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Human Immunodeficiency Virus Type 2 Envelope Glycoprotein Binds
to CD8 as Well as to CD4 Molecules on Human T Cells
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We report here that human immunodeficiency virus type 2 (HIV-2) envelope glycoprotein (gp105), but not
HIV-1 gp120, can bind to CD8 molecules as well as to CD4 molecules on human T cells. This phenomenon may
lead to differences in the life cycles of HIV-1 and HIV-2, and it may be related to the differences in disease
manifestations of HIV-1 and HIV-2 infection, including longer survival of HIV-2-infected patients.

Human immunodeficiency virus type 2 (HIV-2), the second
AIDS-associated human retrovirus, was isolated and found to
be quite common in west Africa (17, 25), and its molecular
structure is more closely related to simian immunodeficiency
virus (SIV), a nonhuman primate retrovirus, than to the first
described human AIDS virus (HIV-1) (5). Due to the more
restricted geographic spread, reduced transmission rate, and
lower disease potential of this virus (2, 17, 25, 26), both basic
and clinical research on HIV-2 have been less extensive than
research on HIV-1, which is more widespread. Because HIV-2
differs from HIV-1 with respect to its biological and molecular
behaviors, as well as its genomic structure, it may not be ap-
propriate to apply the information gained from one virus di-
rectly to the other. Here we report that the envelope glyco-
protein of HIV-2, but not that of HIV-1, can bind not only to
CD4 molecules, but also to CD8 molecules, on human T cells.

Unlabeled and fluorescein isothiocyanate (FITC)-labeled
recombinant gp105 (HIV-2ROD) and HIV-1 envelope glyco-
protein gp120 (HIV-1IIIB) obtained from a baculovirus expres-
sion system (Intracel Co., Issaquah, Wash.) were used. Cul-
tures (106 cells/1 ml per well) were performed in a 5% CO2
incubator at 37°C in RPMI 1640 supplemented with 10% fetal
bovine serum, 100 U of penicillin/ml, 100 mg of streptomycin/
ml, and 2 mM L-glutamine (Gibco Laboratories, Grand Island,
N.Y.). To observe the binding of HIV envelope protein, we
used cultures grown for 24 h at 37°C, based on the result of
time course experiments. Although binding effects were ob-
served even in shorter-term cultures grown at 37 and at 4°C,
the former culture conditions were thought to be best for our
binding assay system. With regard to gp120, in longer-term
cultures (e.g., 48 to 72 h), down-modulation of CD4 on cell
surfaces was observed, probably due to internalization of com-
plexes of HIV envelope protein and CD4 molecules into cells
(20), as previously reported (8, 19). Therefore, we thought that
longer-term cultures were not adequate for the purpose of

binding experiments. CD41 and CD81 T cells were purified
from normal human peripheral blood mononuclear cells
(PBMC) by negative selection with an immunoadsorption col-
umn (Cellect; Biotex Laboratories, Inc., Edmonton, Alberta,
Canada), as described previously (16). Macrophages adherent
to petri dishes (Corning Glass Works, Corning, N.Y.) were
collected by incubating PBMC for 120 min at 37°C, as de-
scribed previously (36), and then were removed before cells
were passed through the column. The CD41 and CD81 T cells
prepared by these procedures were recognized by a Leu 3a
antibody and a Leu 2a antibody (Becton Dickinson, Mountain
View, Calif.), respectively, and showed greater than 90% pu-
rity.

The binding of HIV-2 gp105 and HIV-1 gp120 to CD41 and
CD81 T cells obtained by these procedures is shown in Fig. 1.
Purified CD41 and CD81 T cells were incubated with FITC-
labeled gp105 and gp120 for 24 h and were analyzed with a
FACStar plus (Becton Dickinson) after washing. As shown in
Fig. 1A, the binding of gp105 was lower than that of gp120,
although both gp105 and gp120 could bind to CD41 T cells.
This may be related to the lower affinity of gp105, which has
been described previously (3, 7, 11, 29, 42). The binding of Leu
3a antibody to purified CD41 T cells was inhibited by pretreat-
ment of cells with gp105 or gp120, and this inhibition was
concentration dependent (data not shown). The in vitro bind-
ing of recombinant gp120 to CD41 T cells in this study was
similar to that in previous reports (35, 37). However, there
have been few reports about the binding of recombinant gp105
to CD41 T cells in vitro. We next investigated the binding of
gp105 and gp120 to CD81 T cells. As shown in Fig. 1B, gp120
did not bind to purified CD81 T cells, even at a high concen-
tration. Unexpectedly, gp105 bound to CD81 T cells in a
concentration-dependent fashion (Fig. 1B). This binding to
CD81 T cells was completely inhibited by pretreatment of
gp105 (1 mg/ml) with polyclonal anti-gp105 antibodies (0.1
mg/ml) (Intracel Co.) for 1 h (Fig. 2).

To further confirm these observations, we used a variant of
MOLT-4 cells obtained by the limiting dilution method, in-
stead of purified CD81 T cells. This cell line had extremely low
CD4 expression and high CD8 expression (0.2 and 83.2% pos-
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itivity for the Leu 3a antibody and the Leu 2a antibody, re-
spectively) compared with parental MOLT-4 cells (70 and 29%
positivity, respectively). We confirmed that gp105 showed con-
centration-dependent binding to this cell line, although gp120
did not bind to it even at a high concentration (Fig. 3).

When we used human CD8 a- and b-chain-expressed mouse
T-cell hybridoma (HTB Leu2.18/human CD8b), binding of
gp105 (but not of gp120) to this hybridoma was observed (Fig.
4). This hybridoma was established by the transfection of hu-
man CD8a cDNA in the expression vector BMG hygro and
human CD8b cDNA in the expression vector BMG neo into a
mouse T-cell hybridoma (HTB 176.10) (21, 27, 39). These cells
were cultured with the medium with 0.15 mg of hygromycin B
(Sigma Chemical Co., St. Louis, Mo.)/ml, and positive percent-
ages of human CD8 molecules detected by Leu 2a antibodies
were 0.0% in HTB 176.10 and 68.9% in HTB Leu2.18/human
CD8b (data not shown). Mouse T-cell hybridomas HTB 176.10
and HTB Leu2.18/human CD8b were cultured with gp105 or
gp120 for 24 h at 37°C and were stained with FITC-labeled
anti-gp105 antibodies or FITC-labeled anti-gp120 antibodies
after washing, and then fluorescence-activated cell sorter

(FACS) analysis was performed. The results obtained by this
experiment also confirmed that gp105 (but not gp120) can bind
to human CD8 molecules (Fig. 4).

For further investigation, we used monoclonal antibodies
to CD8 molecules: a Leu 2a antibody (Becton Dickinson),
an OKT8 antibody (Ortho Diagnostics, Raritan, N.J.), and
an anti-CD8b antibody (Coulter-Immunotech, Westbrook,
Maine). CD8 molecules consist of a and b chains. Leu 2a and
OKT8 antibodies recognize different epitopes on the a chain
of the CD8 molecule (38), while the binding site of the anti-
CD8b antibody is located on the b chain and not the a chain
of the CD8 molecule.

First, we performed a blocking experiment by gp105 pre-
treatment. After pretreatment of CD81 T cells with gp105 for
24 h and washing, the cells were stained with a phycoerythrin
(PE)-labeled Leu 2a antibody (Becton Dickinson), a PE-la-
beled OKT8 antibody (Ortho Diagnostics), or an unlabeled
anti-CD8b antibody (mouse immunoglobulin G1), which was
detected with a PE-labeled goat anti-mouse immunoglobulin
G (Coulter-Immunotech), and FACS analysis was performed
to examine the binding of these antibodies. As shown in Fig. 5,
gp105 pretreatment strongly inhibited Leu 2a antibody binding
and relatively weakly inhibited OKT8 antibody binding to
CD81 T cells. However, anti-CD8b antibody binding to CD81

T cells was not inhibited by gp105 pretreatment.
When CD81 T cells were pretreated with an unlabeled Leu

FIG. 1. Binding of HIV-1 gp120 (F) and HIV-2 gp105 (E) to CD41 (A) and CD81 (B) T cells purified from PBMC.

FIG. 2. Blocking effect of anti-gp105 antibodies on the binding of gp105 to
CD81 T cells purified from PBMC. Binding of gp105 (a) was inhibited by
pretreatment of gp105 with anti-gp105 antibodies (b). Mean fluorescence inten-
sity was 123.7 (a) or 27.5 (b). c, autofluorescence.

FIG. 3. Binding of gp120 (F) and gp105 (E) to CD42 CD81 MOLT-4
cells.
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2a antibody, an OKT8 antibody, or an anti-CD8b antibody (25
mg/ml) for 2 h at 4°C, the cells were incubated with FITC-
labeled gp105 for 24 h after washing, and gp105 binding was
assessed by FACS analysis. The concentrations of these three
antibodies used for pretreatment of CD81 T cells were high
enough to occupy all the binding epitopes on CD8 molecules
that they recognized (data not shown). The binding of gp105
was decreased by pretreatment with Leu 2a antibody (Fig. 6A).
This inhibitory effect of Leu 2a antibody was concentration
dependent (data not shown). However, gp105 binding was not
inhibited by pretreatment with OKT8 antibody or anti-CD8b
antibody (Fig. 6B and C). Even when these antibodies were
present in high concentrations (100 to 200 mg/ml), they could
not block gp105 binding (data not shown). These findings in-
dicated that the binding site of gp105 on CD8 molecules over-
lapped that of the Leu 2a antibody and that the binding site of

the OKT8 antibody on CD8 molecules might partly overlap
that of gp105, although the OKT8 antibody did not cover all of
the gp105 binding epitope. Furthermore, the binding site of
gp105 was not located on the b chain of CD8, recognized by
anti-CD8b antibody.

The main receptor for gp105 is thought to be the N-terminal
region of CD4, as is the case for gp120, although precise
mapping of the gp105 epitope compared with that for gp120
has not been done (7, 33, 34), and Fusin/CXCR4, a member of
the chemokine receptor family, has been reported to be able to
function as an alternative receptor for some isolates of HIV-2
in the absence of CD4 (15). The interaction between HIV-2
gp105 and its receptor, and the process of fusion of this virus
with its target cells, remains unclear. We previously reported
that recombinant soluble CD4 (rCD4) can enhance HIV-2
mediated syncytium formation in vitro but can completely in-
hibit HIV-1-related syncytium formation, although the precise
mechanism is still unknown (34). Similar enhancement of syn-
cytium formation by rCD4 was also reported for SIV (1). This
suggested that there may be differences in the attachment of
virus envelope to CD4 molecules between HIV-1 and HIV-2
or SIV. Although the range of human cells which can be
infected by HIV-2 appears to be similar to that for HIV-1,
distinct tropism has been reported to exist in vitro for certain
laboratory cell lines (9, 10, 18, 31). With regard to SIV, there
is evidence that this virus may productively infect CD81 cells in
vitro and in vivo (13, 14, 28, 41). Although binding between the
SIV envelope and CD8 remains unclear, these results may be
closely related to our findings, and SIV infection may be es-
tablished via binding of the SIV envelope proteins to CD8
molecules, because the character of SIV is similar to that of
HIV-2. Even with regard to HIV-1, its provirus sequences were
reported to be detected in CD81 T cells of HIV-1-infected
patients (24). This suggests the existence of unrecognized re-
ceptors for this virus. A tropism of HIV for different cell types
may be broader than previously described. The differences
between the processes of HIV-1 and HIV-2 or SIV infection
suggest that there may be fundamental differences in the life
cycles of these viruses.

In the present study, we found that HIV-2 envelope glyco-
protein was clearly bound to part of the a chain (but not the b
chain) of CD8, which was recognized by Leu 2a and OKT8
antibodies. In addition, Leu 2a antibody blocked the critical
binding sites of gp105 on the CD8 molecules, but OKT8 anti-
body did not (Fig. 5 and 6). Because the glycosylation pattern
of the envelope glycoprotein could play an important role in
the tropism of HIV (22), we cannot rule out the influence of

FIG. 4. Binding of gp105 and gp120 to human CD8 molecule-negative (HTB
176.10) and -positive (HTB Leu2.18/human CD8b) mouse T-cell hybridomas.
(A) HTB 176.10 cultured with gp105. (B) HTB Leu2.18/human CD8b cultured
with gp105. (C) HTB 176.10 cultured with gp120. (D) HTB Leu2.18/human
CD8b cultured with gp120. The percentage of binding of antibodies to gp105 or
gp120 is shown in each histogram.

FIG. 5. Blocking effect of gp105 on the binding of anti-CD8 antibodies to CD81 T cells. The binding of anti-CD8 antibodies Leu 2a (A), OKT8 (B), and anti-CD8b
(C) was examined in the absence (a) or presence (b) of gp105 (1 mg/ml). The dashed lines indicate the threshold of autofluorescence in each histogram.
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the glycosylation pattern of recombinant gp105 on binding to
CD81 T cells, although recombinant HIV-1 gp120 obtained by
a similar expression system could not bind to CD8 molecules.
We are now investigating whether an HIV-2ROD isolate can
bind to and infect CD42 CD81 cells by using a variant of the
MOLT-4 cell line and a mouse T-cell hybridoma transfected
with human CD8 molecules (HTB Leu2.18/human CD8b).

Binding of HIV-1 gp120 to CD4 molecules has been re-
ported to induce phosphorylation of CD4-associated tyrosine
kinase p56lck in T cells (19). Because the a chain (but not the
b chain) of the CD8 molecule is known to be linked to protein
tyrosine kinase p56lck (32), HIV-2 gp105 stimulation via the a
chain of CD8 may be significant in signal transduction into
CD81 T cells and the resultant production of cytokines and
chemokines. The CD81 T cell and the antiviral factors it re-
leases, including interleukin-16, macrophage inflammatory
protein (MIP)-1a, MIP-1b, and RANTES (regulated upon
activation, normal T-cell expressed and secreted), have at-
tracted attention as inhibitors of the replication of HIV (4, 12)
and critical factors in preventing disease progression following
HIV-1 infection (6, 23). The in vitro production of MIP-1a,
MIP-1b, and RANTES derived from gp105-stimulated PBMC
was much higher than that from gp120-stimulated PBMC in
our culture system (30). This may be related to the prevention
of disease progression and the resultant long survival after
HIV-2 infection and/or the protection against HIV-1 infection
by prior HIV-2 infection which was reported by Travers et al.
(40). The differences in production of cytokines and chemo-
kines after stimulation with gp105 or gp120, and the role of
gp105-stimulated CD81 T cells in this production, are being
studied further in our laboratory (Juntendo University).

In conclusion, this is the first report stating that the CD8
molecule is one of the receptors for HIV-2. This finding may
open up new possibilities for understanding the mechanism of
the much slower spread and lower virulence of HIV-2 com-
pared with HIV-1. It may also provide new insight into meth-
ods of preventing or delaying the onset of AIDS after HIV-1
infection.
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