1:           |              |           | 204.7      | 145.9 | 57.0      |          | 234.4             |              | 240.1      | 26.6      | 3 40.5               | 5 1.5     | 419.       |
| <b>95%</b> limits |              |           | 330.9      | 235.8 | 97.8      |          | 332.9             |              | 651.4      | 141.0     | 298.2                | 2 525.7   | 988.       |

| APPENDIX—Serum Lipid Fractionatio | N (mg.%) IN CANADIAN MALES WITH C.H.D. |
|-----------------------------------|----------------------------------------|
|-----------------------------------|----------------------------------------|

|                                       | Study         |             |            | Chole | esterol      |              | Phospho-   | C/P      |       | $S_{TD}$ . | $S_f$ lipopr | oteins       |              |
|---------------------------------------|---------------|-------------|------------|-------|--------------|--------------|------------|----------|-------|------------|--------------|--------------|--------------|
| Number                                | No.           | Age         | Total      | Ester | Free         | % free       | lipid      | ratio    | 0-12  | 12-20      | 20-100 1     | 00-400       | 0-400        |
| · · · · · · · · · · · · · · · · · · · |               |             |            |       | Si           | xth decad    | le         | <i>i</i> |       |            |              |              |              |
| 1                                     | 1             | <b>54</b>   | <b>274</b> | 202   | <b>72</b>    | 26.4         | 292        | 0.938    | 463   | 90         | 120          | 130          | 803          |
| 2                                     | 4             | 56          | 293        | 203   | 88           | 29.9         | 332        | 0.882    | 413   | 84         | 200          | 1 <b>2</b> 0 | 817          |
| 3                                     | 10            | 52          | 312        | 227   | 85           | 27.4         | 365        | 0.854    | 433   | 63         | 187          | 111          | 794          |
| 4                                     | 15            | 59          | 183        | 127   | 56           | 30.4         | 234        | 0.781    | 201   | 43         | 151          | 78           | 473          |
| 5                                     | 17            | 58          | 248        | 168   | 80           | <b>32</b> .0 | 278        | 0.891    | 345   | 64         | 152          | 77           | 638          |
| 6                                     | 18            | 51          | 173        | 122   | 51           | 29.3         | 275        | 0.628    | 223   | 40         | 129          | 82           | 474          |
| 7                                     | 28            | 55          | 344        | 250   | 94           | 27.4         | 325        | 1.060    | 377   | 77         | 154          | 95           | 703          |
| 8                                     | 40            | 58          | 248        | 177   | 71           | 28.4         | 250        | 0.991    | 309   | 40         | 40           | 6            | 395          |
| 9                                     | 42            | 57          | 208        | 146   | 62           | <b>29</b> .8 | 244        | 0.852    | 313   | 74         | 116          | 61           | 564          |
| 10                                    | 49            | 56          | 252        | 184   | 68           | 27.0         | 251        | 1.000    | 326   | <b>25</b>  | 48           | 12           | 411          |
| 11                                    | 52            | 51          | 294        | 209   | 85           | <b>29</b> .0 | 280        | 1.050    | 334   | 48         | 53           | 24           | 459          |
| 12                                    | 53            | 56          | <b>264</b> | 188   | 76           | 28.9         | 269        | 0.980    | 331   | 55         | 118          | 74           | 578          |
| 13                                    | <b>54</b>     | 56          | 242        | 168   | 74           | 30.8         | 285        | 0.849    | 362   | 89         | 79           | 20           | 550          |
| 14                                    | 55            | 59          | 232        | 166   | 66           | 28.6         | 304        | 0.762    | 280   | 47         | 98           | 10           | 435          |
| 15                                    | 57            | 56          | 212        | 146   | 66           | 31.0         | 286        | 0.740    | 392   | 94         | 197          | 57           | 740          |
| 16                                    | 58            | 58          | 204        | 144   | 60           | 29.2         | 252        | 0.810    | 350   | 42         | 68           | 18           | 478          |
| 17                                    | 62            | 56          | 185        | 137   | 48           | 25.7         | 218        | 0.849    | 345   | 33         | 57           | 32           | 467          |
| 18                                    | 63            | 52          | 235        | 173   | 62           | 26.4         | 238        | 0.988    | 313   | 61         | 100          | 28           | 502          |
| 19                                    | 66            | 58          | 240        | 177   | 63           | 26.1         | 245        | 0.980    | 382   | 53         | 133          | 71           | 639          |
| 20                                    | 69            | 55          | 308        | 224   | 84           | 27.2         | 308        | 1.000    | 407   | 101        | 235          | 124          | 867          |
| 21                                    | 70            | 52          | 234        | 161   | 73           | 31.0         | 262        | 0.882    | 391   | 61         | 101          | 61           | 614          |
| 22                                    | 74            | 55          | 179        | 127   | 52           | 29.0         | 207        | 0.865    | 262   | 42         | 69           | 30           | 403          |
| 23                                    | 76            | 55          | 213        | 150   | 63           | 29.8         | <b>248</b> | 0.859    | 300   | 23         | 74           | 12           | 409          |
| 24                                    | 78            | <b>54</b>   | 284        | 203   | 81           | 28.4         | 285        | 1.000    | 347   | 75         | 104          | 56           | 582          |
| 25                                    | 80            | 57          | 330        | 237   | 93           | 28.0         | 311        | 1.060    | 301   | 69         | 119          | 74           | 563          |
| 26                                    | 81            | 54          | 252        | 170   | 82           | 32.3         | 287        | 0.877    | 318   | 66         | 52           | 59           | 495          |
| 27                                    | 85            | 54          | 308        | 215   | 93           | 30.2         | 306        | 1.010    | 437   | 86         | 84           | 21           | 628          |
| 28                                    | 90            | 59          | 250        | 174   | 76           | 30.2         | 246        | 1.020    | 348   | 45         | 47           | 14           | 454          |
| Geometric mean                        |               |             | 245.8      | 174.4 | 71.1         |              | 272.1      |          | 337.3 | 56.4       | 98.7         | 41.1         | 553.         |
| OF 07 limits                          |               |             | 169.6      | 118.9 | <b>49</b> .2 |              | 210.7      |          | 232.4 | 26.3       | 38.0         | 7.5          | <b>349</b> . |
| 95% limits                            | • • • • • • • | • • • • • • | 356.1      | 255.9 | 102.7        |              | 351.5      |          | 489.6 | 120.8      | 256.4        | 225.8        | 877.         |

APPENDIX—Serum Lipid Fractionation (mg.%) in Canadian Males with C.H.D.

|                |                 |             |             | Chole       | sterol    | <u> </u>     | <del></del> |       | STD. Sf lipoproteins |           |           |         |             |  |
|----------------|-----------------|-------------|-------------|-------------|-----------|--------------|-------------|-------|----------------------|-----------|-----------|---------|-------------|--|
|                | Study           |             |             |             |           |              | Phospho-    | C/P   |                      |           |           |         |             |  |
| Number         | No.             | Age         | Total       | Ester       | Free      | % free       | lipid       | ratio | 0-12                 | 12-20     | 20-100    | 100-400 | 0-40        |  |
|                |                 |             |             |             | Sev       | enth deca    | de          |       |                      |           |           |         |             |  |
| 1              | 3               | 67          | 210         | 150         | 60        | 28.8         | 299         | 0.702 | 353                  | 56        | 69        | 27      | 505         |  |
| 2              | 7               | 68          | 236         | 171         | 65        | 27.4         | 257         | 0.918 | 381                  | 56        | 46        | 35      | 518         |  |
| 3              | 9               | 61          | 271         | 181         | 90        | 33.2         | 307         | 0.883 | 328                  | 80        | 228       | 160     | 796         |  |
| 4              | 16              | 68          | <b>224</b>  | 159         | 65        | 29.2         | 253         | 0.885 | 342                  | <b>25</b> | 59        | 31      | 45          |  |
| 5              | 20              | 63          | 214         | 155         | 59        | 27.6         | 227         | 0.943 | 282                  | 17        | 34        | 7       | 34(         |  |
| 6              | 24              | 66          | 198         | 145         | 53        | 26.7         | 222         | 0.892 | 353                  | 46        | 53        | 35      | 487         |  |
| 7              | <b>25</b>       | 64          | 260         | 189         | 71        | 27.2         | 313         | 0.831 | 313                  | 18        | 18        | 6       | 355         |  |
| 8              | 27              | 62          | 199         | 144         | 55        | 27.6         | 248         | 0.802 | 297                  | 42        | 44        | 4       | 387         |  |
| 9              | 29              | 63          | 214         | 158         | 56        | 26.4         | <b>245</b>  | 0.872 | 312                  | 40        | 104       | 27      | 483         |  |
| 10             | 33              | 64          | 313         | 216         | 97        | 30.8         | 314         | 1.000 | 324                  | 67        | 76        | 14      | 481         |  |
| 11             | 35              | 62          | 236         | 165         | 71        | 30.2         | 239         | 0.987 | 306                  | 96        | 110       | 29      | 541         |  |
| 12             | 36              | 61          | 239         | 169         | 70        | <b>29</b> .4 | 252         | 0.947 | 301                  | 42        | 72        | 30      | 445         |  |
| 13             | 37              | 68          | 179         | 125         | <b>54</b> | 30.0         | 199         | 0.900 | 291                  | 38        | 95        | 12      | 436         |  |
| 14             | 44              | 67          | 263         | 191         | 72        | 27.2         | 285         | 0.923 | 395                  | 71        | 67        | 13      | 546         |  |
| 15             | 59              | 67          | <b>2</b> 41 | 171         | 70        | <b>29</b> .0 | 239         | 1.010 | 321                  | <b>42</b> | <b>54</b> | 20      | 437         |  |
| 16             | 65              | 63          | 275         | <b>20</b> 1 | 74        | 27.1         | 280         | 0.982 | 353                  | 66        | 121       | 48      | 588         |  |
| 17             | 67              | 64          | <b>264</b>  | 188         | 76        | 28.9         | <b>265</b>  | 0.996 | 413                  | 50        | 85        | 49      | 597         |  |
| 18             | 71              | 64          | 191         | 133         | 58        | 30.1         | 228         | 0.837 | 248                  | 45        | 62        | 17      | 372         |  |
| 19             | 73              | 65          | 280         | 213         | 67        | 23.8         | 232         | 1.200 | 375                  | 62        | 53        | 30      | 520         |  |
| 20             | 75              | 60          | 232         | 171         | 61        | <b>26</b> .2 | 283         | 0.820 | 467                  | 37        | 66        | 38      | 608         |  |
| 21             | 77              | <b>62</b>   | 169         | 125         | 44        | 26.0         | 206         | 0.820 | 198                  | 20        | 26        | 12      | 256         |  |
| 22             | 79              | 61          | 202         | 140         | 62        | 30.8         | 244         | 0.828 | 285                  | 42        | 48        | 12      | 387         |  |
| 23             | 82              | 69          | 210         | 148         | <b>62</b> | 29.4         | 238         | 0.882 | <b>284</b>           | 38        | 18        | 4       | <b>34</b> 4 |  |
| Geometric mean |                 |             | 228.6       | 163.6       | 64.8      |              | 253.4       |       | 322.2                | 43.5      | 59.5      | 19.9    | 460         |  |
| 050/ 1::       |                 |             | 168.7       | 120.5       | 46.1      |              | 197.5       |       | 227.1                | 17.9      | 18.8      | 3.6     | 285         |  |
| 95% limits     | • • • • • • • • | • • • • • • | 309.9       | 222.2       | 91.0      |              | 325.3       |       | 457.2                | 105.9     | 188.2     |         | 741         |  |