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Abstract
By adaptational and other mechanisms, the visual system can compensate for moderate changes in
the colour of the illumination on a scene. Although the colours of most surfaces are perceived to
be constant (“colour constancy”), some are not. The effect of these residual colour changes on the
ability of observers to identify surfaces by their apparent colour was determined theoretically from
high-resolution hyperspectral images of natural scenes under different daylights with correlated
colour temperatures 4300 K, 6500 K, and 25000 K. Perceived differences between colours were
estimated with an approximately uniform colour-distance measure. The information preserved
under illuminant changes increased with the number of surfaces in the sample, but was limited to a
relatively low asymptotic value, indicating the importance of physical factors in constraining
identification by apparent colour.
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1. Introduction
The perceived colour of a surface depends on its spectral-reflecting properties, the spectral-
radiance properties of the illumination, and the spectral-reflecting properties of the other
surfaces in a scene. But if the variations in the illuminant spectrum are not too extreme, the
visual system can compensate through adaptational and other mechanisms for its effects
(Arend and Reeves 1986; Bäuml 1999). This is the phenomenon of illuminant colour
constancy (Foster 2003; Maloney 1999). Nevertheless, even with a nominally colour-
constant visual system, there will usually be some surfaces in a scene that will appear
different in colour with a change in illuminant. These residual colour differences are the
result of interactions between the illuminant spectrum and surface spectral reflectance that
fail to be predicted by the visual system. Some of these failures are related to the
phenomenon of metamerism, whereby two surfaces with different spectral reflectances
appear identical under one light but not under another (Wyszecki and Stiles 1982).

Are such residual colour differences important in making visual judgements? Suppose
perceived surface colour is used to label or identify objects in a scene under different
illuminants. As the number of surfaces in the selected sample increases, the information
gained from the scene also increases, in a way that can be defined formally by information-
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theoretic methods. In the presence of residual colour differences, however, there will be
errors in identification, and a loss in information.

To quantify this information loss, an analysis was made of high-resolution digital
representations of rural and urban scenes obtained with a hyperspectral imaging system,
which provided estimates of the surface spectral reflectance at 10-nm intervals at each point
(pixel) in each scene. In computer simulations, scenes were variously illuminated by
daylights of correlated colour temperatures 4300 K, 6500 K, and 25000 K. A random sample
of points was drawn from each scene and, after compensation for the effects of chromatic
adaptation, was labelled within an approximately perceptually uniform colour space. The
reliability of this labelling under changes in illuminant was used to calculate how much
information was preserved in each sample. The information preserved under illuminant
changes increased with the size of sample, but was limited to a relatively low asymptotic
value, indicating the importance of physical factors in constraining identification by
apparent colour.

2. Methods
2.1 Image reflectances

A high-spatial-resolution hyperspectral imaging system was used to acquire data from rural
and urban scenes in the Minho region of Portugal. Details of an earlier version of this system
have been given in Nascimento et al. (2002). The present system used a Peltier-cooled
digital camera providing a spatial resolution of 1344 × 1024 pixels (Hamamatsu,
C4742-95-12ER, Hamamatsu Photonics KK, Japan) with a fast-tuneable liquid-crystal filter
(VariSpec, model VS-VIS2-10-HC-35-SQ, Cambridge Research & Instrumentation, Inc.,
MA, USA) mounted in front of the lens, together with infra-red blocking filter. For each
scene, 33 images were captured at 10-nm intervals with 12-bit intensity resolution at each
pixel. The line-spread function of the system was close to Gaussian with standard deviation
approx. 1.3 pixels at 550 nm. Images were corrected for dark noise, spatial nonuniformities
(mainly off-axis vignetting), stray light, and any wavelength-dependent variations in
magnification or registration. The spectral reflectance at each pixel was estimated by
normalizing the corrected signal against that obtained from a neutral standard consisting of a
small planar grey (Munsell N5 or N7) surface placed in the scene whose reflected spectrum
was measured with a telespectroradiometer (SpectraColorimeter, PR-650, Photo Research
Inc., Chatsworth, CA, USA.), with calibration traceable to the National Physical Laboratory.
Initially, the illumination was assumed to be spatially uniform in all scenes; the effect of
indirect illumination is considered later.

2.2 Representation of surface colours
In computational simulations, scenes were illuminated by daylights with correlated colour
temperatures of first 25000 K and then 6500 K or first 4300 K and then 6500 K. The surface
colours represented by pixels were coded within the three-dimensional colour space
CIELAB, commonly used for surface appearance (Fairchild 1998; Westland and Ripamonti
2004). It has coordinates L*, a*, b*, with L* representing an achromatic attribute and a* and
b*, respectively, red-green and yellow-blue chromatic attributes. The procedure was as
follows. For each of the three illuminants, the spectrum of the reflected light at each pixel
was first converted to tristimulus values. The effects of full chromatic adaptation to the
sample were then calculated from a simple standardized model, CMCCAT2000 (see e.g. Li
et al 2002); that is, a fixed linear transformation M, defined by CMCCAT2000, was applied
which converted the original tristimulus values X, Y, Z to nominal R, G, B values; these
were then scaled by a diagonal (von Kries) linear transform representing full adaptation; and
then the inverse transformation M-1 was applied to obtain the “corresponding colours” XC,

Foster et al. Page 2

Perception. Author manuscript; available in PMC 2007 July 20.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



YC, ZC. These XC, YC, ZC values were then converted to L*, a*, b* values with respect to a
reference white achromatic stimulus D65 of luminance 100 cd m-2. Because just-noticeable
colour differences do not always have the same CIELAB differences (CIELAB space is
perceptually non-uniform), the CIE colour-difference formula CIEDE2000 and the colour-
difference formula CMC(1:c) of the Colour Measurement Committee of the Society of
Dyers and Colourists (see e.g. Luo et al 2001) were each used to evaluate the differences
ΔE. Additional calculations were made with other plausible values of the chromatic-
adaptation transformation M (Finlayson and Süsstrunk 2000, 2002).

2.3 Information-theoretic measure of object identification
A comprehensive measure of the ability to identify surfaces across a change in illumination,
from say illuminant e1 to illuminant e2, is provided by the mutual information I(e1; e2) from
information theory (Cover and Thomas 1991; MacKay 2003). Informally, I(e1; e2) represents
the reduction in uncertainty about a sample of surfaces under illuminant e1 given knowledge
about the surfaces under illuminant e2.

Estimates of I(e1; e2) for a fixed pair of illuminants e1 and e2 were obtained as follows.
Repeated draws of n sample points (pixels) were taken at random, without replacement,
from a selected scene. In each draw, each point under illuminant e2 (CIELAB coordinates
L*2, a*2, b*2) was identified with the point under illuminant e1 (coordinates L*1, a*1, b*1)
that was closest to it in colour: its “nearest neighbour” (the difference between coordinates
being defined according to the colour difference ΔE). From these repeated draws, a
probability transition matrix was derived, giving the probability p(i, j) of identifying point j
under illuminant e2 with point i under illuminant e1. From p(i, j), the mutual information I(e1;
e2) is given by

I(e1;e2) = ∑n
i=1 ∑n

j=1 p (i,j) log[p(i,j)/(p(i)p (j))], (1)

where p(i) = ∑n
j=1 p(i,j) and p(j) = ∑n

i=1 p(i,j). If the base of the logarithm is 2, then I(e1; e2) is
expressed in bits. Numerical estimates will be given later, but, for comparison, upper limits
on the information used by observers have been estimated as 29-58 bits in some attentive-
detection tasks (Verghese and Pelli 1992) and 36-49 bits in a partial-report task (Sperling
1960).

Difficulties with the expression given in eqn. (1) can arise when n is large and the
probabilities p(i, j) are small (e.g. Brillinger 2002). The problem can be circumvented,
however, when n is so large that the distribution of colour-code values may be treated as
continuous; for then an estimate of an upper bound C on I(e1; e2) can be taken from an
analysis of the capacity of an additive noise channel, where the noise between input and
output corresponds to the differences in code values under illuminants e1 and e2. If the noise
is distributed normally, then the capacity of this Gaussian channel has a simple formulation
in terms of the quotient of the variances of the code values and of the noise (Cover and
Thomas 1991). This quotient corresponds in effect to the number of distinguishable code
values. Thus, if the variances in the coordinates L*1, a*1, b*1 over the selected scene are νL*,
νa*, νb* and the variances in the differences L*2 - L*1, a*2 - a*1, b*2 - b*1 are νΔL*, νΔa*,
νΔb*, then

C = 0.5[log2(1+νL*/νΔL*) + log2(1+νa*/νΔa*) + log2(1+νb*/νΔb*)], (2)
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providing L*, a*, b* are independent. Although the assumption of independence can be
justified, neither L*, a*, b* nor the differences ΔL*, Δa*, Δb* are exactly normally
distributed. Even so, it may still be shown that eqn. (2) cannot be exceeded with normally
distributed code values and nearest-neighbour identification (Lapidoth 1996).

3. Results
3.1 Mismatches

Figure 1 illustrates how incorrect identifications occur. The solid symbols mark the CIELAB
chromatic coordinates (a*, b*) of 5 points under the 25000 K illuminant and the open
symbols their coordinates under the 6500 K illuminant, after full chromatic adaptation. For
points 1-4, the assumption that each open symbol corresponds to the nearest solid one
(ignoring the L* coordinate) gives the correct identification, but not so for point 5, where the
open symbol is closer to the solid symbol for point 4.

3.2 Information capacity
The curves in Fig. 2 show the estimated information preserved I(e1;e2) under changes in
illuminant from 25000 K to 6500 K as a function of the logarithm to the base 2 of the
number of sample points n. The evaluation of eqn. (1) was restricted to the range 1 ≤ n ≤ 210,
to avoid the estimation problem (Section 2.3). Similar results were obtained with other
scenes and scenes cropped to minimize the effects of shadows (as described in Nascimento
et al 2002). Under the assumption that performance can be approximated by an additive
Gaussian channel, these curves have asymptotes at 9-11 bits for these particular illuminant
changes. A similar pattern of performance was obtained with changes in daylight illuminant
from 4300 K to 6500 K.

Critically, the square root of the sum of the variances νΔL*, νΔa*, νΔb* of the differences in
the corresponding values of L*, a*, b* under the two illuminants (see Section 2.3) often
exceeded 1.0. Since the nominal threshold for a CIELAB (or CIEDE2000) difference to be
visually detectable is of this order (or less), it follows that incorrect identifications can occur
as a result of clearly discriminable changes in colour appearance, despite full von-Kries
adaptation.

4. Discussion
Because of the nature of physical surfaces and illuminants, there will usually be some
surfaces in a scene that will appear different in colour with a change in illuminant. If
perceived surface colour is used to label or identify objects in a scene under different
illuminants, then these failures in colour constancy will lead to a loss in information. As has
been shown here, the information preserved under illuminant changes increases as the
number of sample points in the scene increases, but it is eventually limited to by an
asymptotic value. This asymptote depends, of course, on the magnitude of the change in
illuminants. It also depends on the nature of the scenes, although the effect seems not to be
large.

Information capacity was estimated here for a perceptual colour space with an
approximately uniform colour-difference metric and for the completely adapted eye. How
the effects of adaptation are estimated depends to some extent on the nature of the
chromatic-adaptation transformation described in Section 2.2. Replacing this transformation
by one that corresponds to the adaptation of more spectrally sharpened colour mechanisms
(Finlayson and Süsstrunk 2002; Foster and Snelgar 1983) may lead to an improvement in
performance. Even so, the information capacities described here define relevant physical
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limits to visual performance, which are rarely considered in experimental studies of surface
colour-matching ability (cf. Nascimento et al 2004).
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Figure 1.
The origin of incorrect identifications. The solid symbols mark the CIELAB chromatic
coordinates (a*, b*) of 5 points under a daylight of correlated colour temperature 25000 K
and the open symbols their corresponding coordinates under a daylight of correlated colour
temperature 6500 K (the L* coordinate has been ignored).
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Figure 2.
Information preserved I(e1; e2) under a changes in daylight illuminant from e1 with
correlated colour temperature 25000 K to e2 with correlated colour temperature 6500 K as a
function of the logarithm to the base 2 of the number of sample points n. The broken curves
are for four different scenes and the solid line of unit slope shows the maximum possible
value of I(e1; e2). Each scene was of size 1344 × 1024 pixels.
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