
Proc. Natl. Acad. Sci. USA
Vol. 95, pp. 2039–2043, March 1998
Physics

Optimal modulation of a Brownian ratchet and enhanced sensitivity
to a weak external force

MARTIN B. TARLIE* AND R. DEAN ASTUMIAN†‡

*James Franck Institute, University of Chicago, 5640 South Ellis Avenue, Chicago, IL 60637; and †Departments of Surgery and of Biochemistry, University of
Chicago, 5841 South Maryland Avenue, Chicago, IL 60637

Communicated by Robert K. Adair, Yale University, New Haven, CT, November 24, 1997 (received for review June 15, 1997)

ABSTRACT We studied the dynamics of a Brownian
particle moving in a spatially anisotropic potential acted on by
multiplicative temporal modulations so that V(x, t) 5 g(t)U(x).
Using the concept of the ‘‘thermodynamic action,’’ we show
that the class of modulation that maximizes the f low is a
square-wave in time. We also show that adding a weak,
homogenous force F in synergy with the square-wave modu-
lation can cause particles of slightly different size to move in
opposite directions. The synergetic change in velocity caused
by F can be much greater than the drift velocity that would be
caused by F alone.

Motivated by the desire to understand energy transduction in
biological systems (1, 2), recent attention has been devoted to
the dynamics of particles moving in spatially anisotropic
potentials that are fluctuating in time (for a recent review, see
ref. 3). In addition to the biological motivation, there is interest
in the potential technological use of such Brownian ratchets for
the purpose of manipulating particles in colloidal suspensions
(4–6). Typically, the system is under the influence of an
external potential V(x,t) and is in contact with an external bath
that provides viscous damping of sufficient strength so that the
inertia of the system is neglected. The system is described by
a Langevin equation

gẋ~t! 5 2V9~x,t! 1 Î2«h~t!, [1]

where g is the coefficient of viscous friction, x is the coordinate
of the center-of-mass of the particle, t is time, the prime
denotes spatial differentiation, and the overdot denotes tem-
poral differentiation. The noise strength « is related to the
temperature T and g by the fluctuation dissipation relation: «
5 gkBT, where kB is Boltzmann’s constant. Throughout this
paper, we assume that the random forces are weak compared
with the characteristic forces associated with V. Finally, h(t) is
Gaussian white noise.

Our focus is on multiplicatively modulated potentials (7–9)
so that V(x,t) 5 g(t)U(x), where U(x) is an anisotropic ratchet
potential (see, e.g., Fig. 1). In this case, the spatial average of
the force is always zero. This is in contrast to the extensively
studied (10–13) case of additive modulations where V(x,t) 5
U(x) 2 xF(t), with F(t) a fluctuating force with mean zero. For
biological systems, which convert chemical energy into mass
transport, multiplicative modulations are most relevant (14).

In this paper, we address the question: For a given potential
U(x), what is the optimal multiplicative temporal modulation
g(t) that maximizes the flow in one direction or the other? We
show, by using path-integral methods, that the optimal class of
modulation is a square-wave in time, and we provide a
geometric means of determining the modulation within the

class of square-waves that maximizes the flow. Furthermore,
adding a small, homogenous, time-independent force can
cause particles of slightly different size to move in opposite
directions, thus allowing for a continuous separation process.
The sensitivity of this system to the weak external force is
enhanced strongly by the optimal modulation.

Paths of Least Action

Our approach is to consider the path integral expression for
the conditional probability density P(xf,tf uxi,ti) that is deter-
mined by summing over all paths that originate at the space-
time point (xi,ti) and terminate at (xf,tf) (15–17). Each path is
weighted by a factor exp(2S[x]y«), where S[x] is the thermo-
dynamic action

S@x# 5
1
4 E

ti

tf

dt~gẋ~t! 1 g~t!U9~x!!2 [2]

S is positive semi-definite (i.e., S $ 0) so that optimal paths,
which have maximum weight in the path integral, have zero
action. Our goal is to find functions g(t) that result in net flow
and that allow for zero action paths that connect the local
minima of U. Such modulations will thus be optimal.

We begin by examining the least-action paths for the un-
modulated case, i.e., g(t) 5 1. From this analysis, it will be
evident how we then can modulate the system so as to create
paths with zero action. For the potential U8(x) and taking xi 5
0 and xf 5 6L, the least-action paths x6 (see Fig. 2) were
determined numerically by using an optimization algorithm
based on Newton’s method (18). The paths x6 each can be
decomposed into an uphill leg xd

6 and a downhill leg xd
6 with

trajectories that approximately satisfy§

gẋu
6 < 1U9~xu

6!; gẋd
6 < 2U9~xd

6!, [3]

and that are valid for tf 2 ti . ta 1 tb (19).
In Fig. 2, we see two characteristic time scales. The shorter,

ta, is the time required for a particle, with zero initial velocity,
to slide a distance a down the steeper face of the potential, and
the longer, tb, is the time required to slide a distance b down
the less steep face. From Eq. 3, we see that ta(d) 5 g*2d

2a1ddxy
U9(x), and tb(d) 5 g*d

b2ddxyU9(x). Up to logarithmic correc-
tions in d, we have that ta ; ga2yDU and tb ; gb2yDU, where
DU § U(b) 2 U(0).

Optimal Modulation

We learn from Eq. 3 inserted into Eq. 2 that for tf 2 ti
sufficiently long¶ only the uphill part of the path contributes to
the action and asymptotically approaches DU as tf 2 ti3`. The
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contribution from the downhill path vanishes because for this
path gẋ 5 2U9. To eliminate the nonzero contribution to the
action, thereby creating an optimal path of zero action, we
simply change the plus sign that appears in the first part of Eq.
3 to a minus sign. This can be accomplished if g(t) is a function
that switches between 11 and 21i in a step-like manner so that

g~t! 5 H 2 1
1 1

for nT , t , nT 1 t2

for nT 1 t2 , t , ~n 1 1!T
[4]

where T 5 t1 1 t2 is the period of the modulation, t2yT is the
fraction of the period during which g 5 21, and n is any integer.
This class of modulation (a square-wave) is optimal in the
sense that there are zero action paths, i.e., paths for which the
particle is always travelling downhill, that connect the local
minima of U. Significantly, this modulation effectively elimi-
nates diffusive steps, and in the limit that DU .. kBT, the noise
is relegated to the role of knocking the particles off of the
potential maxima, with an equal probability to the right and
left, when the potential is inverted.

Maximizing Flow

The problem that remains is to understand how the direction
and magnitude of the flow depend on t1 and t2. Our goal is
to locate the region(s) in the t22t1 plane for which the flow
is maximized. We begin by dividing the t22t1 plane into eight
regions as shown in Fig. 3. As a first step, we concentrate on
how the direction of flow depends on the choice of parameters.
It is easy to see that when t1 . t2, any flow that occurs must
be to the left. It is always more probable for the particle to slide
down the long leg of the potential (to the left) during the longer
time period t1 than it is to slide down the long leg of the
potential (to the right) during the shorter time period t2. An
analogous argument, with the opposite conclusion, holds for
the situation that t1 , t2. Thus, the current is antisymmetric
with respect to reflection about the line t2 5 t1 so we need
only consider t1 . t2.

We now focus on determining the region of the t2 2 t1

plane for which the flow is maximized. In region I of Fig. 3, the
current is not appreciable because, on average, a particle
initially located near x 5 0 when g switches from 11 to 21 does
not have enough time to reach x 5 mL 2 a or x 5 mL 1 b when
the potential reinverts at t 5 nT 1 t2. (In the limit that t2 5
0, the flow is identically zero.) In region III, where t1,t2 . tb,
the velocity is also essentially zero because now it is equally
likely that the particle will make the excursion from x 5 mL to
x 5 mL 1 b as to x 5 mL2a in the time t2.

Now consider regions II and IV of Fig. 3. In region II, the
particle has enough time, on average, to make the excursion
from x 5 mL to x 5 mL 2 a in the time t2 but not from x 5
mL to x 5 mL 1 b. Thus, the velocity is determined by the
transition probability from x 5 mL to x 5 (m 2 1)L in a time
T. This probability is '1y4: a factor of 1y2 from the splitting
probability when the potential inverts at t 5 nT and another

factor of 1y2 when the potential reinverts at t 5 nT 1 t2. Thus,
in this regime, the average velocity is Ly4T. In region IV,
where ta , t2 , tb but t1 , tb, the dynamics is more
complicated. When g 5 2 1, the particle has enough time to
execute a transition from x 5 mL to x 5 mL 2 a but not from
x 5 mL to x 5 mL 1 b. However, when g 5 11, the particle
does not have time to go all the way from mL 2 a to (m 2 1)L,
but because it makes more progress on this leg when g 5 11
than when g 5 21, it will eventually reach (m 2 1)L, so we still
have net flow. In summary, the flow increases as the point
(t2,t1) moves away from the regions t2 5 0, t2 5 t1, and T
5 `. Therefore, we expect that the maximum in the flow rate
occurs near the boundary between regions II and IV.

By performing Monte Carlo simulations of Eq. 1, we con-
firm the general picture that is outlined above and summarized
in Fig. 3. However, before continuing, we need to remark on
the dependence of the flow properties on the noise: The flow
is a nonmonotonic function of «. As « 3 0, the flow vanishes
because the particle gets stuck in regions where the potential
force 2U9 vanishes. On the other hand, as « 3 `, the effect
of the potential force becomes negligible and the dynamics
becomes diffusion-like so that again the current approaches
zero. Thus, there is a maximum in the flow for « between the
two extremes of zero and infinity. In what follows, our choice
of « coincides with this maximum.

The model potential used in the simulations is shown in Fig.
1. For « 5 0.01gDU, we numerically integrated Eq. 1 by using
a forward Euler-differencing scheme. We computed the av-
erage velocity by integrating over 104 cycles of the modulation

iIn general, we could have taken g to switch between one positive and
one negative constant. This alters ta and tb but does not affect the basic
results.

FIG. 1. Model potential U8(x) where Un(x) 5 Un¥i51
n e2I2y(n 1

1)sin(2pi(x 2 xn,0)yL)yi.

FIG. 2. Classical paths x1 (dashed curve) and x2 (solid curve) as
a function of t for U8(x) (see Fig. 1) with tf 2 ti 5 20 and Dt 5 0.05,
where time is measured in units of gL2yDU.

FIG. 3. t2 2 t1 plane divided into eight regions, four of which are
labeled. The line t1 5 t2 is a line of antisymmetry: When t1 , (.)t2,
the velocity is positive (negative). The speed v is indicated for regions
I–III.
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and taking the ratio of the distance traveled to the duration of
the excursion. Plotted in Fig. 4 is the absolute value of the
average velocity as a function of t2 and t1. Dark regions
represent low velocities, and light regions represent high
velocities. The maximal velocities plotted in Fig. 4 are approx-
imately Ly(4T), as anticipated. These results confirm the
picture described above. For a particle with a Stokes radius of
1 mm in water, L 5 10 mm and a 5 1 mm, and we get Ly(4T)
' 2.5 mmys.

To summarize, we have shown that the optimal class of
(multiplicative) modulation is a square-wave in time that
switches between a positive and a negative constant and that
within this class the velocity is maximum near the boundary
between regions II and IV of Fig. 3. We determined the
optimal class of modulation by identifying that these mod-
ulations allow for paths of zero action that connect the
extreme points of U(x). We then determined the sweet spot
in the t2 2 t1 plane by using scaling arguments and the
topological properties of the velocity in the t2 2 t1 plane.
In addition, we confirmed the general conclusions by per-
forming Monte Carlo simulations and by measuring the
average velocity (see Fig. 4).

The Effect of a Homogeneous External Force

We now extend the previous model by adding a small force F
that is constant in space and time. We will show that, under
certain conditions, the ratchet can be extremely sensitive to
very small forces. In addition, we will show that this sensitivity
can be utilized to have particles of different size move in
opposite directions—a phenomenon that is significant for
particle segregation. An approximate formula for the velocity
of a particle is

v 5
L
T
SP1

n1 2
P2

n2D . [5]

where P6 is the probability that, if the particle starts at x 5 0
at t 5 02 (g switches at t 5 0), the particle eventually ends up
at x 5 6L and n6 is the number of cycles of the modulation
that are required for this to take place. For simplicity of
presentation, in what follows we restrict our attention to the
regime where t1 . t2 and where t1 . tb so that n1 5 n2 5
1**.

A weak homogeneous force has two significant effects. The
first is that the splitting probabilities become different than
1y2. This is because the minima when g 5 11 (g 5 21) are
shifted relative to the maxima when g 5 21 (g 5 11). Thus,
when the potential switches, a particle initially at the bottom
of a well finds itself slightly to the right or left of the maximum
in the new configuration. The result is that, when F Þ 0, the
splitting probabilities become (20)

q2~F! 5
1
2

erfc S F

Î2Ws
D , [6]

where

Ws 5 ÎkBTuU0~0!u [7]

is an intrinsic force scale that determines the sensitivity of the
splitting probability to an external force. The probability that
the particle travels to the right is q1 5 1 2 q2. We have
approximated the potential in the region of the extrema as a
parabola, and U0(0) is the curvature at the maximum. Thus,

Eq. 6 does not account for the asymmetry of the potential but
should give an accurate estimate of the effect of F on the
splitting probability in the regime where kBT ,, DU. For the
potential shown in Fig. 1, Ws ; kBTL21=DUykBT, where L is
the period of U.

The second effect of the force is to change the sliding times.
After the splitting has occurred, the center of mass of the
probability distribution moves to the left or right at (essen-
tially) a constant velocity that depends on the force F. The
sliding times ta and tb are altered by a factor that depends on
the direction of motion so that

t,
6 ~F! 5 t,~1 6 F,yDU!21, [8]

where 1 is for movement to the right and 2 is for movement
to the left. In addition to the constant drift, the distribution
spreads out at a constant rate that does not depend on the
force. When g 5 21, the probability H,,g 5 21

6 that the particle
travels at least a distance , to the left (2) or to the right (1)
in the time t2 can therefore be calculated, with the result that

H,,21
6 5

1
2

erfc S6F 2 F*,
Î2W D [9]

where

F*, ;
DU
,

S1 2
t,

t2
D [10]

and

W ; Î2gkBT
t2

. [11]

Because we are treating the case that t1 . tb, when g 5 1, the
probabilities H,,g 5 1

6 are approximately unity.
We are now in a position to determine the effect of F on the

velocity. Eq. 5 is an expression for the velocity in terms of the
probabilities P6 and the average cycle times n6. Because we
have restricted our attention to values of t1 . tb, n1 5 n2 5
1 (21). The probabilities P6 for movement to the right (1) and
left (2) are given by

P1 5 ~q1Hb,21
1 ! ~q1Ha,1

1 ! [12]

**Although we were able to obtain an approximate analytic formula
for v(t2,t1) in the entire t2 2 t1 plane, for clarity of presentation
we have concentrated on the regime where n1 and n2 are approx-
imately unity.

FIG. 4. Monte Carlo results for the absolute value of the average
velocity as a function of t2 and t1 for n 5 8 (ayb 5 0.38). The dark
regions represent low velocity, and the light regions represent high
velocity.
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and

P2 5 ~q2Ha,21
2 ! ~q2Hb,1

2 !. [13]

Using these formulae, we find that, for t1 . tb and t1 . t2,

v~F! 5
L
T

~~q1!2H,,21
1 2 ~q2!2H,,21

2 !, [14]

where we have used the fact that H,,1
6 5 1 in this regime. In Fig.

5, we compare the velocity from Monte Carlo simulations with
the theory (cf. Eq. 14). The q6 functions are sensitive to forces
centered around 0, with a width Ws, and the H6 functions are
sensitive to forces centered about F*, with a width W. The key
idea is that the velocity changes by O(LyT) when F changes by
O(W) or O(Ws). For optimal modulation, both W and Ws scale
as =kBTyDU, so that if =kBTyDU ,, 1, then a small change
in the force can cause a large change in the velocity. Thus, an
optimally modulated ratchet acts as a mechanical analogue of
an electrical transistor, where a small voltage can control a
large current.

Technological Application

We now shift our attention to the potential application of these
ideas to particle segregation. The ideal is for particles with
different radii R to move in opposite directions at reasonable
speeds, thereby forming the basis for a continuous (as opposed
to batch) separation process. In the following discussion, we
will show that, if the ratchet is operated in the appropriate
manner and the appropriate force F is applied, it is possible to
get particles of different size to move in opposite directions.

We begin by imagining that the ratchet is operating in a
regime where Ws . W. In this case, as long as F ( Ws, the
splitting probabilities q6 will be 1y2 and essentially indepen-
dent of F. Thus, examining Eq. 14, we see that, for t1 . t2,
the relevant sliding down times are ta

2 and tb
1. Analogous

arguments show that, for t1 , t2, the relevant sliding down
times are ta

1 and tb
2. Using these results, we divide the t2 2 t1

plane in a manner analogous to that of Fig. 3, except now the
relevant time scales are modified by the presence of F. In Fig.
6, we show this new division for F . 0. The key point is that
the external force F breaks the anti-symmetry of the velocity
about the line t1 5 t2. The contour of zero velocity, shown in
Fig. 6 as the thick black segments, is t2 5 (tb

2ytb
1)t1 for t1 ,

tb
2, and t2 5 tb

1 for t1 $ tb
2. This means that particles of

different size can have different contours of zero velocity. We
can imagine, therefore, that, if the ratchet is operated in the
region that lies between these zero-flux contours, the differ-
ent-sized particles will travel in opposite directions.

The above argument relies crucially on the assumption that
Ws . W; if this condition does not hold, then the division of the
t2 2 t1 plane as shown in Fig. 6 is not valid. In this case, the
effect of an applied force appears predominantly in the

splitting probability (c.f. Eq. 6). The magnitude of this effect
does not depend on the properties of the particles, so it is not
possible to cause particles to move in opposite directions based
on their size. Indeed, for W . Ws there is no contour of zero
velocity in the t2 2 t1 plane. Using Eq. 7 for Ws and Eq. 11
for W, the condition that Ws . W is equivalent to =U0u(0)u .
=2gyt2. But, because the zero flux contour is near t2 5 tb (for
small forces), we replace t2 by tb 5 gb2yDU in the above
inequality and find that, for the potential shown in Fig. 1 and
for t2 5 tb, the ratio WsyW ' 4.4. Thus, a continuous
separation process, whereby particles of slightly different size
move in opposite directions, is possible.

Having seen how, in principle, it is possible to get particles
of different size to move in opposite directions, we now show
this explicitly. We imagine that we have a set of electrically
charged particles, all with the same sign of charge. Conse-
quently, in the absence of an external force, the square-wave
modulation considered above has the property that t1 5 t2 is
a line of antisymmetry, independent of the size of the particle.
Therefore, particles of different sizes may move at different
speeds but not in different directions. However, as we have just
seen, imposition of a macroscopic applied force F that is
constant in space and time breaks this symmetry. The key idea
is that the contour of zero flux, as indicated by the thick black
line in Fig. 6, now curves upward (for F . 0). For t1 . tb

2, this
zero-flux contour is given by t2 5 tb

1(F). Thus, if tb
1(F) depends

on the radius of the particle, then the velocity for particles of
different size will change sign in different regions of the t2 2
t1 plane and, consequently, particles of different size can be
made to move in opposite directions.

To see that tb
1 5 tby(1 1 FbyDU) depends on R recall that

tb 5 gb2yDU. It is possible for g, DU, and F to depend on R.
First, according to the Stokes–Einstein formula, we have that
g ; R. Second, if we assume that the ratchet potential is
electrostatic in origin, then we can have DU ; Ra with a 5 0
(as may be appropriate for proteins) and a 5 1,2 [as may be
appropriate for coloidal particles (21)]. Third, the macroscopic
force F can scale as Rb, with b 5 a if F is electrostatic in origin
or b 5 3 if F is due to gravity. Thus, there are many possible
combinations of a and b that will result in a dependence of tb

1

on the radius R. The main conclusion, therefore, is that, under
a wide variety of circumstances, it is possible to operate the
ratchet in such a way that particles of different size will move
in opposite directions.

To illustrate this we performed Monte Carlo simulations of
Eq. 1 by using U8(x) for particles with r 5 1 mm and r 5 1.2 mm
immersed in water at T 5 300 K. We took g 5 6 pzR, where

FIG. 5. Velocity v as a function of force F for t25 0.9 tb and t1 5
1.4 tb and « 5 1024. The closed circles are simulation results, and the
solid curve is obtained from Eq. 14.

FIG. 6. Division of the t2 2 t1 plane in the presence of a constant
force F . 0. The sliding down times tscrl

6 are force-dependent, as
described in the text, and the thick black line is the contour of zero flux.
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z 5 1 cP is the viscosity of water, the ratchet force 2U9 to be
electrical with DU 5 2000 kBT and L 5 4 pmm. The magnitude
of F for the 1 mm-sized particle was 2.05 3 10215 N, which is
the net gravitational force that can be obtained by tilting the
apparatus by 90°. As shown in Fig. 6, the contour of zero flux
for F . 0 curves upward and roughly hugs the line t2 5 tb

1.
Thus, if the ratchet is operated near the border between
regions II and III, particles of different size will move in
opposite directions. This is shown in Fig. 7, where we plot the
average velocity v as a function of t2 for T21 5 2.2 Hz for
various combinations of a and b. In all cases, there are values
of t2 for which the 1 mm- and 1.2 mm-sized particles travel in
opposite directions.

Summary and Conclusion

In summary, we have sketched out a conceptual framework for
understanding how to optimize the velocity of a small particle
induced by deterministic modulation of a ratchet potential.
This provides a firm theoretical base for the two main results
of this paper. (i) A weak external force (e.g., gravity for a 1-mm
latex sphere in water) in synergy with the optimal modulation
can allow particles of slightly different size to move in opposite
directions. This suggests approaches for implementation of
continuous separation techniques for microscopic particles
and biopolymers. And (ii) The sensitivity to the weak external

force is enhanced by the optimal modulation, thus allowing a
weak force to control a large current—a mechanical analogue
of a transistor.
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FIG. 7. Curve C: particle of radius R 5 1 mm, density 1.05 gzcm23,
in water at T 5 300 K, subject to a constant force F 5 2.05 3 10215

N. Curves A, B, and D–F: R 5 1.2 mm, U ; Ra, and F ; Rb. A, a 5
0, b 5 0; B, a 5 0, b 5 3; D, a 5 1, b 5 3; E, a 5 2, b 5 2; F, a 5
2, b 5 3. Average velocity as a function of t2 for T 5 0.46 s.
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