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ABSTRACT We discuss theoretically the shape of actin-based protrusions such as stereocilia or microvilli that have important
functions in many biological systems. These linear protrusions are dynamical structures continuously renewed by treadmilling:
actin polymerizes at the tip of the cilium and depolymerizes in its bulk. They also often have a well-controlled length such as in the
hair bundles of the inner ear cells where they appear in a graded staircase structure. Recent experimental results by another group
of researchers show that the treadmilling velocity of the hair cell stereocilia is proportional to their length. We use generic arguments
to describe the physics of stereocilia taking into account the effect of many individual proteins at a coarse-grained level by a few
phenomenological parameters. At the tip of the cilium, we find that actin polymerization induces an effective pressure. Below the tip,
the shape of the cilium is determined by depolymerization: Agreement with the observed shape requires that depolymerization
occurs at least in two steps. Under these conditions, we calculate the cilium shape and provide physical grounds for the
proportionality between treadmilling velocity and cilium length. We also calculate the penetration of the stereocilium in the actin
cortical layer.

INTRODUCTION

Actin-based protrusions play an important role in cell bio-

logy (1,2). They extend either in a planarlike fashion as in

lamellipodia or linearly as in filopodia (3), microvilli (4), or

stereocilia (5–7). In both cases, the actin polymerization/

depolymerization process controls the protrusion dynamics.

Assembly takes place at or very near the plasma membrane

and disassembly occurs deeper in the cell.

Whereas the actin network in lamellipodia is significantly

branched and can be remodeled under the action of molec-

ular motors such as myosin II (8), it is composed of tightly

bundled parallel filaments in the linear protrusions (3). Cili-

ated structures are ubiquitous in epithelial tissues and their

physiological function can vary considerably from cell type

to cell type (1,2). Examples are the brush-border ciliated

cells of the intestine or the stereocilia of inner ear cells.

Stereocilia present two remarkable features (5–7): they

can be as long as 100 mm and they are assembled in groups

of 50–100, called a hair-bundle. In a given hair-bundle, a

stereocilium length can range from a few microns to 100 mm.

One can thus compare stereocilia of different lengths in the

same cell. Furthermore, the scale is large enough that accu-

rate dynamical studies can be performed. It has been clearly

shown that:

The polymerization process takes place at the tip of the

cilia (9).

In a given cell, the steady-state cilium length is propor-

tional to the actin polymerization rate, i.e., to the tread-

milling velocity; in other words, irrespective of their

length, cilia are renewed in a given time, typically two

days (10). Note that, between different cells such as

cells of the organ of Corti and cells of the vestibule,

this time can be different.

In a given cell, thick cilia are longer than thin ones (11,12).

Biopolymer cables, called tip-links, connect adjacent cilia

and deform the tip of the smallest cilia in a character-

istic way: tallest cilia which are not deformed by tip-

links are oblate or quasi-spherical, whereas smaller

ones which are deformed are prolate or pointed, the tip

being tilted in the direction of the cable (13,14).

The base of the cilia, which is tapered, extends signif-

icantly into the cell cortex (15).

To avoid any confusion, in the following, we call fascicle

the parallel network of actin filaments and bundle the group

of cilia in hair cells.

These experimental observations raise the following

questions:

Why is the treadmilling velocity proportional to the length?

What is the relationship between cilium diameter and length?

What does determine the root and emerging part of the

cilium?

Can the observation of the shape of a cilium provide in-

formation on the nature and intensity of the forces in-

volved in the process?

It would be ideal to answer those questions starting from a

molecular level. This is, however, too complex a task: the

number of proteins present in a cilium is by far too large and

their structures by far too complex to allow for a detailed

description. For instance, at the tip of a cilium an electron dense

region has been observed, called the tip-complex, in which all

proteins have not yet been identified (10). Even the outer

membrane embracing a cilium cannot be described in all of its

details. We thus have to adopt some level of coarse-graining.
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We describe the membrane as a flexible surface under

tension, a procedure that is well accepted now (16). The actin

filaments are cross-linked in stereocilia by proteins such as

espin (11). We consider here the actin fascicle as a solid body

made of close-packed filaments that all move at the same

treadmilling velocity. The filaments polymerize at their barbed

end located at the cilium tip and depolymerize statistically in

the bulk of the fascicle (1,10). The depolymerization is hin-

dered by binding proteins such as espin or possibly by spe-

cific minus end capping proteins. On the sides of the cilium,

the fascicle/membrane interaction can be characterized by a

standard interaction energy per unit area.

At the tip, the actin-growing front is interacting with the

membrane: we write generic dynamical equations showing

that the polymerization process generates an effective pres-

sure, which depends on the difference between the ‘‘would-

be’’ polymerization rate in a stress-free situation and the

actual polymerization rate. This formulation is model-free in

the sense that the parameters involved could be measured in

independent experiments. Alternatively the parameters could

be extracted from molecular theories such as the polymer-

ization-ratchet model (17,18), or a model describing the role

of formins (19). For stereocilia, the polymerization process is

known to depend on the presence of myosin XV (20,21), via

a mechanism yet to be understood and the role of the tip

complex is essentially unknown. For these reasons, we

concentrate in this manuscript on those results, which do not

depend on molecular details. This is in particular the case for

the cilia shape and the forces involved. Recently, a theo-

retical description of filopodia has been proposed in which

the interaction of the polymerizing filaments with the mem-

brane is described by a ratchet model (22). This description is

useful as it stresses the necessity of a certain degree of bun-

dling to obtain long enough filopodia. The obtained shapes

are, however, valid only if the fascicle radius is much smaller

than the natural radius of membrane tubes pulled by a point

force in the absence of actin. Furthermore, neither the lateral

fascicle-membrane interaction nor depolymerization is con-

sidered. In a cilium, the diameter is significantly larger than

the natural tube radius; the fascicle-membrane interaction and

depolymerization are essential features of the cilium dynamics.

Our article is organized as follows. In Shape of the Tip, we

discuss the shape of the tip of a cilium both in the absence and

in the presence of tip links. In particular, we obtain a general

relation between polymerization rate and cilium radius. In

Shape of the Stem, we describe the depolymerization in the

fascicle and deduce the shape of the associated stem. Mem-

brane Shape is devoted to the shape of the membrane sur-

rounding the cilium. In Partition between Emerged and

Immersed Parts of the Fascicle, we study the interaction of

the cilium with the cortical actin layer and the partition of the

cilium between an emerged and an immersed part. In the

Discussion, we extract from the experimentally observed

shapes the typical forces involved in cilia and discuss the role

of specific proteins such as espin, myosin XV, or myosin VI.

SHAPE OF THE TIP

Oblate shape of the tip in the absence of tip-link

The polymerization process at the tip of the cilia is complex,

and involves, in general, regulation by several proteins. A

good example is given by proteins of the formin family

(23,24), which build complexes with the barbed ends of the

actin filaments: they regulate the actin critical concentration

and are very sensitive to forces of approximately picoNew-

tons; their activity requires ATP hydrolysis. In the case of

stereocilia, the role of myosin XV has been evidenced (21):

this motor could simply push the membrane to help provide

space for the addition of new monomers (20). PicoNewton

forces are again large enough to severely modify the poly-

merization rate. More generally, other proteins such as ezrin

are known to regulate the polymerization process (25,26).

In view of the complexity of the phenomena involved at a

molecular level, it is useful to develop a model free for-

mulation. We first write generic equations valid for ‘‘weak

forces,’’ and then extend our results to account for strong

nonlinearities in Appendix A.

The physics of the tip growth is governed by the existence

of two physically coupled surfaces: the plasma membrane

and the actin polymerization front. The plasma membrane

represented in Fig. 1 is characterized by its shape and normal

velocity, which depend on its effective tension, its curvature

modulus, and the forces that the polymerizing front exerts

on the membrane. The polymerizing front in turn is also

characterized by its shape and velocity along the actin axis

FIGURE 1 Geometry of the tip of the cilium: the actin filaments are par-

allel to the vertical axis and their barbed end is in the direction of the arrow.

The polymerization front is represented by a dashed line at a distance d from

the membrane (continuous line). The inset shows the crossover to the stem

region with an edge of radius of curvature re.
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and the force that the membrane exerts on the front. Ac-

cording to Newton’s third law, the force exerted by the mem-

brane on the front is equal and opposite to the force exerted

by the front on the membrane.

We parameterize the membrane shape by a vector r(x)

(where x is a two-dimensional vector giving the coordinates

in the plane perpendicular to the stereocilium) and the front

by the local height along the ẑ direction parallel to the cilium

axis, h(x) as defined on Fig. 1.

At linear order in the force, the coupled dynamical equa-

tions for the motion of the two fronts read

vn ¼ �lm

dF

drn

@h

@t
1 vT ¼ �la

dF

dh
1 v

0

p; (1)

where vn is the velocity normal to the membrane, rn the local

coordinate along the normal n to the membrane, and @h=@t
the velocity of the actin front in the z direction; both ve-

locities are defined in the cell rest frame.

These equations describe the average shape of the membrane-

actin front interface. Both the polymerization front and the

membrane are fluctuating. Equation 1 should thus include

generalized fluctuating forces. In this work, we omit them

since we only consider the average behavior.

The dynamical equations involve two positive dissipative

coefficients lm and la. A more general formulation would

also include cross-terms, but this would lead to the same re-

sults with a slight difference in the definition of the pressure

defined below. Both lm and la can, in principle, be measured

experimentally. Indeed, lm is a mobility coefficient relating

the membrane velocity to an applied force and la describes

the force dependence of the polymerization rate due to the

membrane. The dynamic equations automatically satisfy the

local force balance.

The treadmilling velocity vT is the velocity of the actin

monomers counted as positive toward the base of the cilium;

the polymerization velocity vp
0 is the polymerization velocity

for a flat unperturbed actin front at the equilibrium distance

d0 from the membrane (d0 is defined more precisely below).

The total free energy of the system F is a functional of

both the membrane position r(x) and the front height h(x).

We write it as F ¼ Fm1F i: The membrane free energy Fm

at a distance d0 from the fascicle front involves a tension

contribution, a curvature contribution, and a pressure term:

Fm ¼
Z

dsm s 1
1

2
kðH � 2c0Þ2

� �
�
Z

Pdv: (2)

Here, dsm is the surface element parallel to the membrane.

The energy per unit area s of the membrane in interaction

with the front at a distance d0 depends both on the number of

phospholipids per unit area, and on the interaction energy of

that membrane with the actin fascicle, in particular via link-

ing proteins. As a result, s depends, in principle, on the angle

u between the membrane normal and the fascicle axis. The

value k is the membrane curvature modulus, H the total local

curvature, and c0 a spontaneous curvature that exists when

the membrane is asymmetrical. P is the hydrostatic pressure

difference between the inside and the outside of the cilium.

Note that the only difference with the standard Helfrich free

energy of membranes is in the u dependence of the tension s.

The interaction energy between the membrane and the

fascicle front F i can be expanded in powers of the perpen-

dicular distance d between the tip of the actin filaments and

the membrane. To lowest order, we write:

F i ¼
Z

dsm

1

2
kðd� d0Þ2: (3)

Here, k is a spring constant per unit area, and d0 the

membrane-front average distance at thermal equilibrium.

Both k and d0 depend on the membrane characteristics and

on the nature of the linking proteins between the membrane

and the fascicle front. They provide a coarse-grained descrip-

tion of the tip complex and its interaction with the mem-

brane. The equilibrium distance d0 might, in general, depend

on the angle u between the membrane normal n and the

cilium axis ẑ; in a first approximation, we ignore this orien-

tational dependence. The membrane-front distance is d ¼
nðr� hẑÞ: The detailed calculation of the derivatives of the

interaction free energy is given in Appendix A and leads to

dF i

drn

¼ kðd� d0Þ �
1

2
kðd� d0Þ2H

dF i

dh
¼ �kðd� d0Þ: (4)

At steady state (vn ¼ ð@h=@tÞ ¼ 0), the shape equation of

the membrane is then obtained from Eq. 1:

dFm

drn

¼
v

0

p � vT

la

1
1

2

HðvT � v
0

pÞ
2

kl
2

a

: (5)

This equation is formally equivalent to the equilibrium

equation of a membrane submitted to an effective hydrostatic

pressure difference and effective tension:

Peff ¼P 1
v

0

p � vT

la

seff ¼s 1
1

2

ðvT � v
0

pÞ
2

kl
2

a

: (6)

We show in Appendix A that this result is general and that

even for the full nonlinear problem the effect of treadmilling

can be recast in the form of an effective pressure and an

effective membrane tension.

Note that the shape Eq. 5 implies that, for any treadmilling

velocity vT, there is, in general, a unique solution for the

membrane shape (16). Equation 5 implies also a global force

balance Peffpr2
0 ¼ 2pr0 seff1ðk=2r2

0Þ
� �

; where r0 is the fas-

cicle radius at the edge of the tip where u ¼ p/2 and the

effective tension seff is calculated for an angle u ¼ p/2. The

global force balance determines the effective pressure, i.e.,

the difference between the treadmilling velocity and the bare
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polymerization velocity for a given fascicle radius r0. In the

limit where there is no pressure difference P ¼ 0, we find, in

a linear approximation,

vT ¼ v
0

p � la

2seff

r0

1
k

r
3

0

� �
: (7)

We have neglected here the treadmilling contribution to

the tension, which is of higher order. This relation imposes

that thicker cilia have a larger treadmilling velocity at con-

stant polymerization velocity vp
0.

The shape of the tip may be described by three regimes:

Large tips (r0 � ðk=2sÞ1=2
). One can distinguish two

regions as shown on Fig. 1: the central region essentially

spherical with a radius R¼ 2seff(u¼ 0)/Peff and the edges

with two principal radii of curvature, a small radius of

curvature re ’ ðk=2sÞ1=2; and a large one equal to r0.

Small tips (r0 ’ ðk=2sÞ1=2
). The central region disappears

and the tip is almost spherical with a radius (k/2s)1/2.

Small fascicles (r0 � ðk=2sÞ1=2
). This case is discussed

in Atilgan et al. (22) and has been observed with mi-

crotubules bundles in vesicles (27). The fascicle acts as

a point force on the membrane, and the results of Derényi

et al. (28) hold. This regime only exists if the mem-

brane does not adhere to the filaments which is pos-

sible if the energy of the nonadhering membrane is

smaller than that of the adhering one, r0ðseff1ðk=
2r2

0ÞÞ.ð2s0kÞ1=2; where s0 is the tension of the non-

adhering membrane.

Prolate shape of the tip in the presence of tip-link

As already mentioned, in a hair cell, the hair-bundle has a

graded array of stereocilia. The stereocilia in one row all

have the same size and are connected to larger stereocilia in

the next row by tip-links. It has been shown that the larger

stereocilium exerts a point force on the smaller ones via the

tip-link. A point force f in the direction of the tip must

therefore be included in Eq. 2. In the presence of this force

the shape of the stereocilium is no longer rotationally sym-

metric and one must rely on numerical methods to find it. We

used the Surface Evolver program (29) in the same way as in

Derényi et al. (28). We give examples of the obtained shape

on Fig. 2. Fig. 2 a corresponds to no force and no poly-

merization pressure; Fig. 2 b corresponds to no force and

finite polymerization pressure; and Fig. 2 c corresponds to a

finite polymerization pressure and a finite force.

The set of dynamical expressions in Eq. 1 describes the tip

shape due to the polymerization kinetics. It can no longer be

used below the location z ¼ 0, where the membrane tangent

is parallel to the cilium axis. From there on, no polymeri-

zation occurs, but instead a statistical depolymerization takes

place. We describe this process, which controls the shape of

what we call the stem, in the following section.

SHAPE OF THE STEM

The actin fascicle being solidly held together by binding

proteins such as filamin and espin, it can be considered as

incompressible to a very good approximation. This allows us

to discuss the shape of the fascicle independently of that of

the membrane in this part of the cilium.

For the discussion of the stem shape of a long cilium, we

can ignore the tip curvature and suppose that all filaments

have their barbed ends in the same plane. The radius of the

cilium in this plane is the radius r0 at the base of the tip. If

the surface density of actin barbed ends perpendicular to the

fascicle axis is cs, the number of actin filaments is nf ¼
cspr0

2. Actin filaments polymerize at their barbed ends with

a polymerization rate kp and depolymerize at their pointed

end located inside the fascicle at a rate kd. The treadmill-

ing velocity is vT ¼ kpa, where a is the size of an actin

monomer.

In physiological conditions, it is likely that actin filaments

pointed ends are capped by various capping proteins when

they are formed. We consider here one of these capping pro-

teins and assume that it controls the depolymerization, which

is possible only if the filament is uncapped. The uncapping

rate of the pointed ends is ku. For simplicity, we ignore here

recapping events and we suppose that once a filament is un-

capped it depolymerizes at its pointed end. A full calculation

including recapping events leads to similar results. Bundling

proteins can also prevent depolymerization and can be treated

in essentially the same way.

We first study the distribution of the pointed ends in the

fascicle. There are capped pointed ends and uncapped pointed

ends. We call pc(n) the probability to find a capped pointed

end of an actin filament containing n monomers, and pu(n)

the probability to find an uncapped pointed end of a filament

containing n monomers. The master equation for these two

probabilities (30):

FIGURE 2 Shape of the tip of a stereocilium. (a) Shape with no poly-

merization pressure and no force; membrane tension s ¼ 5 10�5 N/m,

bending modulus k¼ 10 kT. Note the flat region in the center, corresponding

to the absence of polymerization pressure. (b) Shape with a polymerization

pressure Peff ¼ 9 103 Pa and no force; membrane tension s ¼ 5 10�5 N/m,

bending modulus k ¼ 10 kT. Note the curvature difference between the

central region and the edges as described in the text. (c) Shape with a

polymerization pressure Peff ¼ 6 103 Pa with an external force of ;20 pN;

s ¼ 5 10�5 N/m, bending modulus k ¼ 45 kT. Note the prolate shape due

to the tip-link pulling force.
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@p
c

@t
¼ �kup

cðnÞ1 kpp
cðn� 1Þ � kpp

cðnÞ

@p
u

@t
¼ kup

cðnÞ1 kpp
uðn� 1Þ � kpp

uðnÞ

1 kdpuðn 1 1Þ � kdp
uðnÞ: (8)

When an uncapped pointed end depolymerizes, the size of

the corresponding filament decreases and the filament dis-

appears when all monomers have depolymerized. Therefore

pu(n ¼ 0) ¼ 0. In a steady state, statistically, the loss of

filaments is balanced by the appearance of new filaments.

The formation of new filaments occurs by a nucleation

process, the minimal seed for growth being of the order of

three or four monomers. There is a finite flux of new actin

filaments in the fascicle and the probability pc is finite close

to the polymerization plane. This probability is defined for a

number of monomers larger than the seed size. A steady state

of the fascicle then exists with filaments of different lengths

having been created at different times.

The steady-state solution of the master equation with these

boundary conditions is

p
cðnÞ ¼ a

kp

kp 1 ku

� �n

p
uðnÞ ¼ a

ku 1 kp

kd � ku � kp

kp

kp 1 ku

� �n

� kp

kd

� �n� 	
: (9)

The constant a is fixed by the normalization below. Note

that the distribution of endpoints decreases to zero when n is

large only if kd . kp, which we assume below.

The distance z between a fascicle section and the tip of the

fascicle can be labeled by the number of monomers m ¼ z/a
between this section and the barbed end of the actin filament.

The number of actin filaments in section m is related to the

total probability of finding a pointed end in the fascicle

pe(n) ¼ pc(n) 1 pu(n) by NðmÞ ¼ +N
n

peðnÞ: Imposing the

total number of barbed ends at z ¼ 0, we find

NðmÞ ¼ cspr2

0

kd� kp

kd� ku� kp

kp

kp 1ku

� �m

� ku

kd� ku� kp

kp

kd

� �m� 	
:

(10)

The incompressibility of the actin fascicle then directly

gives the shape of the fascicle. The radius r at a distance z
from the plane of the polymerizing barbed ends is deduced

from the relation N(m) ¼ cspr2(z):

rðzÞ ¼ r0

kd� kp

kd� ku� kp

kp

kp 1ku

� �z=a

� ku

kd� ku� kp

kp

kd

� �z=a
" #1=2

:

(11)

We show, in Fig. 3, a typical fascicle stem shape calculated

from this equation.

The weight average length of the actin filaments can be

calculated from the monomer distribution

Æmæ ¼ +mNðmÞ
+NðmÞ ¼

kp

kuðkd� kpÞ

3
ðkd� kpÞ2ðkp 1kuÞ1kuðkd� kpÞðkp 1kuÞ1kpk

2

u

kdðkp 1kuÞ� k
2

p

:

(12)

We consider, in the following, the limit where depoly-

merization is faster than polymerization and where uncap-

ping is the slowest event kp � ðkd � kpÞ$ku: In this case, at

large distances the radius of the cilium decreases exponen-

tially as r ¼ r0ðkd � kp=kd � kp � kuÞ1=2
exp� z=2l; where

l ¼ Æmæa ¼ vTku
�1. The length of the fascicle can be defined

by imposing that the fascicle radius must be larger than a

monomer size and is given by

L¼ 2vTk
�1

u log
r0

a

kd� kp

kd� kp� ku

� �1=2

: (13)

We here recover the law found experimentally by

Rzadzinska al. (10), stating that the treadmilling velocity in

a stereocilium is proportional to the fascicle length. The ratio

between the length and the velocity defines a timescale gov-

erning the length of the filaments. This time is the detach-

ment time ku
�1 of the capping protein from the actin

filaments pointed ends required for depolymerization.

In the vicinity of the tip, the profile is almost perfectly

cylindrical and the curvature is oriented toward the cilium

inside. If kd � kp and ku are not very close (as in Fig. 3), the

shape is similar to the experimental shapes observed in

FIGURE 3 Two-dimensional shape and three-dimensional reconstruction

of a cilium calculated from Eq. 11. The tip has been added. The parameters

are ku/kp¼ 0.05 and (kd� kp)/kp¼ 0.055. These values have been chosen to

reproduce the experimental shapes of Fig. 6 of Rzadzinska et al. (10).
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Rzadzinska et al. (10) in the situation where the Myosin XV

have been knocked out. Normal fascicles containing Myosin

XV have a more cylindrical shape (15). In our model the

shape gets closer to a cylinder if ½ðkd � k � pÞ � ku�=
ðkd � kpÞ � 1:Our model can also be extended by assuming

that not only one capping protein is involved before

depolymerization but that several capping proteins must

unbind in a sequential order. Depolymerization could also

occur preferentially on the surface of the fascicle in contact

to the membrane. These improved models are not presented

here for simplicity, although they would lead to more cy-

lindrical shapes that are closer to the experimental ones.

MEMBRANE SHAPE

In the discussion of the tip, we have already discussed the

membrane shape. In this section, we consider the membrane

along the stem and its connection to the apical side of the

actin cortex (Fig. 4).

We distinguish three domains.

The stem domain

The membrane is bound to the fascicle via connecting pro-

teins. There is only one equilibrium equation: ðdFÞ=ðdrmÞ ¼ 0:
In practice, the spring constant k and the distance d0 might differ

from the one used in the tip discussion. However, since d0 is

a molecular length, for all practical purposes in this regime

the shape is the same as that of the fascicle. The argument

is particularly simple in the limit of ‘‘slow’’ shape variation

ðr@2r=@z2Þ � 1; but holds quite generally. In this regime, the

equilibrium equation yields

kðd�d0Þ ¼
s

r
� k

2r
3: (14)

This leads to d ¼ d01s=kr � k=2kr3. Since (s/k)1/2 and

(k/k)1/4 are both microscopic lengths of order d0 and r is a

mesoscopic length, we obtain d ’ d0: For exactly the same

reason, once d is replaced by its equilibrium value, the free

energy to be used is to a good approximation,

F a ¼ 2p

Z
s1

k

2r
2

c

� �
rds; (15)

where ds is the arc length element along the cilium contour,

and r(s) is the shape of the cilium given by the solution of

Eq. 11. The local radius of curvature of the cilium is rc ¼
r/cos b, where b is the local angle between the tangent to

the cilium and the vertical axis. The integral runs over the

portion of the fascicle on which the membrane adheres. As

already mentioned, the tension appearing in Eq. 15, contains

both the intrinsic tension of the membrane s0 and the fascicle-

membrane adhesion energy g, s ¼ s0 � g.

Region connected to the apical cortex

The arguments used in the preceding paragraph can also be

used for the membrane adhering to the apical cortex with the

proviso that d0, g, and k take on different values which we

denote with primes. The membrane is thus flat, at a distance

d90 from the apical cortex, and the energy reads

F b ¼ 2p

Z
r9dr9s9; (16)

where s9 ¼ s0 � g9 and where the sum runs over the region

where the membrane adheres to the cortex.

Transition region

In the transition region, the membrane adheres to neither the

fascicle nor the cortex. The detailed calculation of its shape is

fairly heavy, but to a good approximation, it is a portion of

torus that is tangent to both stem and apical membrane, and

of radii of curvature �r and r/sin u, as shown in Fig. 4. The

free energy of the cilium reads

F ¼F tip 1F a 1F b 1

Z
du2prr s0 1

1

r
� sinu

r

� �2
" #

:

(17)

The value F tip is the free energy of the cilium tip. The last

integral of Eq. 17 runs over the nonadhering region of the

membrane, r depends on u and in our approximation, r is

constant. The membrane geometry is displayed in Fig. 4 and

the details of the calculations are given in Appendix B.

Because the treadmilling timescales are, in all circum-

stances, very slow compared to membrane response times,

the value of r is the value which minimizes the free energy

F : Note that F tip disappears from this minimization pro-

cedure (Appendix B) since it does not depend on r.

One can identify two simple limiting regimes. If the radius at

the base rb is larger than r, the radius of curvature in the non-

adhering region is

FIGURE 4 Membrane shape in the vicinity of the apical layer. The mem-

brane adheres to the fascicle on the left and to the apical layer on the right.

There is no adhesion in the intermediate transition region.
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r¼ k

2s̃


 �1=2

; (18)

where

s̃¼ s0�
1

p

2
1b


 �
tan

p

4
�b

2

� �ðs1s9Þ (19)

is an effective tension of the membrane. The radius r of the

transition region is independent of the radius at the base rb.

The extent of the transition region is of the same order of

magnitude as the diameter of phospholipid tubes pulled by

point forces (28), typically several tens of nanometers.

In the opposite limit where rb � r, we obtain a similar

result with a different effective tension as

�s¼s0

sinb

tanacos
2
b

p

2
1b


 �
� tanað1� cos2aÞ

h i

�1

2
s9

tan
2
b

tan
2
a

1s
sinb

cos
2
btan

2
a

� 	
;

(20)

where b12a ¼ p=2:

PARTITION BETWEEN EMERGED AND
IMMERSED PARTS OF THE FASCICLE

In this discussion we have not yet specified what determines

the length Lo of the cilium sticking out of the apical mem-

brane (and equivalently the length Li penetrating the apical

actin cortex of the cuticular plate). Because treadmilling time-

scales are very long compared to the membrane timescales,

we can totally ignore any friction terms due to interactions

between the membrane and the fascicle. The force fm exerted

by the membrane on the fascicle is due to the fact that a

change in the length Lo of the emerging part changes the total

free energy of the membrane keeping the fascicle shape

constant. It is calculated by proper differentiation of the mem-

brane free energy as a function of Lo, fm ¼ �dF=dLo: The

explicit calculation is given in Appendix B. In the limit

where the radius at the apical level rb is much larger than the

radius of curvature of the transition region r, the force reads

fm ¼�2prb

s1kcos
2
b=2r2

b

cosb
1s9tanb

� 	
; (21)

where, as in the previous paragraph, s and s9 are the mem-

brane tensions in the stem region and in the apical region,

respectively. Note that, for most practical purposes, the term

due to the bending energy is small, the fascicle is very elon-

gated, and b ’ 0: In this limit, the contribution to the mem-

brane force of the membrane adhering to the apical surface is

negligible. The fascicle radius at the apical surface is given

by the shape of the stem obtained in the previous section. We

use here the simplest approximation rb ¼ r0 exp � (L � Li)/

2l, where r0 is the radius at the tip and L¼ 2l log(r0/a) is the

total length of the fascicle, and l ¼ vTku
�1 as defined in

Shape of the Stem.

The membrane force is balanced by the force on the fas-

cicle due the cortical actin layer. As the treadmilling velocity

is very slow, the interaction between the cortex and the fas-

cicle can be described as a viscous friction force proportional

to the treadmilling velocity vT. Images of the fascicle root

obtained by electron microscopy show that the fascicle re-

mains tightly assembled; it can thus be considered as a solid

penetrating the apical layer that we describe here as a liquid

of viscosity h. This is licit as long as the cross-linking protein

binding time (of the order of minutes) is small compared to

the treadmilling time (of the order of one day). As in most of

the electron micrographs, we assume here that the penetra-

tion depth Li of the fascicle is smaller that the cortical layer

thickness w. The hydrodynamic friction force on an elon-

gated body is given by

ff ¼ahLivT=logðLi=r0Þ; (22)

where a is a numerical prefactor of ;2p (31).

Equating the two forces, we obtain an equation for the

penetration depth in the cortical layer

Li

2l
exp� Li

2l

� �
¼ aslogðLi=r0Þ
ða=pÞlvTh

: (23)

If a s logðLi=r0Þ=ða=pÞlvTh.1=e where log e¼ 1, Eq. 23

does not have any solution and the fascicle is completely

immersed in the apical layer. This occurs if the membrane

tension is too large or if the viscosity is too small.

If a s logðLi=r0Þ=ða=pÞlvTh.1=e; Eq. 23 has two solu-

tions, a solution smaller than 2l and a solution larger than

2l. Only the first solution is physical as it decreases with the

viscosity.

When a s logðLi=r0Þ=ða=pÞlvTh.1=e; there is a discon-

tinuous transition between a totally immersed fascicle and a

fascicle with a finite penetration depth Li ¼ 2l. Note that a

typical value of the fascicle size is L ¼ 2llogðr0=aÞ ’ 6l:
The largest value of the penetration depth is Li ¼ 2l. We

therefore expect that the fraction of the fascicle immersed in

the cortical layer is smaller than one-third.

The hydrodynamic value of the friction force is a good

description of the interaction between the fascicle and the

apical layer provided that the actin cortical layer behaves as a

simple liquid and that there is a no-slip boundary condition at

the fascicle surface. The boundary condition at the fascicle

surface strongly depends on the proteins linking the fascicle

to the apical layer. The no-slip boundary condition requires a

stronger or equal binding between the fascicle and the apical

layer than between actin filaments in the apical layer. If this

binding is too weak, there is a finite slip at the surface of the

fascicle. The finite slip is associated to a friction force of the

form fs ¼ jAivT, where j is a friction constant per unit area

and Ai is the immersed area of the fascicle which must

be added to the hydrodynamic friction force. The results are

identical provided that the tension s is replaced by s̃ ¼
s � 2ljvT:
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DISCUSSION

Our analysis provides a robust framework for understanding

the essential geometric features of cilia and buds generated

by actin polymerization. Typically, cilia have a tip, a cy-

lindrical part, and a tapered tail.

In the absence of any external force such as the one ex-

erted by the tip-links in hair-bundles, the tip is oblate. Its

exact shape depends on many parameters: membrane tension,

adhesion to the cytoskeleton, membrane curvature modulus,

effective pressure Peff. The effective pressure itself depends

on the difference between the polymerization velocity which

would be observed in the absence of external force and the

treadmilling velocity. Although many parameters are in-

volved, only two length scales are relevant for the shape of

the tip: seff/Peff and (k/s)1/2. In many practical cases, the tip

radius r0 is larger than (k/s)1/2 and the curvature at the tip is

equal to Peff/2seff. If we take as reasonable values seff ¼
10�4 N/m and a radius of curvature ’200 nm as suggested

by Figs. 4 a or 6 a of Rzadzinska et al. (10), we find an

effective pressure Peff¼ 9 103 Pa. This corresponds to a total

upward force exerted by the filaments on the membrane

f ’ Peffpr2
0 ¼ 500 pN. A typical fascicle comprises a few

hundred filaments that lead to a force per filament of ;1 pN.

We further show that each tip-link exerts a localized

tensile force, orthogonal to the membrane, of the order of a

fraction of the force required to pull an infinite tube from the

membrane ftube¼ 2p(2kseff)
1/2. The curvature in the vicinity

of the tip-link is given by ðk=2seffÞ1=2: Assuming seff ¼
10�4 N/m and analyzing the shape of the stereocilium tip

of Fig. 6 b of Rzadzinska et al. (10), we infer ðk=2seffÞ1=2¼
40 nm and k ¼ 40 kT ¼ 1.6 10�19 J and we estimate the tip-

link force ftip as a fraction of 36 pN. The numerical analysis

of Fig. 2 confirms this result. The value of the bending

modulus is typical for plasma membranes (16) and the tip-

link force is consistent with the direct measurement of

Hudspeth et al. (32).

The actual shape of the cylindrical section results from the

fact that depolymerization can only take place after a suitable

event has occurred. For the sake of simplicity we have con-

sidered here that this event is the uncapping of the pointed

end of actin filaments. In real life, actin monomers forming

the filament must also hydrolyze to an ADP form (1,33), and

bundling proteins prevent depolymerization as well. Whereas

in vitro studies suggest that hydrolysis is fast on the time-

scales considered here, the bundling proteins have clearly a

stabilizing influence: the reason is that if they bind to the

filament, they lower the free energy and thus stabilize the

filament. Depolymerization beyond a cross-link requires

the unbinding of the cross-linking protein. The longest of all

these times determines the length of the cilium, once multi-

plied by the treadmilling velocity.

One of our important results is the law proposed in

Rzadzinska et al. (10) that, in a given cell (i.e.: for identical

biochemical conditions), the length of the cilium is propor-

tional to the treadmilling velocity. A word of caution is

needed here: these results are valid provided that the slowest

processes correspond to the unbinding events. In the oppo-

site limit, the cilium length is proportional to avT/(vd � vT)

and grows faster than linear with the treadmilling velocity.

Although our description is coarse-grained, we can still

discuss the role of specific proteins controlling shape and

dynamics of stereocilia such as espin (11). Overexpression of

espin increases significantly the time ku
�1 that actin filaments

have to wait before depolymerization may have a chance to

start. It thus increases significantly the length of the cylin-

drical part of the cilium, without changing the depolymeriza-

tion rate kd as observed experimentally (10,34). Overexpressing

other strongly binding proteins and pointed-end capping

proteins should lead to similar observations.

A component of the stereocilia that we did not discuss so

far are minus-end directed Myosin VI motors, located along

the membrane close to the base of the cilium (35). They exert

forces that contribute to the global force balance and which

tend to push the fascicle out of the cell body, opposite to the

membrane force. The force due to Myosin VI (36) is given

by the force per motor properly projected onto the fascicle

axis, multiplied by the linear motor density and the perimeter

of the base. This force is formally equivalent to the tension

force, and all the results can be used provided that one re-

places s by s � nf where f is the force exerted by one motor

along the axis and n the motor density at the base of the

cilium. Note that f is essentially the Myosin VI stall force. As

a result, overexpression of myosin VI should increase the

emerging part of the cilium, and inhibition decrease it. Myo-

sin VI has another important role: it prevents the cilia from

fusing. This last observation can be understood by consid-

ering the membrane-mediated interaction between cilia dis-

cussed in Derényi et al. (28).

The overall shape and size of the cilia depend on another

parameter not discussed so far: the cilium radius at the tip.

Equation 7 implies that thicker actin fascicles have a larger

treadmilling velocity than thinner ones (everything else

being kept equal). In turn, thick fascicles should be longer.

These predictions are in direct agreement with the observa-

tion that, in hair cells, longer actin fascicles are thicker. The

electron micrographs of Rzadzinska et al. (10) and Lin et al.

(20) show a clear correlation between actin fascicle diameter

and length at least for the cells of the organ of Corti. The

observation that espin overexpression leads to longer and

thicker filaments is compatible with our predictions (11);

however, as we have already pointed out, even at constant

radius and constant treadmilling velocity, cilia should be

longer since the uncapping rate ku should decrease. This

observation is thus not a proof of validity of Eq. 7 unless the

espin density does not change. We postpone for future work

the discussion of factors determining the cilium radius. The

angular dependence of the polymerization rate, spontaneous

curvature of the membrane, and global availability of actin

nucleators and monomers could play a role as well.
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Finally, in practically all regimes discussed, the length of

the cilia depends on many parameters that cannot be

precisely controlled. It should then fluctuate, as discussed

in Gov et al. (37). In many cases, the length fluctuations are

compatible with the cilia functionality. However, in stere-

ocilia, one could expect the length to be well defined over

very long timescales as length codes for frequency (13,38):

this is most likely not the case, in view of the large number of

parameters to be controlled over a life span. One of the roles

of the large number of cilia in a hair-bundle could be to

precisely reduce the effect of independent fluctuations be-

tween cilia.

APPENDIX A: NONLINEAR EFFECTS AT THE TIP

In this Appendix, we give the details on the derivation of the tip free energy,

and we show that the results recasting the effect of treadmilling, in terms of

an effective pressure and an effective tension, are general and do not depend

on the linear approximation used in the text.

Tip free energy: linear theory

Within the linear approximation, the free energy of the tip is given by Eqs. 2

and 3. The interaction free energy depends on the local distance d between

the membrane and the polymerization front. This distance is written as a

function of the membrane and front coordinates as

hẑ¼ rm�dn; (24)

where ẑ is the unit vector along the cilium axis, and n the unit vector normal

to the membrane. Differentiating this relation, we obtain dhn � ẑ ¼ drn � dd

where rn is the displacement perpendicular to the membrane. The differential

of the interaction free energy is

dF i¼ dd

Z
dsmkðd�d0Þ1

Z
dðdsmÞ

1

2
kðd�d0Þ2; (25)

where we have taken into account the fact that when the membrane is de-

formed, the surface element dsm changes. To calculate this variation we use

the Monge gauge dsm ¼ ds g1/2 where ds is the surface element along the

base of the cilium perpendicular to the cilium axis and g is the determinant of

the metric tensor. When the surface is displaced in the perpendicular direc-

tion by drn, the change in g is dg¼�2gHdrn, where H is the total curvature.

This leads to d(dsm) ¼ � dsmdrnH. Using this result and Eq. 24, we find the

differential of the interaction free energy

dF i¼ drn

Z
dsm kðd�d0Þ�

1

2
Hkðd�d0Þ2

� �

�dh

Z
dskðd�d0Þg1=2n � ẑ: (26)

The derivatives given in Eq. 4 are obtained by noting that g1=2n � ẑ ¼ 1:

Nonlinear theory

In a nonlinear theory, the dynamic equations of the membrane in a steady

state are written

vT¼ vpðdÞ; (27)

dF
drn

¼ 0; (28)

where the polymerization velocity vp is a nonlinear function of the distance d

between the membrane and the polymerization front. Inverting the first of

these equations gives d as a function of the treadmilling velocity. In a general

nonlinear theory the interaction free energy is written as

F i¼
Z

dsmfðdÞ; (29)

where f is a nonlinear function of d which is minimum for d ¼ d0. Its

differential reads dF i ¼ drn

R
dsm½f9ðdÞ � HfðdÞ� � dh

R
dsf9ðdÞ; where

we denote, by a prime (9), the derivation with respect to d. Using the same

arguments as in the linear case, this leads to an effective pressure and an

effective tension

Peff ¼ P1f9ðdÞ;

seff ¼ s1fðdÞ: (30)

APPENDIX B: MEMBRANE SHAPE

In this Appendix, we give a more detailed derivation of the membrane

properties and of the connection of the membrane to the apical layer. The

geometry is detailed on Fig. 4. As explained in the main text, the membrane

free energy includes both tension and curvature contributions. We divide the

membrane into three regions: the membrane in contact with the stem with a

free energy F a; the membrane connected to the apical layer with a free

energy F b; and the transition regions in-between where the membrane does

not adhere. The free energy of the membrane connected to the fascicle is

F a ¼
Z L

Li1h

2prdh

cosb
s1k

cos
2
b

2r
2

� 	
; (31)

where h denotes the vertical position of the point where the membrane

detaches from the stem and hmax is the vertical position of the tip of the stereo-

cilium. The free energy of the membrane connected to the apical layer is

F b ¼ps9½R2�ðL1rbÞ2�; (32)

where R is the radius of the apical surface considered as a circle around the

cilium and rb is the radius of the membrane at the level of the apical layer.

The free energy of the transition region is

F l¼ 2p rs0 1
k

2r

� 	
ðrb 1LÞ p

2
1b


 �
�rð11sinbÞ


 �

�2pkð11sinbÞ1k

2

Z p
21b

0

du
2prsin

2
u

rb 1L�rsinu
:

(33)

The equilibrium value of the radius of curvature in the transition region r is

obtained by minimization of the total free energyF ¼ F a1F b1Fl:We first

consider the case where the radius at the base rb is larger than r in the

transition region (rb � r). The explicit differentiation with respect to r of

the total free energy leads to

0¼ @F

@r
¼ 2prb �

s1s9

tana
1

p

2
1b


 �
s0�

k

2r
2

� �� 	
: (34)

The equilibrium radius of curvature is then r ¼ ðk=2s̃Þ1=2
with an effective

tension given by Eq. 19. In this limit, the force exerted by the membrane on

the fascicle is given by fm ¼ @F=@Li ’ @F a=@h� @F a=@rbdrb=dz; where

in the last equation we have used the fact that 0 ¼ @F=@r: This directly
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leads to Eq. 21 in the text. In the opposite limit where rb � r; the

minimization of the free energy leads to

0¼ @F
@r
¼ 2pL �sinb

tana
s1

k

2L
2
tan

2
b

� �
� s9

tana

�

12s0

p

2
1b� tanað11sinbÞ

h i	
: (35)

This directly leads to Eq. 20.

We are grateful to P. Martin for drawing our attention to Schneider et al. (9)
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insightful discussions.

REFERENCES

1. Alberts, B., A. Johnson, J. Lewis, M. Raff, K. Roberts, and P. Walter.
2002. Molecular Biology of the Cell. Garland Science, New York.

2. Bray, D. 2001. Cell Movements. Garland Science, New York.

3. Svitkina, T., E. A. Bulanova, O. Y. Chaga, D. M. Vignjevic, J. M. V. S.
Kojima, and G. G. Borisy. 2003. Mechanism of filopodia initiation by
reorganization of a dendritic network. Biophys. J. 160:409–421.

4. de Beauregard, M. C., E. Pringault, S. Robine, and D. Louvard. 1989.
Suppression of villin expression by antisense RNA impairs brush
border assembly in polarized epithelial intestinal cells. EMBO J. 14:
409–421.

5. Frischkopf, L., and D. DeRosier. 1983. Mechanical tuning of free-
standing stereociliary bundles and frequency analysis in the alligator
lizard cochlea. Hear. Res. 12:393–404.

6. Holton, T., and A. J. Hudspeth. 1983. A micromechanical contribution
to cochlear tuning and tonotopic organization. Science. 222:508–510.

7. Tilney, L., M. Tilney, and D. DeRosier. 1992. Actin filaments, stereo-
cilia and hair cells: how cells count and measure. Annu. Rev. Cell Biol.
8:257–274.

8. Verkhovsky, A., O. Chaga, S. Schaub, T. Svitkina, J. Meister, and
G. Borisy. 2003. Orientational order of the lamellipodial actin network
as demonstrated in living motile cells. Mol. Biol. Cell. 14:4667–4675.

9. Schneider, M., I. Belyantseva, R. Azevedo, and B. Kachar. 2002.
Rapid renewal of auditory hair bundles. Nature. 418:837–838.

10. Rzadzinska, A., M. Schneider, C. Davies, G. Riordan, and B. Kachar.
2004. An actin molecular treadmill and myosins maintain stereocilia
functional architecture and self-renewal. J. Cell Biol. 164:887–897.

11. Loomis, P. A., L. Zheng, G. Sekerkova, B. Changyaleket, E. Mugnaini, and
J. R. Bartles. 2003. Espin cross-links cause the elongation of microvillus-
type parallel actin bundles in vivo. J. Cell Biol. 163:1045–1055.

12. Gale, J., J. Meyers, A. Periasamy, and J. Corwin. 2002. Survival
of bundleless hair cells and subsequent bundle replacement in the
bullfrog’s saccule. J. Neurobiol. 50:81–92.

13. Tilney, L., M. Tilney, and D. Cotanche. 1988. Actin filaments,
stereocilia, and hair cells of the bird cochlea. V. How the staircase
pattern of stereociliary lengths is generated. J. Cell Biol. 106:355–365.

14. Pickles, J., S. D. Corals, and M. P. Osborne. 1984. Cross-links between
stereocilia in the guinea pig organ of Corti and their possible relation to
sensory transduction. Hear. Res. 15:103–112.

15. Fettiplace, R., and C. Hackney. 2006. The sensory and motor roles of
auditory hair cells. Nat. Rev. Neurosci. 7:19–29.

16. Sackmann, E., and R. Lipowsky, editors. 1995. Handbook of Bio-
logical Physics. Elsevier Science, New York.

17. Peskin, C., G. O’Dell, and G. Oster. 1993. Cellular motion and thermal
fluctuations: the Brownian ratchet. Biophys. J. 65:316–324.

18. Mogilner, A., and G. Oster. 1996. The physics of lamellipodial pro-
trusion. Eur. Biophys. J. 25:47–53.

19. Kozlov, M., and A. Bershadsky. 2004. Processive capping by formin
suggests a force-driven mechanism of actin polymerization. J. Cell
Biol. 167:1011–1017.

20. Lin, H., M. E. Schneider, and B. Kachar. 2005. When size matters: the
dynamic regulation of stereocilia length. Curr. Opin. Cell Biol. 17:
55–61.

21. Belyantseva, I., E. Boger, S. Naz, G. Frolenkov, J. Sellers, Z. Ahmed,
A. Griffith, and T. Friedman. 2005. Myosin-XVa is required for tip
localization of whirlin and differential elongation of hair-cell stereo-
cilia. Nat. Cell Biol. 7:148–156.

22. Atilgan, E., D. Wirtz, and S. Sun. 2006. Mechanics and dynamics of
actin-driven thin membrane protrusions. Biophys. J. 90:65–76.

23. Romero, S., C. L. Clainche, D. Didry, C. Egile, D. Pantaloni, and
M. Carlier. 2004. Formin is a processive motor that requires profilin
to accelerate actin assembly and associated ATP hydrolysis. Cell. 6:
312–314.

24. Pollard, T. 2004. Formins coming into focus. Dev. Cell. 6:312–314.

25. Bretscher, A., D. Chambers, R. Nguyen, and D. Reczek. 2000. ERM-
merlin and EBP50 protein families in plasma membrane organization
and function. Annu. Rev. Cell Dev. Biol. 16:113–143.

26. Mangeat, P., C. Roy, and M. Martin. 1999. ERM proteins in cell adhe-
sion and membrane dynamics. Trends Cell Biol. 9:187–192.

27. Fygenson, D., J. Marko, and A. Libchaber. 1997. Mechanics of micro-
tubule-based membrane extension. Phys. Rev. Lett. 79:4497–4500.
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