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Finding good drug leads de novo from large chemical libraries, real
or virtual, is not an easy task. High-throughput screening is often
plagued by low hit rates and many leads that are toxic or exhibit
poor bioavailability. Exploiting the secondary activity of marketed
drugs, on the other hand, may help in generating drug leads that
can be optimized for the observed side-effect target, while main-
taining acceptable bioavailability and toxicity profiles. Here, we
describe an efficient computational methodology to discover leads
to a protein target from safe marketed drugs. We applied an in
silico ‘‘drug repurposing’’ procedure for identification of nonste-
roidal antagonists against the human androgen receptor (AR),
using multiple predicted models of an antagonist-bound receptor.
The library of marketed oral drugs was then docked into the
best-performing models, and the 11 selected compounds with the
highest docking score were tested in vitro for AR binding and
antagonism of dihydrotestosterone-induced AR transactivation.
The phenothiazine derivatives acetophenazine, fluphenazine, and
periciazine, used clinically as antipsychotic drugs, were identified
as weak AR antagonists. This in vitro biological activity correlated
well with endocrine side effects observed in individuals taking
these medications. Further computational optimization of phe-
nothiazines, combined with in vitro screening, led to the identifi-
cation of a nonsteroidal antiandrogen with improved AR antago-
nism and marked reduction in affinity for dopaminergic and
serotonergic receptors that are the primary target of phenothia-
zine antipsychotics.
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Current approaches for discovery of novel chemical leads
against a molecular target rely heavily on high-throughput

screening (HTS) and to a lesser extent on virtual ligand screen-
ing (VLS) techniques. HTS has provided rapid lead identifica-
tion for numerous drug targets (1–8); however, HTS also has
major drawbacks, including a significant level of false positives
and false negatives and low hit rates for many targets (9).
Successful leads from HTS can also suffer from poor bioavail-
ability and unwanted toxicity profiles of compounds. These
problems result partially from the nature of the chemical librar-
ies used for HTS. Furthermore, because the pharmacological
properties of most compound libraries are largely unknown,
there is an additional high risk that optimization of hits identified
with HTS will not be sufficient for their evolution into real drugs.

In contrast, retrospective analysis of marketed drugs reveals
that their physicochemical and structural properties are clus-
tered around preferred values and scaffolds (10). In addition,
some chemical motifs are associated with high biological activity
and often confer activity against more than one target/receptor
(11–16). These motifs have been referred to as ‘‘privileged
structures’’ (11). These observations lead to an assumption that
the chemical space of potential drugs is limited. Consequently,
currently marketed drugs, which by definition have run the
gauntlet of drug optimization, are an attractive collection of
compounds for lead identification against new targets.

All drugs have activity that is distinct from that elicited by
interaction with their primary (or chosen) target. This activity
generally underlies the side-effect profile of the drug. It is this
action at secondary or ‘‘off’’ targets that may potentially be
harnessed for novel drug development, through optimization of
the pharmacological profile of the drug to enhance the second-
ary activity and effectively eliminate activity at the original
target. This procedure has been referred to as drug repurposing.
The principal benefit of this approach is inheritance of a
chemical scaffold with favorable bioavailability and toxicity
profiles. Thus, the repurposed compounds are likely to enter
clinical trials more rapidly and at less cost, in contrast to new
chemical entities derived ‘‘from scratch.’’ Successful examples of
drug repurposing include development of the potassium channel
blocker levocromakalim from �-blockers (15) and development
of an inhibitor of fibrin transthyretine amyloid formation from
the nonsteroidal antiinflammatory drug, f lufenamic acid (16).

A key to repurposing drugs is the capacity to identify potential
secondary targets of therapeutic value. Recently, we have dem-
onstrated that computational approaches can be used to develop
predictive models of antagonist-bound states of nuclear hor-
mone receptors (17). Using the ICM ligand docking and scoring
algorithm, these models enabled enrichment of hit lists of sample
ligand libraries 33- to 100-fold for 9 of 10 nuclear hormone
receptors studied. Furthermore, there was a good correlation
between docking scores and relative specificity across nuclear
receptors for 78 known nuclear receptor ligands (17). We also
identified antagonists to two nuclear receptors, retinoic acid
receptor (17, 18) and thyroid hormone receptor (19), by using
predicted antagonist-bound models.

The human androgen receptor (AR) is critical for the devel-
opment and progression of prostate cancer. However, the dis-
ease is poorly serviced by the existing clinical repertoire of AR
antagonists. Here, we describe and validate a computational
method to identify secondary antiandrogen activity of known
drugs. By capitalizing on several critical contributions to the
understanding of the AR structure and function (20–24), mul-
tiple models for antagonist-bound conformations of the AR
were developed, and suitable models for ligand screening were
selected based on docking scores for known antagonists. These
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models were subsequently screened against marketed drugs to
identify compounds likely to have secondary antiandrogen ac-
tivity. One of three families identified was confirmed to interact
with the AR by in vitro assays and further optimized to improve
antiandrogen activity and decrease activity at the primary targets
for the lead drug.

Results
Model Optimization and Refinement. As described in Materials and
Methods, two initial models of the antagonist-bound conforma-
tion of the AR ligand binding domain (LBD) were developed:
one bicalutamide-biased (B-model) and one flutamide-biased
(F-model). Structural conformers of these preliminary models,
docked to 24 known AR antagonists, were generated and
subsequently used to determine their ability to identify AR
antagonists [supporting information (SI) Fig. 5]. SI Fig. 6 details
the capacity of individual conformers to identify AR antagonist
binders and discriminate AR binders from other nuclear hor-
mone receptor ligands. Two structural variants, B5 and F17,
demonstrated both a high level of enrichment of AR binders and
low cross-reactivity with other nuclear receptor ligands. These
were subsequently used for VLS experiments.

Closer examination of variants B5 and F17 revealed a rmsd
difference of 0.8 Å within the ligand binding site, resulting
primarily from alternative packing of side chains. However, this
side-chain rearrangement caused substantial differences in the
volume and geometry of the ligand binding pockets, as predicted
by the ICM pocket finder algorithm (25). The volume of the B5
model pocket was 689.0 A3 with a surface area of 650.0 A2,
whereas the corresponding geometric features of the F17 pocket
were 585.0 A3 and 639.0 A2, respectively (SI Fig. 7).

To further validate the selected models, ligand poses, after
redocking of each of the 24 known AR antagonists, were
manually inspected, with special attention to interactions of the
ligands with receptor amino acids previously shown to be
important for high-affinity binding by the AR LBD (22, 26–30).
In particular, the formation of a hydrogen bond between ligands
and R752 is speculated to be essential for high-affinity binding.
This residue is highly conserved among nuclear receptors, and
recent crystallographic data demonstrated its importance for
ligand binding for estrogen and glucocorticoid receptors. Both
the B5 and F17 model variants formed this interaction with the
majority of the known AR antagonists (SI Fig. 8).

VLS. The marketed oral drugs database, described in ref. 10, was
used for ligand docking experiments. The database was docked
into the B5 and F17 structural variants as described in SI Text,
and the top binders, with ICM docking scores ranging from
�60.0 to �32.0, were examined manually. From the top binders,
11 compounds scoring highest in both structural model variants
were selected and purchased for in vitro biological experiments
(SI Table 1).

AR Binding and Transactivation. In AR competitive ligand binding
assays, only three of the compounds, f luphenazine (FPZ; KI �0.8
�M), acetophenazine (APZ; KI �0.8 �M), and periciazine
(PCZ; KI �3.0 �M), demonstrated competition for [3H]mibo-
lerone binding, each of these belonging to the phenothiazine
class of drugs (SI Table 1). These three ligands were subsequently
examined for their ability to antagonize dihydrotestosterone
(DHT)-stimulated AR transactivation, using transcription of
chloramphenicol acetyl transferase (CAT) as the read-out, in
CV-1 cells transiently expressing the AR, as described in SI Text.
Consistent with the binding data, APZ and PCZ weakly, but
significantly, reduced DHT-stimulated CAT activity, while hav-
ing minimal effect on basal CAT activation (Fig. 1; FPZ trended
toward a reduction in CAT activity (Fig. 1 A). Because of the low
affinity of the drugs for the receptor, no clear dose–response

relationship could be established with the concentrations used.
Nonetheless, the data suggested that phenothiazines and their
derivatives could be considered as a potential scaffold for
development of ligands with antiandrogen properties.

To test this assumption, a phenothiazine core substructure
search was performed in available chemical databases (Chem-
bridge, Chemdiv, and others), and a set of 10 phenothiazine
derivatives was purchased and screened for their antiandrogen
activity in vitro using the CAT reporter assay at a constant ligand
concentration of 500 nM (SI Table 2). The D4 ligand was found
to be the most potent antiandrogen molecule, inhibiting almost
50% of the DHT-stimulated CAT reporter gene transactivation
(SI Table 2). Further evaluation of this compound over a range
of concentrations demonstrated a dose-dependent inhibition of
DHT-stimulated AR activity (Fig. 2A), with a pIC50 value of
6.60 � 0.25 (n � 3; IC50 � 0.25 �M), consistent with its binding
affinity for the AR (KI � 1.0 �M). Intriguingly, the D4 ligand
had greater efficacy than the prototypic AR antagonist, Casodex
(bicalutamide), in inhibiting DHT-stimulated CAT activity (D4
Emax, 76 � 7% inhibition, n � 3; Casodex Emax, 44 � 6%
inhibition, n � 3), albeit that Casodex was more potent. The D4
ligand had minimal effect on �-gal activity (Fig. 2C) and did not
exhibit non-AR-related cytotoxicity in PC3 prostate cancer cells
at concentrations up to 10 �M (data not shown).

Prostate-Specific Antigen (PSA) Assay and AR Cellular Localization.
The effect of the D4 ligand on the expression of PSA, a marker
of endogenous AR receptor activation, was investigated in
LNCaP prostate cancer cells (see SI Text). The D4 ligand had a
biphasic effect on DHT-stimulated PSA expression (Fig. 2D); an

Fig. 1. Regulation of AR transactivation by selected marketed drugs, FPZ and
APZ (A) and PCZ (B). The CAT reporter gene assays were conducted as de-
scribed in Materials and Methods. (�), untreated cells, negative control; (�),
1 nM DHT, positive control; filled bars, 1 nM DHT was added together with
ligand at the indicated concentration; empty bars, ligand alone was added at
the indicated concentration; dashed bars, raw �-gal activity data. The data are
mean � SEM of three independent experiments. CAT data are normalized
against �-gal activity. a.u., arbitrary units. *, P � 0.05.
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initial increase in expression at 1 �M, followed by a progressive
reduction in expression that was �80% at 10 �M. The endog-
enous AR expression, however, was not modified by ligand
treatment (Fig. 2D Inset). As LNCaP cells express both the
wild-type AR and the T877A mutant form of the receptor (28),
we speculated that the initial increase in PSA expression levels
seen in these cells could be caused by activation of the T877A AR
mutant by D4 (31). This hypothesis was corroborated in the CAT
transactivation assay where the D4 ligand was an agonist of the
T887A AR mutant transiently expressed in CV-1 cells (Fig. 2B).

The cellular localization of AR in the presence and absence of
ligands was also investigated (Fig. 3) (see SI Text). In the absence
of DHT, AR was diffusely distributed in the cytoplasm. Upon
treatment with 10 nM DHT for 1 h, AR was completely
translocated into the nucleus. When cells were treated with the
D4 ligand at 1 �M in the presence and/or absence of 10 nM DHT,
AR was also translocated from the cytoplasm to the nucleus,
with �90% of the AR translocated to the nucleus. The redis-
tribution of the AR to the nucleus is also seen for the prototypic
AR antagonist, bicalutamide (Casodex) (1 �M) (Fig. 3). These
observations further demonstrate that the D4 ligand potently
interacts with the AR.

Cross-Docking to a Panel of Nuclear Receptors. The AR belongs to
a large family of nuclear receptors that share high sequence and
structure similarity within their LBDs. Previously, we have
shown that VLS is able to identify nuclear receptor ligands and
predict their promiscuity (32). The D1–D10 FPZ derivatives
were systematically docked to the LBDs of a panel of seven
nuclear receptors. Our best ligand, D4, scored a below -32.0
docking score [statistically significant ICM docking score cutoff
(33)] only in the B5 AR LBD antagonist model, suggesting a low
probability of cross-reactivity with other nuclear receptors (SI
Fig. 9).

Affinity for Dopaminergic and Serotonergic G Protein-Coupled Re-
ceptors (GPCRs). The phenothiazines, FPZ, APZ, and PCZ, are
marketed antipsychotics that interact strongly with serotonergic
and dopaminergic GPCRs. To determine whether the D4 ligand
maintained affinity for these targets, competitive binding assays
at the 5HT2C, 5HT2A, and D2 receptors were performed (see SI
Text). In contrast to FPZ, which exhibited high affinity for each
of the receptors, the D4 ligand failed to compete for binding at
concentrations up to 1 �M (Fig. 4). Thus, the D4 ligand, unlike
phenothiazine antipsychotics, binds specifically to AR.

Discussion
Absence of the crystal structure of the AR LBD in an antagonist-
bound conformation makes receptor structure-based VLS dif-
ficult. The chemical diversity of known AR binders suggests that
the AR ligand binding site is capable of substantial induced

Fig. 2. Antiandrogen activity of the D4 phenothiazine derivative. The CAT
reporter gene assays were conducted as described in Materials and Methods.
(A) Inhibition of DHT (1 nM)-stimulated CAT activity, in CV-1 cells transfected
with the wild-type AR, by D4 (E) or Casodex (F). CAT activity data are
normalized against �-gal activity. (B) D4-stimulated CAT activity in CV-1 cells
transfected with the T877A mutant AR. (C) Effect of increasing concentrations
of D4 on �-gal activity in wild-type AR-transfected CV-1 cells. (D) PSA assay in
LNCaP cells. (�), untreated cells (negative control); (�), 50 nM DHT alone
(positive control). The ligand was added to the cells at the indicated concen-
trations together with 50 nM DHT. The films were digitized, and PSA expres-
sion data were normalized by �-tubulin content. (Inset) Endogenous AR
expression levels in LNCaP cells. The data are mean � SEM of three indepen-
dent experiments. *, P �0.05. a.u., arbitrary units.

Fig. 3. Nuclear translocation experiments. HeLa cells were transiently trans-
fected with AR. (Left) Translocation of the receptor after treatment was
assessed by anti-AR antibody labeling. (Center) The nucleus was identified by
DAPI staining. (Right) The overlay of AR labeling with the DAPI staining. The
treatments used were as follows: CT, untreated cells; DHT, 10 nM; CDX,
Casodex (1 �M); D4, compound D4 (1 �M); or D4 � DHT, compound D4 (1 �M)
plus DHT (10 nM). Refer to Fig. 2 for the D4 structure. The data are represen-
tative of three independent experiments.

Bisson et al. PNAS � July 17, 2007 � vol. 104 � no. 29 � 11929

BI
O

CH
EM

IS
TR

Y

http://www.pnas.org/cgi/content/full/0609752104/DC1
http://www.pnas.org/cgi/content/full/0609752104/DC1
http://www.pnas.org/cgi/content/full/0609752104/DC1
http://www.pnas.org/cgi/content/full/0609752104/DC1
http://www.pnas.org/cgi/content/full/0609752104/DC1


f lexibility to accommodate a binder. Previously, we have gen-
erated predictive antagonist-bound models for two nuclear
receptors: the thyroid hormone receptor (19) and the retinoic
acid receptor � (34). The available structures of antagonist-
bound conformations of the homologous nuclear receptors
demonstrate that the loop connecting helices H11 and H12 is the
most flexible element of their binding site. Therefore, the
backbone flexibility of the corresponding AR loop needed to be
addressed during modeling.

Computational prediction of the induced fit upon binding of
a ligand is a critical unsolved problem (35, 36). Recently, several
successful f lexible receptor docking protocols were proposed for
different systems (37, 38). These protocols are based either on
‘‘molding’’ of the receptor binding pocket around a ligand using
global energy optimization (37) or sampling of conformational
space of a receptor by normal mode analysis (38). In the current
study, the receptor flexibility issue was addressed somewhat
differently. The protocol contained two stages: at the first stage
alternative backbone conformers were generated, and during the
second stage they were further refined by side-chain optimiza-
tion only. The first stage is an iterative procedure in the course
of which each cycle of the receptor backbone and side-chain
refinement was followed by ligand docking in the VLS format
(see SI Text). Only those receptor conformers that would
discriminate between binders (antagonists) and decoy ligands
(agonists) were allowed to enter the next refinement cycle. This
procedure led to accumulation of structural receptor features,
amenable for selective antagonist discrimination. Somewhat
surprisingly analysis of the best models revealed that the rmsd
difference between them (�1.0 Å) was primarily caused by
differences in the position of side-chains atoms, whereas the
position of backbone atoms was essentially equivalent between
models.

The second stage of the protocol involved generation of
derivative models (B1-24, F1-24) based on obtained backbone
conformers by optimizing side chains only. The optimization
protocol was designed to favor models that can discriminate AR
antagonists from AR agonists on the basis of the ICM docking
score, as the ‘‘learning’’ criteria was biased toward antagonists
(SI Figs. 5 and 6).

The validation of the best-performing models involved dock-
ing of such AR antagonists as flutamide, hydroxyflutamide,
nilutamide, and bicalutamide. All of them were found to form
a strong hydrogen bond with the R752 residue, located deep in
the AR LBD binding pocket (SI Fig. 8). This interaction seems
to be essential for proper binding of AR ligands (both agonists
and antagonists), anchoring them in the pocket. Indeed, this
interaction was observed in the crystal structure of the hAR
LBD in complex with the agonist R1881, where 3-keto group of
R1881 is involved in hydrogen-bond formation (39). This inter-
action also appears to be important for certain AR LBD
mutants, as it can be observed in the crystal structures of W741L
(24) and T877A (23) in complex with bicalutamide and hydroxy-
f lutamide, respectively.

When the database of marketed oral drugs was docked into
validated antagonist-biased AR LBD models, members of the
phenothiazine family of antipsychotic compounds were among
the top predicted binders. Docking experiments with these
compounds generated an array of conformations of similar
energy, but with rather different orientations for bound drugs.
However, a hydrogen bond with the R752 residue was predicted
to be frequently formed by either the substituent at position
C2 of the phenothiazine system or the hydroxyl of the 1-
piperazineethanol group, which is common for these com-
pounds. This observation is in good agreement with predictions
on the importance of ligand interaction with the R752 of the
receptor (23, 24, 30, 39, 40).

Three of the phenothiazine derivatives (FPZ, APZ, and PCZ;
see SI Table 1) exhibited modest binding and antiandrogen
activity in vitro. These drugs are routinely used in the clinical
treatment of schizophrenia (41). They are thought to principally
act by inhibiting the D2 dopamine receptor and the 5HT2 family
of serotonin receptors, members of the superfamily of GPCRs
(42). During their administration, male patients are reported to
experience endocrine side effects, including loss of sexual desire
and impotence (43). Among many possible causes of these
observed side effects, the weak antiandrogen properties of the
compounds identified in the current study could provide a
plausible explanation. In fact, the blood concentration achieved
during administration of these drugs reaches the micromolar
range (www.labcorp.com), and we have demonstrated in vitro
AR antagonist activity of FPZ and APZ in the 300 to 1,000 nM
ligand concentration range (Fig. 1 A).

The antiandrogen activity of these drugs could be attributed
to the phenothiazine system, which is topologically similar to the
rigid steroid scaffold. The hydrogen bond acceptor group at
position C2 mimics groups of a similar nature at the equivalent
position of the steroidal ligands (e.g., the 3-keto of the R1881 and
DHT). This feature appears to be important for these scaffolds,
because perphenazine, which differs from FPZ only by chlorine
substitution at C2, did not exhibit any AR-related activity. Thus,
it seems plausible that the preferred mode of binding for these
compounds involves formation of a hydrogen bond between the
C2 substitute of the drug and R752 of the receptor, while the side
chain at position N10 could interact with the H11–H12 loop and
the H12 helix. This binding mode is similar to that observed for
antagonists of other nuclear receptors (30, 44). The antiandro-
gen properties of several phenothiazine derivatives (SI Table 2)
seem to corroborate this assumption. The ability of the D4 ligand
to induce translocation of the AR from the cytoplasm into the
nucleus also suggests that its antiandrogen activity is mechanis-

Fig. 4. Primary target activity of the selected marketed drug derivative.
Competitive ligand binding experiments with the primary pharmacological
targets of FPZ. (A) Serotonin 5HT2A receptor. (B) Serotonin 5HT2C receptor. (C)
Dopamine D2L receptor. The data are mean � SEM of three independent
experiments.
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tically similar to that of hydroxyflutamide (45) and bicalutamide
(Figs. 2 A and 3) (45), both of which induce AR translocation
from the cytoplasm to the nucleus.

The D4 biological data are in good agreement with its
predicted binding mode in the B5 AR LBD conformer (SI Fig.
9). The phenomenon of AR antagonism is believed to arise from
the inability of the AR LBD in antagonist conformation to
interact with LXXLL leucine-rich and aromatic-rich FXXLF
motifs of nuclear steroid receptor coactivators (SRCs) (20, 21).
These motifs interact with the AR LBD through a hydrophobic
interface formed by helices 3, 4, 5, and 12 of the receptor (SI Fig.
9). Binding of an antagonist ligand is believed to disrupt this
interface. It can be seen from SI Fig. 9 that D4 binding is
predicted to dislodge the H12 helix by pushing the H11–H12
flexible loop through its naphthalene substituent. The H12 helix
then occupies the binding site of the SRC peptide.

The presented data demonstrate that the D4 ligand, derived
from the phenothiazine-marketed drug scaffold, interacts spe-
cifically with the AR and behaves as an antiandrogen. This was
further confirmed by resistance of androgen-independent PC3
prostate cancer cells to D4 treatment (data not shown) and in
silico cross-docking experiments with homologous nuclear re-
ceptors (see SI Fig. 10). However, repurposing of drugs requires
not only improvement of activity at ‘‘off targets’’ but abolition of
activity at the original, primary drug targets. Competitive bind-
ing experiments, involving the classic pharmacological targets of
FPZ (serotonin and dopamine GPCRs), demonstrated that the
D4 ligand has markedly reduced affinity for these receptors (Fig.
4). These data confirm that modification of phenothiazine drug
scaffolds can lead to repurposing toward novel therapeutic
targets.

Conclusions
In the present work, we have successfully demonstrated appli-
cation of computational biology to the identification of antian-
drogen scaffolds. Compounds derived from phenothiazines,
currently marketed as antipsychotics, possessed submicromolar
antiandrogen activity and are promising leads for further opti-
mization. The work also suggests that, where validated models
are available, virtual screening of drug candidates may provide
a mechanism for better understanding of the potential side-
effect profile of drugs. The methodology developed can be
applied to the discovery of antiandrogen lead candidates against
metastatic mutant forms of the AR.

Materials and Methods
Database Preparation. Three databases were constructed and used
to evaluate and optimize the models of the AR LBD. Database
1 contained 24 AR antagonists identified from literature (flut-
amide, hydroxyflutamide, nilutamide and derivatives, bicaluta-
mide and derivatives, and isoxazolone derivatives) (46–50).
Database 2, contained 88 known agonists and antagonists spe-
cific for androgen, estrogen, progesterone, and other homolo-
gous nuclear receptors (32) kindly provided by M. Totrov
(Molsoft, La Jolla, CA). Database 3 contained 5,000 compounds
of similar molecular weight, randomly selected from the Chem-
Bridge drug-like compound database.

Model Preparation and Optimization. An initial approximation of
the antagonist-bound conformation of the AR LBD was derived
by combining comparative protein modeling with global energy
optimization. Because the crystal structure of the AR LBD in
antagonist conformation is still not available, a segmented
approach to assembly of the AR LBD model was used. Briefly,
the AR LBD structure for residues 669–885 was modeled by
using the crystal structure of the glucocorticoid receptor in an
antagonist (RU-486) bound conformation [Protein Data Bank
entry 1nhz (30)] as template. To model the conformation of the

loop, connecting helices H11 and H12, and the H12 helix
(residues 886–910), a different approach was used. First,
weighted harmonic restraints were imposed between Ca of
residues 892–910 (H12) of AR LBD and Ca of equivalent
residues of H12 (residues 535–547) of the crystal structure of the
estrogen receptor in antagonist-bound conformation [Protein
Data Bank entry 1err (51)]. Then, �, �, and � angles of the
residues comprising the AR LBD flexible loop (residues 887–
891) were freed, and the energy of the system was globally
optimized in internal coordinate space by using the biased
probability Monte Carlo (BPMC) procedure (52, 53) within the
ICM program (Molsoft). This initial crude model was used to
dock a small set of known nuclear receptor agonists and antag-
onists, composed of testosterone, DHT, RU-486, f lutamide,
hydroxyflutamide, nilutamide, and bicalutamide, using the li-
gand-docking procedure within the ICM program. Each recep-
tor–ligand complex was then refined by the BPMC procedure
applied to the flexible loop backbone and receptor side chains
in the vicinity of the ligand, while allowing the ligand to move.
The set of ligands was then redocked to each of the refined
receptor conformations. The resulting receptor–ligand com-
plexes were manually inspected, and receptor conformations
that achieved the best docking score separation between antag-
onists and agonists were chosen. The selected conformations
were then used to generate a new set of refined receptor–ligand
complexes, and the procedure was repeated iteratively (�15
iterations) to achieve a reproducible agonist/antagonist separa-
tion. This procedure resulted in the generation of two receptor
conformations favoring antagonist molecules with respect to the
ICM docking score. These models were designated as B-model
(bicalutamide ligand preferring) and F-model (f lutamide ligand
preferring) and selected for further optimization and
refinement.

The optimization of selected receptor conformations is de-
scribed in SI Fig. 5. Briefly, the database containing published
structures of 24 AR antagonists and their derivatives was docked
independently into each of the models, generating 48 receptor–
ligand complexes. This database was docked at least three times,
and the lowest-energy, ligand-bound conformations were re-
tained. Then, for each receptor–ligand complex, conformations
of the receptor side chains in the vicinity of the ligand were
optimized by global energy minimization with biased probability
Monte Carlo in internal coordinate space (52, 53). Enrichment
factors for identification of target-specific compounds were
determined as described (32), with certain modifications.
Briefly, docking score thresholds for the retention of 1% and
10% of the 5,000 compounds in the trial database (50 and 500,
respectively), were determined after docking of database 3 three
times to each of the 48 refined models. These threshold values
were subsequently applied to the focused library of 88 known
nuclear hormone receptor agonists/antagonists after docking to
each of the refined models. To evaluate selectivity of individual
AR conformers toward AR antagonist ligands, the enrichment
factor corresponding to the 1% docking score cutoff was com-
puted by counting focused library hits only for AR antagonist
ligands within this threshold. The enrichment factor for the 10%
docking score threshold was computed by counting all of the
nuclear receptor-focused library hits within this cutoff, thus
providing an estimate of the ligand cross-reactivity potential of
a particular AR conformer. The two models with the highest 1%
docking score cutoff enrichment factors were selected for use in
VLS experiments with the marketed oral drugs database (10).
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