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Abstract
Mice deficient in c‐jun‐NH2‐terminal kinase 1 (JNK1) exhibit decreased fasting blood glucose and
insulin levels, and protection against obesity‐induced insulin resistance, suggesting increased glucose
disposal into skeletal muscle. Thus, we assessed whether JNK1 deficiency enhances muscle glucose
metabolism. Ex vivo insulin or contraction‐induced muscle [³H]‐2‐deoxyglucose uptake was not
altered in JNK1 knockout mice, demonstrating that JNK1 does not regulate blood glucose levels via
direct alterations in muscle. In vivo muscle [³H]‐2‐deoxyglucose uptake in response to a glucose
injection was also not enhanced by JNK1 deficiency, demonstrating that a circulating factor was not
required to observe altered muscle glucose uptake in the knockout mice. JNK1 deficiency did not
affect muscle glycogen levels or the protein expression of key molecules involved in glucose
metabolism. This study is the first to directly demonstrate that enhanced skeletal muscle glucose
metabolism does not underlie the beneficial effects of JNK1 deficiency in lean mice.
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INTRODUCTION
Type 2 diabetes is associated with a chronic inflammatory response characterized by the
increased production of stress‐inducing molecules, such as tumor necrosis factor alpha
(TNF‐α) and free fatty acids [1–3]. Studies have suggested that this increase in inflammatory
mediators may underlie the development of insulin resistance in type 2 diabetes [4;5] as the
activation of stress responsive kinases has been shown to negatively impact the insulin‐induced
activation of signaling proteins such as insulin receptor substrate‐1 (IRS‐1) [3;6] and Akt [3],
and impair glucose uptake [3;7]. The mechanisms and/or signaling proteins involved in the
impairment of insulin signaling by inflammatory mediators are still unclear.
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The c‐jun‐NH2‐terminal kinase (JNK) is a member of the stress‐activated protein kinase family
that is stimulated by a wide variety of cellular stresses including stretch [8;9], cytokines [10–
16] and free fatty acids [3]. Studies from JNK1 knockout (JNK1 KO) mice [6], and mice
overexpressing the endogenous JNK‐interacting protein‐1 (JIP‐1) [17], have suggested that
JNK1 may play an important role in the development of obesity‐induced insulin resistance in
inflammatory states. In lean mice, JNK1 deficiency and/or inhibition of JNK activity results
in a significant decrease in fasted blood glucose [6], non‐fasted blood glucose [17], and fasted
blood insulin levels [6;17]. In addition, both JNK1 KO and JIP‐1 overexpressing mice fed a
high fat diet were protected against high fat diet‐induced insulin resistance [6;17]. Collectively,
these results suggest that inhibition of JNK1 signaling prevents the dysregulation of blood
glucose levels by increasing blood glucose disposal. Direct assessment of glucose disposal in
JIP‐1 overexpressing mice demonstrates that inhibition of JNK activity increases the rate of
glucose disappearance from the blood [17], demonstrating enhanced glucose disposal into
peripheral tissues with JNK inhibition.

Skeletal muscle is the primary tissue responsible for blood glucose disposal, and JNK1 is
expressed in skeletal muscle. Thus, it seems likely that the primary mechanism underlying the
beneficial effects of JNK1 deficiency and/or JIP‐1 overexpression on the regulation of blood
glucose levels is the enhancement of skeletal muscle glucose metabolism. However, to date,
no studies have directly examined the effect of JNK1 ablation or inhibition of JNK activity on
skeletal muscle glucose metabolism. Thus, the goal of this study was to determine whether
glucose metabolism was enhanced in skeletal muscle from lean JNK1 KO mice.

MATERIALS AND METHODS
JNK1 knockout mice

All experiments were performed in accordance with the Institutional Animal Care and Use
Committee of the Joslin Diabetes Center and the National Institutes of Health guidelines for
the care and use of laboratory animals. The generation of jnk1−/− mice was previously described
[18]. Heterozygous JNK1 mice were intercrossed to produce jnk1+/+ and jnk1−/− mice. To
produce sufficient numbers of knockout mice, jnk1−/− × jnk1−/− intercrosses were also
performed. In these cases, age‐ and sex‐matched wild‐type mice were used as controls. All
experimental animals were backcrossed six generations to C57BI/6J mice. Mice were housed
at a constant temperature (20–22°C) with a 12 hr light/dark cycle. LabDiet® rodent chow
(Purina Mills Inc, St. Louis, MO) and water were available ad libitum.

Body weight and fasting blood glucose measurements were obtained in the morning following
a 12–14 hr fast. Body weight values were obtained using a digital scale (Model CS200, Ohaus
Corporation USA). Blood samples were obtained from the tail of fully conscious mice, and
blood glucose levels were determined using a One Touch Ultra portable glucometer (Lifescan
Inc, Mipitas, CA ).

Measurement of Skeletal Muscle [³H]‐2‐Deoxyglucose Uptake Ex Vivo
Ex vivo skeletal muscle incubation experiments were performed on male mice, aged 22–24
weeks, as previously described [19;20]. Briefly, mice were fasted overnight (12–14 hrs), and
sacrificed by cervical dislocation. The extensor digitorum longus (EDL) and soleus muscles
were rapidly removed and placed in 6 ml of oxygenated Krebs‐Ringer‐Bicarbonate (KRB)
solution containing (in mM): 117 NaCl, 4.7 KCl, 2.5 CaCl2•2H2O, 1.2 KH2PO4, 1.2
MgSO4•7H2O, 24.6 NaHCO3, pH 7.5 supplemented with 2 mM pyruvic acid.

For insulin experiments, muscles were incubated for 40 min in KRB + pyruvic acid prior to a
20 min incubation with insulin (300, 600, or 50,000 µU/ml). For contraction experiments,
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muscles were incubated for 30 min in KRB + pyruvic acid and then electrically stimulated for
10 min. For contraction, muscles were transferred to a tissue support with stimulating
electrodes (Harvard Apparatus, Holliston, MA), and resting tension was set to 0.5 g. Muscles
were electrically stimulated with a Grass stimulator (Model S88, Grass Instruments, Quincy,
MA) set to the following parameters: train rate = 2/min; train duration = 10 s; pulse rate = 100
pulses/s; duration = 0.1 ms; volts = 100 V. Force production during the contraction was
monitored using an isometric force transducer (Kent Scientific, Litchfield, CT) and the
converted digital signal captured by a data acquisition system (iWorx114, CB Sciences, Dover,
NH). Force production was assessed with data analysis software (Labscribe, CB Sciences,
Dover, NH).

For glucose uptake measurements, muscles were transferred to vials containing 2 ml KRB
solution supplemented with 1.5 µCi/ml [³H]‐2‐deoxyglucose, 1 mM glucose, 0.45 µCi/ml
[14C]‐mannitol, and 7 mM cold‐mannitol, and the appropriate amount of insulin. Muscles were
dipped in ice‐cold KRB solution to terminate the glucose uptake, and frozen in liquid nitrogen.
Frozen muscles were weighed and solubilized in 1M NaOH at 80°C. Solubilized muscles were
neutralized with 1M HCl. Non‐soluble particulates precipitated by centrifugation at 13,000 ×
g for 1 min. Radioactivity in the samples was assessed by liquid scintillation counting for the
dual labels, and the extracellular and intracellular spaces calculated to determine glucose
uptake.

Glucose uptake in vivo
Skeletal muscle glucose uptake in vivo was measured as previously described [21]. Briefly,
mice were fasted overnight and then anesthetized with nembutal sodium (100 mg/kg mouse
body weight, intraperitoneal injection). After 30 min blood was taken from the tail to assess
basal glucose and background radioactivity levels. A bolus of 1 mg glucose (0.33 µCi [³H]‐2‐
dexoyglucose) / g mouse body weight, was administered via a retro‐orbital injection and blood
samples taken 5, 10, 15, 25, 35 and 45 min later for the determination of glucose and [³H]
levels. After the last blood draw, animals were sacrificed by cervical dislocation and the tibialis
anterior muscles harvested. Muscles were immediately frozen in liquid nitrogen.

Accumulation of [³H]‐2‐dexoyglucose was assessed in muscles using a perchloric acid
precipitation procedure modified from Ferre et al. [22]. In brief, frozen muscles were pulverized
and then homogenized in ice‐cold buffer containing (in mM): 20 Tris‐HCl, pH 7.5, 5 EDTA,
10 Na4P2O7, 100 NaF, 2 NaVO4, 0.01 leupeptin, 3 benzamidine, 1 phenylmethylsulfonyl
fluoride, and 10 µg/ml aprotinin. Aliquots (150 µl) were added to either 6% perchloric acid
(600 µl) or Ba(OH2)/ZnSO4 (600 µl) and centrifuged at 13,000 × g for 4 min. Radioactivity
in supernatants (500 µl) was assessed by liquid scintillation counting for the [³H] label.
Phosphorylated 2‐deoxyglucose was calculated as the difference between the radioactivity in
the perchloric acid and the Ba(OH2)/ZnSO4 supernatants and used to calculate the rates of
glucose uptake.

Skeletal muscle glycogen analysis
Skeletal muscle glycogen levels were assessed by a hexokinase enzymatic reaction as
previously described [23;24]. For glycogen measurements from EDL and soleus muscles, the
muscles were weighed and then solubilized in 250 µl of 1.0 N NaOH at 80°C. Samples were
neutralized with 250 µl of 1.0 N HCl, and centrifuged at 10,000 × g for 1 min. A 150 µl aliquot
of 3.3 N HCl was added to the sample, and then boiled for 2 hrs at 95°C. Samples were
neutralized by the addition of 250 µl of 2.0 N NaOH, vortexed, and then centrifuged at 13,000
× g for 30 sec. For glycogen measurements from tibialis anterior muscles, muscles were
pulverized, weighed, and then hydrolyzed in 2.0 N HCl at 95°C for 2 hrs. Samples were
neutralized with 2.0 N NaOH, vortexed, and then centrifuged at 13,000 × g. For all muscles,
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muscle glucose levels were assessed using hexokinase reagent (CIMA Scientific, De Soto,
TX).

Immunoblot analysis
Immunoblot analyses were performed using standard procedures. Briefly, frozen muscles were
homogenized on ice in a lysis buffer containing (in mM): 20 Tris‐HCl (pH 7.4), 5 EDTA, 10
sodium pyrophosphate, 100 NaF, 2 Na3VO4, 3 benzamidine, 1 phenylmethylsulfonyl fluoride,
1% NP‐40, 10 µg/ml aprotinin and 10 µg/ml leupeptin, and then centrifuged at 13,000 × g for
30 min. Total protein content was assessed via the Bradford assay. Skeletal muscle lysates (20–
40 µg) were resolved by SDS‐PAGE on 10% acrylamide gels, and proteins transferred onto a
nitrocellulose membranes. Membranes were blocked with 5% bovine serum albumin or 5%
non‐fat dry milk. Primary antibodies were incubated with membranes overnight at 4°C.
Horseradish peroxide‐conjugated secondary antibodies were incubated with the membrane at
room temperature, and detected using chemiluminescence detection reagents (PerkinElmer
Life Sciences, Inc, Boston, MA). Densitometric analysis of immunoblots was performed using
FluorChem software (Alpha Innotech Corporation, San Leandro, CA).

Primary antibodies were obtained from commercial sources as follows: glycogen synthase
(GS), glucose transporter 1 (GLUT1) and glucose transporter 4 (GLUT4) from Chemicon
International, Inc., Temecula, CA; acetyl‐CoA‐carboxylase (ACC; streptavidin‐HRP
antibody) from Pierce Biotechnology, Inc., Rockford, IL; JNK1/2 Santa Cruz Biotechnology,
Santa Cruz, CA; Akt, AS160, glycogen synthase kinase‐3α/β (GSK‐3α/β) and insulin receptor
substrate‐1 (IRS‐1) from Upstate Biotechnology, Inc., Charlottesville, VA; AMPK‐activated
protein kinase α1/2 (AMPKα1/2) antibody was generated from amino acids 2–16
(CAEKQKKHDGRVKIGHY) of rat AMPK (Covance Inc., Princeton, NJ).

Statistical analysis
The data are presented as the mean ± standard error of the mean. Statistical significance was
defined as P<0.05 and determined by t‐tests, or two‐way analysis of variance and Student‐
Newman‐Keuls post hoc analysis. The number of animals, or muscles, utilized to determine
statistical significance is indicated in the figure captions.

RESULTS AND DISCUSSION
Phenotypic characteristics of JNK1 knockout mice

A previous study using JNK1 KO mice demonstrated that lean, male JNK1 KO mice have
decreased body weights, fasting blood glucose levels, and fasting blood insulin levels compared
to their wild‐type controls [6]. To confirm the presence of this phenotype in our experimental
animals, body weight and fasting blood glucose measurements were taken every two weeks.
JNK1 KO mice had significantly lower body weights at all ages (Fig 1A), and fasting blood
glucose levels were significantly decreased in JNK1 KO mice at ages ≥16 weeks compared to
age‐matched, wild‐type control mice (Fig 1B). At 24 weeks of age, mice were given an
intravenous injection of a glucose solution (1 mg glucose/g mouse body weight), and blood
glucose levels assessed at 5, 10, 15, 25, 35 and 45 min. Glucose tolerance, as assessed by the
rate of blood glucose decline following the glucose bolus, was significantly increased in JNK1
KO mice (Fig 1C). This finding was consistent with the results of Hirosumi et al. [6], and
suggests that JNK1 KO mice fed a standard chow diet have enhanced glucose disposal into
peripheral tissues. Since skeletal muscle is the main target for blood glucose disposal, we
focused our studies on the role of JNK1 in the regulation of skeletal muscle glucose uptake
and glycogen metabolism.
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Ex vivo skeletal muscle glucose uptake and muscle glycogen levels
The effect of JNK1 deficiency on skeletal muscle glucose uptake was assessed by isolated
muscle incubation experiments performed on two different hindlimb muscles, the soleus and
EDL, to examine the possibility of fiber‐type specific differences in JNK1 deficiency. To
determine whether JNK1 KO mice have enhanced insulin‐stimulated skeletal muscle glucose
uptake, muscles were incubated in KRB buffer containing 300, 600 µU/ml insulin (submaximal
concentrations) or 50,000 µU/ml insulin (maximal concentration), and [³H]‐2‐deoxyglucose
uptake assessed. As shown in Fig 2A and Fig 2B, insulin‐stimulated glucose uptake into the
soleus and EDL muscles was not different between the wild‐type and JNK1 KO mice at any
of the insulin concentrations. These data demonstrate that neither insulin‐stimulated glucose
uptake, nor insulin sensitivity, was altered in the skeletal muscle from the JNK1 KO mice.

Physical exercise and muscle contraction increase glucose uptake via non‐insulin‐dependent
signaling pathways, and exercise/muscle contraction in rodents has been shown to stimulate
JNK1/2 phosphorylation and activity [25]. Thus, JNK1 may play a role in the regulation of
contraction‐stimulated muscle glucose uptake. To determine whether JNK1 KO mice have
enhanced skeletal muscle glucose uptake in response to muscle contraction, isolated muscle
incubation experiments were performed in conjunction with electrical stimulation. Soleus and
EDL muscles were maximally contracted for 10 min and force production monitored
throughout the contraction. As shown in Fig 2C and Fig 2D, contraction‐stimulated skeletal
muscle glucose uptake was not different between the wild‐type and JNK1 KO mice, in both
the soleus and the EDL. In addition, there was no significant difference in force production
measured during the contraction between the wild‐type and JNK1 KO mice (data not shown).

Muscle glycogen levels can significantly impact skeletal muscle glucose uptake. Thus, to
determine whether alterations in muscle glycogen levels affected our ability to detect
differences in glucose uptake between the wild‐type and JNK1 KO mice, muscle glycogen
levels were assessed in the soleus and EDL following a 12 hr fast. JNK1 deficiency did not
alter muscle glycogen levels in the soleus (WT: 5.96±0.45 nmol/mg, n=13; JNK1 KO: 5.80
±0.41 nmol/mg, n=20) or EDL (WT: 6.97±0.52 nmol/mg, n=13; JNK1 KO: 6.80±0.51 nmol/
mg, n=20).

In vivo skeletal muscle glucose uptake
Circulating adipokines, such as adiponectin, have been shown to positively regulate skeletal
muscle glucose uptake [26;27]. In JNK1 KO mice, serum adiponectin levels are increased
∼2‐fold [6]. Thus, circulating adipokines such as adiponectin could be required in order to
observe alterations in skeletal muscle glucose uptake in the JNK1 KO mice. To determine
whether circulating factors are required to observe increased insulin‐stimulated glucose uptake
in the muscles from the JNK1 KO mice, [³H]‐2‐deoxyglucose was assessed in vivo following
a retro‐orbital injection of a glucose bolus [1 mg glucose (0.33 µCi [³H]‐2‐deoxyglucose) / g
mouse body weight]. Consistent with the ex vivo skeletal muscle glucose uptake data, in vivo
glucose uptake was not significantly increased in the tibialis anterior muscle of JNK1 KO mice
(Fig 3A). Glycogen levels were also not significantly different between the wild‐type and JNK1
KO mice in the same muscles (Fig 3B).

Intracellular signaling proteins involved in skeletal muscle glucose metabolism
To determine whether JNK1 deficiency altered the protein expression of key signaling
molecules known to be involved in regulating skeletal muscle glucose metabolism,
immunoblot analyses were performed in gastrocnemius muscles for JNK1/2, insulin receptor
substrate‐1 (IRS‐1), Akt, AS160, glycogen synthase kinase‐3 (GSK‐3), glycogen synthase
(GS), AMP‐activated protein kinase (AMPK), acetyl‐CoA carboxylase (ACC), glucose
transporter 1 (GLUT1) and glucose transporter 4 (GLUT4). There was no significant change
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in the expression of any of these proteins (Fig 4). Importantly, since we did not detect an
increase in JNK2 protein expression, the lack of alterations in skeletal muscle glucose
metabolism cannot be attributed to a compensatory increase in JNK2 protein under these
experimental conditions. However, recent work has shown that total JNK activity is not altered
in muscle from JNK1 KO mice [28], suggesting an upregulation of JNK2 activity in the absence
of changes in protein expression. Although surprising, this data cannot explain the lack of
changes in skeletal muscle glucose metabolism between the wild‐type and JNK1 KO mice,
since mice lacking JNK1 protein still exhibit a phenotype consistent with enhanced glucose
disposal into peripheral tissues.

The main findings from this study are an important contribution towards understanding the
role that JNK1 plays in preventing both high fat diet‐ and genetically‐induced insulin
resistance, since studies using both JNK1 KO mice and JIP‐1 overexpressing mice have
suggested that loss of JNK1 protein and/or activity significantly enhances blood glucose
disposal. Since skeletal muscle is the primary site for blood glucose disposal, and also a primary
target tissue for type 2 diabetes treatments, it was critical to determine the effects of JNK1
inhibition on muscle glucose metabolism. Contrary to our hypothesis that enhanced skeletal
muscle glucose metabolism was the primary mechanism by which JNK1 ablation prevented
blood glucose dysregulation, our study is the first to directly demonstrate that the beneficial
effects of JNK1 deficiency are not mediated via alterations in muscle glucose uptake and/or
glycogen metabolism. These findings suggest that pharmacological interventions designed to
inhibit JNK1 can be utilized in combination with other drugs targeting skeletal muscle glucose
metabolism to enhance blood glucose disposal in the growing number individuals afflicted
with insulin resistance and type 2 diabetes.
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Figure 1. Phenotypic characteristics of JNK1 knockout mice
(A) At all ages studied, JNK1 knockout mice had significantly lower body weights compared
to wild‐type controls (N = 15–26 mice). (B) Following a 12 hr fast, blood glucose levels were
significantly lower in JNK1 knockout mice at age ≥16 weeks compared to wild‐type control
mice (N = 18–26 mice). (C) Following an intravenous injection of glucose (1 mg glucose / g
mouse body weight), blood glucose levels decreased faster in JNK1 knockout mice. Glucose
tolerance, assessed as the rate of decline following the glucose bolus, was enhanced by JNK1
deficiency (N = 3–5 mice/group). (* = P<0.05 vs wild‐type)
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Figure 2. Ex vivo skeletal muscle glucose uptake was not altered by JNK1 deficiency
Ex vivo muscle incubation experiments were performed on soleus and extensor digitorum
longus muscles excised from 20–24 week old male mice. (A + B) JNK1 deficiency had no
significant effect on the insulin‐stimulated accumulation of glucose in the soleus or the extensor
digitorum longus muscle. (C + D) JNK1 deficiency had no significant effect on contraction‐
stimulated glucose uptake in the soleus or the extensor digitorum longus muscle. (N = 3–20
muscles/group) (* = P<0.05 vs basal)
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Figure 3. In vivo skeletal muscle glucose uptake, and muscle glycogen levels, were not affected by
JNK1 deficiency
(A) In vivo [3H]‐2‐deoxyglucose uptake into the tibialis anterior muscle was not affected by
JNK1 deficiency. (B) Glycogen levels in the tibialis anterior muscle were not different between
wild‐type and JNK1 knockout mice. (N = 3–5 mice/group)
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Figure 4. JNK1 deficiency did not alter the protein expression of intracellular signaling proteins
involved in skeletal muscle glucose metabolism
In mouse gastrocnemius muscle, there was no significant change in the protein expression of
c‐jun‐N‐terminal kinase 2 (JNK2), insulin receptor substrate‐1 (IRS‐1), Akt, AS160, AMP‐
activated protein kinase (AMPK), acetyl‐CoA‐carboxylase (ACC), glycogen synthase
kinase‐3α/β (GSK3α/β), glycogen synthase (GS), glucose transporter 1 (GLUT1) and glucose
transporter 4 (GLUT4) between wild‐type and JNK1 knockout (JNK1 KO) mice.
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