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ABSTRACT

In diploid organisms, sexual reproduction rearranges allelic combinations between loci (recombina-
tion) as well as within loci (segregation). Several studies have analyzed the effect of segregation on the
genetic load due to recurrent deleterious mutations, but considered infinite populations, thus neglecting
the effects of genetic drift. Here, we use single-locus models to explore the combined effects of segrega-
tion, selection, and drift. We find that, for partly recessive deleterious alleles, segregation affects both the
deterministic component of the change in allele frequencies and the stochastic component due to drift.
As a result, we find that the mutation load may be far greater in asexuals than in sexuals in finite and/or
subdivided populations. In finite populations, this effect arises primarily because, in the absence of
segregation, heterozygotes may reach high frequencies due to drift, while homozygotes are still efficiently
selected against; this is not possible with segregation, as matings between heterozygotes constantly prod-
uce new homozygotes. If deleterious alleles are partly, but not fully recessive, this causes an excess load in
asexuals at intermediate population sizes. In subdivided populations without extinction, drift mostly
occurs locally, which reduces the efficiency of selection in both sexuals and asexuals, but does not lead to
global fixation. Yet, local drift is stronger in asexuals than in sexuals, leading to a higher mutation load in
asexuals. In metapopulations with turnover, global drift becomes again important, leading to similar
results as in finite, unstructured populations. Overall, the mutation load that arises through the absence
of segregation in asexuals may greatly exceed previous predictions that ignored genetic drift.

MOST eukaryotes engage in sexual reproduction
despite potentially high costs, such as the famous

twofold cost of sex (Maynard Smith 1978; Barton and
Charlesworth 1998). Genetically, the key compo-
nents of sexual reproduction are recombination and, in
diploid organisms, segregation. Both are absent under
pure asexual reproduction. Recombination and segre-
gation rearrange the genotypic composition of off-
spring from sexual matings, by bringing together novel
allelic combinations at a locus (segregation) or at a set
of different loci (recombination). Hence, these pro-
cesses may affect the distribution of fitness values within
populations and may therefore generate indirect selec-
tive pressure for sexual reproduction (Barton and
Charlesworth 1998; Otto and Lenormand 2002;
Otto 2003; Agrawal 2006; de Visser and Elena 2007).

One possible advantage of recombination and segre-
gation is that they allow sexual populations to reduce
their genetic load through an improved efficiency of se-
lection against deleterious alleles (Kimura and Maruyama

1966; Crow 1970; Crow and Kimura 1970). This requires

the existence of negative disequilibria such as when bene-
ficial and deleterious alleles (within or between loci) oc-
cur more often in the same individual than expected by
chance. Recombination and segregation bring together
favorable alleles within the same individuals (and unfavor-
able alleles in others) and hence improve the efficiency of
natural selection. Selection against recurrent deleterious
mutation can create negative disequilibria between loci
(‘‘negative linkage disequilibrium’’) if deleterious alleles at
different loci interact synergistically (Kondrashov 1982;
Charlesworth 1990). Equivalently, selection can create
negative disequilibria within loci (‘‘heterozygote excess’’) if
deleterious alleles are fully or partially recessive. This is
because (with partially recessive deleterious alleles) the
fitness of heterozygotes is higher than the average fitness of
the homozygotes, and hence heterozygote excess develops
during selection. Once a heterozygote excess is estab-
lished, sexual reproduction leads to improved selection
and therefore to reduced genetic load, because segrega-
tion eliminates the heterozygote excess, resulting in an
increased variance in fitness (Chasnov 2000).

Arguments based on the genetic load are, however,
not sufficient to predict how a modifier gene affecting
the balance between sexual and asexual reproduction
will evolve (e.g., Barton 1995; Otto 2003). Indeed, there
is always a cost (in terms of mean fitness of offspring) of
breaking genetic associations that have been generated
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by selection. This cost is termed ‘‘recombination load’’ or
‘‘segregation load’’ (depending on whether negative link-
age disequilibrium or heterozygote excess is broken). An-
alyses of modifier models have shown that, in infinite,
randomly mating populations, sexual reproduction may
be favored only when dominance and/or epistasis are
sufficiently weak relative to the strength of selection, so
that the recombination load and/or segregation load is
not too high (Barton 1995; Otto 2003). These models
have also shown that even a low rate of inbreeding may
allow sex and recombination to be favored under less
restrictive conditions than with random mating (Otto

2003; Roze and Lenormand 2005). Whereas there is
little empirical support for widespread weak synergistic
epistasis (Rice 2002), there is ample evidence that new
deleterious mutations are, on average, partly recessive
(Muller 1950; Simmons and Crow 1977; Lynch and
Walsh 1998; Szafraniec et al. 2003). In diploid pop-
ulations, genetic associations generated by dominance
may thus play a greater role in the evolution of sex than
genetic associations generated by epistasis (Otto 2003).

Another factor that may contribute to the creation of
negative linkage disequilibria is genetic drift in conjunc-
tion with directional selection. This is because genetic
drift randomly creates positive and negative associations,
but positive associations are rapidly consumed by selection
(because they represent the most extreme fitness values),
while negative associations tend to last longer (Hill and
Robertson 1966; Felsenstein 1974). Genetic drift to-
gether with directional selection can lead to an advantage
of recombination without the requirement of synergistic
epistasis (Otto and Barton 1997, 2001; Iles et al. 2003;
Barton and Otto 2005; Keightley and Otto 2006;
Roze and Barton 2006), especially in subdivided
populations (Martin et al. 2006; Salathé et al. 2006).

Whether genetic drift can also lead to an advantage of
segregation is less clear. Genetic drift has two important
effects: first, in sexual populations, it may increase the
average strength of selection against recessive deleteri-
ous alleles, an effect that has been termed ‘‘purging by
drift’’ (Glémin 2003); it is unclear whether this effect
can also occur in asexuals. Second, it leads to random
changes in allele frequencies, which renders selection
less efficient: if drift is too strong compared to selection,
frequency changes of deleterious alleles may be similar
to those of neutral alleles (Kimura et al. 1963). However,
the strength of this effect may differ between sexual and
asexual populations; indeed, due to the absence of seg-
regation, asexuals inherit genotypes rather than alleles,
which increases the sampling variance of genotype fre-
quencies in asexual populations and thus reduces their
variance effective size relative to sexual populations
(Balloux et al. 2003).

Here, we analyze both of the effects of genetic drift
explicitly by using equilibrium models to investigate the
expected genetic load due to recurrent deleterious
mutation in sexual and asexual populations subject to

drift. These models do not directly study the evolution
of sex, because we fix the rate of sexual reproduction to
either zero or one. Rather, they aim, as a first step, at
comparing the relative effects of drift and selection be-
tween sexual and asexual diploids subject to recurrent
deleterious mutation. To concentrate only on effects that
are due to segregation, we use simple one-locus two-allele
models, starting with a single population of varying
effective size. We then extend this to metapopulations
with finite, but large numbers of demes. This extension
is important because it is likely to represent the natural
situation, as most populations are subdivided to some
extent, and because single small populations are un-
likely to persist over long periods of time. Agrawal and
Chasnov (2001) derived the mutation load in diploid,
infinite, and spatially structured sexual and asexual
populations. In their model, population regulation oc-
curs at the level of the whole population, and the only
effect of population structure is to increase homozygos-
ity in sexuals. However, it is likely that, in subdivided
populations, most competition occurs locally, decreas-
ing the efficiency of selection by increasing competition
among related individuals (‘‘local drift’’). Population
structure may also affect the load through effects on ge-
netic drift at the total population level and on de-
mography. We investigate these different effects using a
finite-island model with extinction and recolonization.
Overall, we show that in single undivided populations,
as well as in metapopulations, the cumulative effects of
genetic drift and segregation across a realistic number
of loci may lead to an equilibrium fitness in sexuals that
is many times higher than that in asexual populations.

THE MODEL

Throughout, we calculate the genetic load in sexual
and asexual populations due to a single locus that
mutates with rate u from a wild-type allele, A, to a mutant
allele, a. Back mutation from a to A occurs at rate v,
v>u. Relative genotypic fitness values for AA, Aa, and aa
are 1, 1� hs, and 1� s, respectively, where h is the
dominance coefficient and s is the selection coefficient.
The genetic load L is defined as L ¼ 1�W , where W is
the mean fitness of a population. Following Chasnov

(2000) and Agrawal and Chasnov (2001), we extrap-
olate our results to many loci by assuming that each
locus contributes independently (multiplicatively) to the
genetic load; that is, Ltot ¼ 1�Wtot ¼ 1�W n , where n
is the number of loci. As is discussed later, this single-
locus load underestimates the total load of asexuals, as
interference between loci may greatly reduce the effi-
ciency of selection at each locus.

Single sexual population: The mean fitness Wsex of a
randomly mating population is determined by the fre-
quency p of the deleterious allele: Wsex ¼ 1� 2hs �p�
s 1� 2hð Þp2, and thus Lsex ¼ 2hs �p 1 s 1� 2hð Þp2. The
expected allele frequency �p (and the expected squared
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frequency, p2) in a population of arbitrary size N, subject
to mutation, selection, and genetic drift, can be ob-
tained by numerical integration of Wright’s distribution
(Wright 1937; Kimura et al. 1963; see also Caballero

and Hill 1992; Bataillon and Kirkpatrick 2000;
Glémin 2003). All numerical calculations were done
with Mathematica (Wolfram 2003), and we checked
the approximations against simulation results, obtained
by averaging the observed load over 108 generations,
after the mutation–selection–drift equilibrium had been
reached (which can easily be checked by visual inspec-
tion of the results).

Single asexual population: Due to the lack of segre-
gation in obligate asexual diploids, their two haploid
genomes will acquire mutations independently. Thus, a
new mutation that arises in one of the two homologous
chromosomes of an asexual will be restricted to that
chromosome unless an independent mutation occurs at
the same locus in the second chromosome (see also
Charlesworth and Charlesworth 1997). Calculating
the mutation–selection–drift balance for a diploid asex-
ual population hence requires solving a two-dimensional
stochastic model representing the change in frequency
of genotypes Aa and aa. However, this can be simplified
by noting that, when mutations are (partially) recessive,
only two genotypes will usually segregate in the popu-
lation. When Ne is large, the population is at mutation–
selection balance and mutant homozygotes can be
neglected (provided that hs?m; Ne . 1=hs). As Ne de-
creases, selection against Aa individuals becomes inef-
ficient (roughly when Ne , 1/hs), and Aa goes to fixation.
However, selection against aa individuals remains effi-
cient, and the frequency of these individuals remains
small, until, when Ne decreases to � ,1/s, selection
against aa also becomes inefficient, and aa will even-
tually fix. Each of these two processes can be analyzed
separately by standard diffusion models for haploid pop-
ulations with only two genotypes with different fitnesses
(Crow and Kimura 1970).

The first process is represented by a diffusion in a
population composed of Aa and AA individuals, corre-
sponding to a standard haploid diffusion where Aa in-
dividuals have relative fitness 1� hs. The mutation rate
from AA to Aa is 2u (because mutation in either of the
two homologous chromosomes will form an Aa indivi-
dual; Charlesworth and Charlesworth 1997), and
the back-mutation rate (from Aa to AA) is v. Integration
of the haploid diffusion described by these parameters
yields Q, the expected frequency of Aa individuals in a
population of Aa and AA individuals. The second pro-
cess is represented by a diffusion in a population com-
posed only of aa and Aa individuals (assuming the back-
mutation rate is sufficiently small), that is, a standard
haploid diffusion, where aa individuals have relative
fitness ð1� sÞ=ð1� hsÞ, which equals 1� ð1� hÞs to the
first order in s. The mutation rate from Aa to aa is u, and
the back-mutation rate (from aa to Aa) is 2v. This yields

R, the expected frequency of aa individuals in a pop-
ulation of aa and Aa. To combine these two processes,
we approximate the expected frequencies of mutant
homozygotes and heterozygotes, paa and pAa , by QR and
Q(1 � R), respectively. Although mathematically not
strictly correct, this gives good results (compared to sim-
ulations) here because it is only when the genotype Aa is
close to fixation in the first diffusion (Q close to 1) that
the frequency of aa is not negligibly small in the second
diffusion. The load is then given by Lasex ¼ hspAa 1 spaa.

Large population approximation: The expected ge-
netic load in sexual and asexual populations of infinite
size is between u and 2u, but stays close to 2u for most
biologically realistic parameter values. Only when h
is quite small (h ,

ffiffiffiffiffiffiffiffi
u=s

p
) is the load significantly

reduced in sexuals compared to asexuals, because, as h
decreases, L tends to u more quickly in sexuals than in
asexuals (Chasnov 2000; for the sexual case, see also
Kimura et al. 1963).

Small population approximation: When Ne is very
small, the population is fixed for one genotype most of
the time, and selection has little effect on the fixation
probabilities. Neglecting the effect of selection, a simple
calculation shows that asexual populations are fixed
for aa, Aa, or AA with probabilities u2=ðu 1 vÞ2, 2uv=
ðu 1 vÞ2, and v2=ðu 1 vÞ2, respectively. On average, the
load is thus given by Lasex � usðu 1 2hvÞ=ðu 1 vÞ2. Sex-
ual populations are fixed for aa or AA with probabilities
u=ðu 1 vÞ and v=ðu 1 vÞ, respectively, and the load is
given by Lsex � us=ðu 1 vÞ. When v>u, Lsex and Lasex are
both close to s; however, the sexual load will be slightly
higher than the asexual load as long as h , 1

2: Lsex=Lasex �
ðu 1 vÞ=ðu 1 2hvÞ.

Subdivided population: We next use the island model
to consider the effects of population structure. The
population is subdivided into n demes, each containing
N diploid adults. These adults produce a large but,
depending on their fitness, variable number of gametes
(in the sexual case) or diploid juveniles (in the asexual
case) and then die. In the sexual case, gamete fusion is
random within each deme. Each juvenile then disperses
with probability m. Each deme thus contributes to the
pool of migrants in proportion to its average fecundity.
Each migrant can reach any other deme with the same
probability. Finally, N individuals are sampled randomly
among all the juveniles present in each deme, to form the
next adult generation. We also consider the effect of local
extinctions of demes; for this, we use Slatkin’s extinction–
recolonization model (Slatkin 1977). At the beginning
of a generation, each deme goes extinct with probability
e. During the dispersal phase, juveniles reaching an
extinct deme do not survive. Then (after the dispersal
phase), each extinct deme is recolonized by k juveniles,
either sampled randomly from the whole population of
juveniles (migrant pool model) or derived from the same
deme (propagule pool model). In both cases, each
juvenile has an equal probability to become a recolonizer.
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It is assumed that recolonizers reproduce immediately, so
that deme size goes back to N in all demes.

Our model corresponds, for instance, to a population
subdivided into discrete patches in which the number of
breeding sites is fixed (N adults per patch). This in-
troduces local population regulation, but regulation is
not completely local (as long as some migration occurs)
because more fertile patches will produce more migrants.
Therefore, our model may be seen as intermediate be-
tween complete local regulation (‘‘soft selection’’) and
complete global regulation (sometimes called ‘‘hard se-
lection’’). Under complete global regulation, each deme
contributes to the next generation (and not just to the
migrant pool) in proportion to its mean fecundity. How-
ever, it is difficult to imagine a simple biological scenario
that would correspond to complete global regulation in
a spatially structured population. This can easily be seen
by considering the limit when migration tends to zero,
in which case one would have to assume that deme sizes
can grow indefinitely, at rates depending on their mean
fecundity. Also at intermediate levels of migration, it is
difficult to imagine a life cycle that would make the
contribution of each deme to the next generation ex-
actly proportional to its mean fecundity. Therefore,
rather than using a parameter that measures the ‘‘de-
gree of local competition’’ as is sometimes done to scale
between soft and hard selection, we preferred to in-
vestigate the effects of local competition in a simple life
cycle where all parameters have immediate biological
meanings (deme size, migration rate, extinction rate).
Still, we can note that our model is equivalent to soft
selection when m ¼ 0 and to hard selection when m ¼ 1.

We use the method of Roze and Rousset (2003),
which is sketched in appendix a, to derive expressions
for the expectation and the variance of the change in
frequency of the deleterious allele, over one generation.
Importantly, this method uses a separation-of-timescales
argument that works best when selection is weak relative
to migration (s , m). In sexuals, the expected change in
frequency p of the mutant allele a, E ½Dp�, is given by

E ½Dp� ¼ S1pq 1 S2p2q 1 uq � vp; ð1Þ

with q ¼ 1� p and

S1 ¼ �s 1� 1

N
ð1� mbÞ2 ð1� eÞ

� �
½h 1 ð1� hÞr0�

1 sð1� mbÞ2 ð1� eÞ 1� 1

N

� �
½2hr1 1 ð1� 2hÞa� ð2Þ

S2 ¼ �sð1� 2hÞ 1� 1

N
ð1� mbÞ2 ð1� eÞ

� �
ð1� r0Þ

1 2sð1� 2hÞð1� mbÞ2 ð1� eÞ 1� 1

N

� �
ðr1 � aÞ: ð3Þ

In the expressions above, r0, r1, and a are probabilities of
coalescence within demes under neutrality, which are

functions of N, m, e, and k, and are given in appendix a;
mb is the ‘‘backward’’ migration rate (the probability
that, after dispersal, a juvenile comes from another deme),
given by mb ¼ mð1� eÞ=ð1� meÞ.

For asexuals, we calculate the expected genotype fre-
quencies using two diffusions, as described previously
for the single population. In the first case, where aa
individuals are very rare, and genotypes Aa and AA seg-
regate in the population with frequencies p and q, re-
spectively, the expected change in the frequency of Aa
individuals over one generation is given by

E ½Dp� ¼ Sa1pq 1 2uq � vp ð4Þ

with

Sa1 ¼ �hs 1� ð1� eÞð1� mbÞ2r R
1

� �
; ð5Þ

where r R
1 is the probability that the ancestral lineages of

two genes sampled with replacement from the same
deme stay in the same deme and coalesce, in a haploid
model under neutrality (see appendix a). In the second
case, where AA is very rare, and aa and Aa segregate in
the population (with p now being defined as the fre-
quency of aa and q as the frequency of Aa), the expected
change in frequency of aa individuals over one gener-
ation is given by

E ½Dp� ¼ Sa2pq 1 uq � 2vp ð6Þ

with

Sa2 ¼ �ð1� hÞs 1� ð1� eÞð1� mbÞ2r R
1

� �
; ð7Þ

where r R
1 is the same as above.

We then have for both the sexual and the asexual
cases

Var½Dp� ¼ r R
1 1� ð1� eÞð1� mbÞ2
� �

nð1� eÞ pq ð8Þ

(e.g., Roze and Rousset 2003), where r R
1 is again the

neutral probability of coalescence for two genes sam-
pled with replacement from a deme. The expression for
r R
1 differs between the sexuals and the asexuals (see

appendix a), and, as above, p is the frequency of a in the
sexual case and the frequency of Aa and aa in the first
and second asexual models, respectively, and q ¼ 1 � p.

The equations above take the same form as in a single
finite population, the selection coefficients and the
effective population size now depending on N, m, e, and
k. As for a single population, these diffusion equations
can be integrated numerically (see appendix a) to ob-
tain the load at equilibrium, the only difference being
that, in the sexual case, the frequency of homozygotes is
affected by population structure, and the load is now
given by

Lsex ¼ s½2h � ð1� 2hÞr0��p 1 sð1� 2hÞð1� r0Þp2; ð9Þ
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where �p and p2 are averages over the probability dis-
tribution of p, the frequency of allele a (e.g., Roze and
Rousset 2003). For asexuals, we combine the two diffu-
sions as described above for the single population and
express the load as

Lasex ¼ hspAa 1 spaa : ð10Þ

RESULTS

Single population: Figure 1 shows some results ob-
tained by numerical integration for a partially recessive
deleterious allele (h ¼ 0.1, s ¼ 0.05) in sexual and asex-
ual populations. For sexual populations, Figure 1 illus-
trates findings already obtained by others (Kimura et al.
1963; Bataillon and Kirkpatrick 2000; Glémin 2003):
in large populations, the mean mutant allele frequency
and load are very close to mutation–selection balance.

As population size decreases, genetic drift increases,
leading to partial purging by drift (Glémin 2003), that
is, a reduction in the mean frequency of the deleterious
allele. The load also decreases slightly, although the
effect is rather small for the parameter values used in
Figure 1. This effect was first described by Kimura et al.
(1963, p. 1306), who noted that ‘‘Here there is the
paradox that a finite population has a smaller load than
an infinite population, which would seem to imply that a
random process produces a higher average fitness than
a deterministic one.’’ As shown by Glémin (2003), this
can be interpreted by considering the effect of aver-
aging over a distribution of allele frequencies. When
selection is weak, the change in frequency of the dele-
terious allele due to selection is given (to the first order
in s) by

Dsp ¼ �s½h 1 ð1� 2hÞp�pð1� pÞ
¼ �shp � sð1� 3hÞp2 1 sð1� 2hÞp3: ð11Þ

Assuming that p follows a frequency distribution, we
have

Dsp ¼ �sh �p � sð1� 3hÞp2 1 sð1� 2hÞp3; ð12Þ

where the overbar stands for the average of the distri-
bution. Assuming that most of the distribution stands at
low values of p (selection remains efficient relative to
drift), we may neglect the third moment p3 and obtain

Dsp ¼ �sh �p � sð1� 3hÞðs2
p 1 �p 2Þ; ð13Þ

where s2
p is the variance of the distribution of p. Equa-

tion 13 thus shows that when h , 1
3, the efficiency of

selection (as measured by jDspj) increases as the vari-
ance s2

p increases (as long as drift is not too strong).
Whereas this effect may lead to a reduced load at

intermediate population sizes in sexuals, decreasing
population size also increases the stochastic component
of allele frequency change. Hence, below a certain
population size, selection is overwhelmed by drift, caus-
ing the mean frequency of the deleterious allele to rise
until close to its neutral expectation, that is, close to
fixation for u?v. This transition occurs over a narrow
range of population sizes, leading also to a sharp in-
crease in genetic load once population sizes decrease
below a certain point. To quantify the population sizes at
which this transition occurs, we arbitrarily define a
limiting population size, Nlim, so that L ¼ 10u at Nlim

(3’s in Figure 1B).
In large asexual populations, mean allele frequency

and load are very similar to values for large sexual pop-
ulations (unless h is very small; Chasnov 2000). How-
ever, a decrease in population size does not initially lead
to purging, which can be understood from a similar
argument as above. As long as selection against Aa
remains efficient, the population consists essentially of

Figure 1.—Mean frequency p (A) of a partly recessive del-
eterious allele (h ¼ 0.1, s ¼ 0.05), mean load L (B), and rel-
ative fitness wsex/wasex (C). Solid lines in A and B represent
sexual populations and dashed lines represent asexual popu-
lations. Triangles on the left and right (A and B) indicate
expected values for very small and infinite populations, re-
spectively, and 3’s (B) indicate Nlim. In A, solid circles (sex-
uals) and open circles (asexuals) are simulation results for
selected values of N. Mutation parameters: u ¼ 10�5, v ¼ 10�7.
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Aa and AA individuals. Calling now p the frequency of
Aa, we have (to the first order in s) Dsp ¼ �shpð1� pÞ,
and thus

Dsp ¼ �sh �p 1 shðs2
p 1 �p2Þ; ð14Þ

showing that the variance in the distribution of p now
decreases the efficiency of selection jDspj, for all h . 0
(Equations 13 and 14 become equivalent for h ¼ 1

2).
Again, decreasing population size also increases the
stochastic component of allele frequency change, and
below a certain size selection against heterozygotes be-
comes inefficient, causing their frequency to increase to
almost 1 (Figure 2). As a result, the load increases and
Nlim is higher than in sexuals (Figure 1B). At the same
time, homozygous mutants appear more frequently
(because mutations arise in heterozygotes), but selec-
tion against these homozygotes remains efficient and
hence their frequency remains low (Figure 2). However,
as the population size decreases again, drift eventually
overwhelms selection against deleterious homozygotes,
and hence the mean mutant allele frequency and the
load increase sharply a second time (Figure 1B). For the
range of intermediate population sizes, in which selec-
tion is efficient against homozygous mutants, but not
heterozygotes, the mutation load is substantially higher
in asexuals than in sexuals, and hence the fitness of
sexuals relative to asexuals peaks at these population
sizes (Figure 1C). This is a direct consequence of the
absence of segregation, because, with segregation, mat-
ings between heterozygotes constantly produce new ho-
mozygotes. Hence, in sexuals, heterozygotes cannot
reach high frequencies due to drift while mutant ho-
mozygotes are still efficiently selected against (see also

Figure 2). Finally, Figure 1 also shows that our approx-
imations, which are based on the assumption that only
two genotypes segregate in asexual populations most of
the time, work very well when compared with simulation
results.

The stepwise increase in genetic load with decreasing
population size in asexual populations is due to dom-
inance. This can be seen in Figure 3, which shows the
mean frequency of a deleterious mutation under multi-
plicative selection, that is, for h ¼ 1=ð1 1

ffiffiffiffiffiffiffiffiffiffiffi
1� s
p

Þ. In this
case, genotype frequencies in infinite populations at
mutation–selection balance are in Hardy–Weinberg
proportions in both sexuals and asexuals (Chasnov

2000; Otto 2003). Figure 3A shows that under multi-
plicative selection, selection is overwhelmed by drift at
larger population sizes in asexuals than in sexuals. This
may be explained by the fact that drift has stronger
effects in asexuals; indeed, the variance effective pop-
ulation size of asexuals is only half the variance effective
size of sexuals, because drift in asexuals occurs through
random sampling of genotypes, whereas in sexuals it
occurs through random sampling of alleles (Balloux

et al. 2003). Indeed, Figure 3A shows that under multi-
plicative selection, the equilibrium frequency of the
deleterious allele in an asexual population is the same as
in a sexual population of half its size. As with the Hill–
Robertson effect that occurs between selected loci
(Hill and Robertson 1966), an alternative interpreta-
tion of this process is through its effect on genetic asso-
ciations: in the same way as drift and selection combine
to generate negative linkage disequilibria between se-
lected loci, they also combine to generate a negative
intralocus association (excess of heterozygotes), which

Figure 2.—Expected average genotype fre-
quencies in sexual (A) and asexual (B) popula-
tions. a is a deleterious allele with h ¼ 0.01, s ¼
0.01, u¼ 10�5, and v¼ 10�7. Note that the plotted
frequencies are averages over many populations
of a given size. For instance, sexual populations
of the size indicated with an arrow in A have
equal frequencies of aa and AA genotypes, on av-
erage, in the near absence of Aa. However, this
does not imply heterozygote deficit within popu-
lations, but rather that most populations are
fixed for AA or aa (with equal probability).

Figure 3.—(A) Mean frequency, p, of a delete-
rious allele under multiplicative selection (s¼ 0.05,
h ¼ 1=ð1 1

ffiffiffiffiffiffiffiffiffiffiffi
1� s
p

Þ � 0:506) in sexual (solid line)
and asexual (dashed line) populations. The circles
(solid for sexuals, open for asexuals) represent
simulation results, and in each pair of horizon-
tally adjacent circles, Nasex ¼ 2Nsex. Mutation
parameters: u¼ 10�5, v¼ 10�7. (B) Simulation re-
sults showing the mean intralocus association
Dintra ¼ paa � p2

a as a function of log10N , in asex-
ual populations (same parameter values as in A). For comparison, at log10N ¼ 2, Dintra at a neutral locus with the same mutation
parameters is �0.005 in asexuals and �2 3 10�7 in sexuals.
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may reach high values when segregation is reduced or
absent. This is due to the fact that drift generates a
variance in genotype frequencies, leading to situations
where heterozygotes are in excess and situations where
they are in deficit. Because the variance in fitness is
lower in the first situation, negative associations tend to
last longer and may accumulate over time if they are not
broken down every generation by segregation (an ex-
treme case being the situation where Aa is fixed in the
population). This is illustrated in Figure 3B, which
shows the mean intralocus association (the equivalent
of the linkage disequilibrium between loci), defined as
Dintra ¼ paa � p2

a , for different values of N in asexuals.
Note that an equivalent definition is Dintra ¼ FpApa ,
where F is the inbreeding coefficient (we use Dintra

rather than F to emphasize the parallel to linkage dis-
equilibrium between loci and because F is not defined
for monomorphic populations). As shown by Figure 3B,
Dintra is negative and peaks at intermediate values of N
(where Aa often reaches high frequencies). However, it
is important to note that this intralocus effect is not
exactly equivalent to the Hill–Robertson effect, because
asexual reproduction generates a negative Dintra, on
average, even in the absence of selection (under mu-
tation and drift alone), while the mean linkage dis-
equilibrium between loci is zero under neutrality. In
appendix b, we show that in an asexual population, and
under neutrality, Dintra at equilibrium is given by

Dintra ¼ �
u

2ð1 1 uÞ2½1 1 2ðN � 1Þuð1 1 uÞ�; ð15Þ

where u ¼ v=u (for small u and v). Thus, in the neutral
case, Dintra is close to �0.005 for the parameter values

used in Figure 3B (u ¼ 0:01, N , 103); this is confirmed
by simulations (not shown). Finally, one can note that in
the sexual case, genetic drift also generates a negative
Dintra in the neutral case (e.g., pp. 39–40 in Gale 1990)
or under multiplicative selection, but this Dintra is much
smaller in magnitude than in the asexual case. Under
neutrality, it is given by

Dintra ¼ �
2uu

ð1 1 uÞ½1 1 2ð2N � 1Þuð1 1 uÞ� ð16Þ

at equilibrium (appendix b), that is, for the parameter
values in Figure 3B roughly four orders of magnitude
lower than in the neutral case for asexuals.

Figure 4 shows the genetic load in sexual and asexual
populations for deleterious alleles with a range of
biologically realistic values of h and s (Simmons and
Crow 1977; Lynch and Walsh 1998; Szafraniec et al.
2003). Nlim, the population sizes at which the load starts
to increase above equilibrium values for infinite pop-
ulations, is always higher for asexuals than for sexuals.
There is thus always a range of intermediate population
sizes where the load in asexual populations is consider-
ably higher than in sexual ones. Figure 5 shows how Nlim

depends on s for a range of different h. In the parameter
range considered, Nlim in sexuals is almost independent
of h and is �4/s. In contrast, in asexuals, Nlim depends
strongly on both h and s and is �4/hs (Nlim ¼ 4/s and
Nlim¼ 4/hs are numerical fits used to illustrate that Nlim

depends on s in sexuals and on hs in asexuals).
Figure 4 also shows that for large populations, the

genetic load is very similar in sexual and asexual popu-
lations (�2u), except when h and s are small (e.g., h ¼
0.001, s ¼ 0.01), when the load in sexuals is somewhat

Figure 4.—Mean genetic load,
L, in sexuals (solid lines) and
asexuals (dashed lines) for muta-
tions of different h and s. Simula-
tion results (solid circles for
sexuals, open circles for asexuals)
are given for three selected pa-
rameter combinations of h and
s. No graph is shown for h ¼
0.01, s ¼ 0.001, because our
model assumes hs . u. 3’s indi-
cate Nlim. Mutation parameters:
u ¼ 10�5, v ¼ 10�7.
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smaller (tending to u as h becomes 0). This is the effect
studied by Chasnov (2000). Multiplied across loci, it
can compensate for the twofold cost of sex, but only for
very small values of h. In contrast, in small populations
we find a somewhat larger load in sexuals than in asex-
uals (see also Figure 1C). This is in agreement with the
small population approximation given above and is due to
the fact that small sexual populations are fixed either
for AA or for aa most of the time, while asexual popu-
lations can be fixed for the Aa genotype.

It is difficult to extrapolate single-locus equilibrium
results to a multilocus setting, but we follow previous
work (Chasnov 2000; Agrawal and Chasnov 2001) in
assuming complete independence of different loci and
multiplicative fitness. This focuses only on the effects of
segregation, neglecting any potential effects of linkage
among loci. Our results thus underestimate the load in
asexuals, as interference among loci can greatly reduce
the effective population size of asexuals (Hill and
Robertson 1966; Felsenstein 1974; Charlesworth

et al. 1993a; Keightley and Otto 2006; Paland and
Lynch 2006). Figure 6 shows that the total fitness of
sexuals relative to asexuals at equilibrium can greatly

exceed 2, even for conservative estimates of the genome-
wide deleterious mutation rate U (Haag-Liautard et al.
2007). As already noted, the fitness of sexuals exceeds
that of asexuals mainly for intermediate population
sizes (and to a lower extent with large population sizes if
h and s are small, see Chasnov 2000). Conversely, for
low population sizes, the fitness of sexuals is lower than
that of asexuals (Figure 6). Therefore, these results in-
dicate that sexuals may have a stronger advantage over
asexuals at intermediate (rather than small or high)
values of Ne. It would thus be interesting to study the
effect of population size in a more dynamic model
where an asexual mutant would spread within a sexual
population, in which case the ‘‘population sizes’’ of sex-
uals and asexuals would vary over time.

Subdivided population: One might expect that in-
creasing the degree of spatial structure of a large meta-
population (for example, by decreasing the size of local
demes) has the same qualitative effect as decreasing N
has in a single finite population. Indeed, population
structure generates a variance in allele frequency be-
tween demes, which may lead to a similar effect as purg-
ing by drift in sexuals, but may also lead to local fixation
of deleterious alleles if local drift is too strong. However,
population structure increases the effective size of the
total population (in the absence of any local demo-
graphic effects, i.e., assuming constant deme sizes) and
thus decreases the effect of drift on the change in allele
frequencies in the whole metapopulation (Wang and
Caballero 1999; Rousset 2003); therefore, the ex-
pected effect of increasing spatial structure will not be
strictly equivalent to the effect of decreasing Ne in the
single-population model. Figure 7 shows results for the
genetic load, obtained using the island model of popu-
lation structure without extinction. Here, we fixed the
total population size at NT ¼ nN ¼ 104 (where n is the
number of demes and N is the number of adults per
deme) and vary n and N. The x-axis in Figure 7 shows
log10N , so one moves from 104 demes, each with a single
individual, at the left, to a single population of 104 in-
dividuals at the right (i.e., decreasing population struc-
ture). In sexuals, an effect similar to the purging by drift
described in the single-population case occurs: a mod-
erate degree of population structure increases the effi-
ciency of selection

	
roughly when h , 1

3



, either under

soft selection or under the present life cycle (Whitlock

2002; Roze and Rousset 2004; Theodorouand Couvet

2006). However, spatial structure also increases the

Figure 5.—Effect of selection coefficients s and dominance
coefficients h on the limiting population size Nlim, below
which genetic load L . 0.0001. Open (asexuals) and solid
(sexuals) squares indicate different values of Nlim obtained
from our model. The lines indicate the approximations,
Nlim ¼ 4/s (sexuals, solid line) and Nlim ¼ 4/hs (asexuals,
dashed lines). In sexuals, Nlim depends only minimally on h
(Figure 4). Mutation parameters: u ¼ 10�5, v ¼ 10�7.

Figure 6.—Fitness of sexuals
relative to asexuals for different
values of h (A), s (B), and U (C).
(A and B) U ¼ 0.02; (C) h ¼ s ¼
0.01. Per-locus mutation rates, u ¼
10�5 and v ¼ 10�7; the number
of loci, n ¼ 2000 for U ¼ nu ¼
0.02 and n ¼ 20,000 for U ¼ 0.2.
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degree of competition among related individuals (which
tend to carry the same alleles), thereby reducing the ef-
fect of selection. As a result, population structure has a
nonmonotonic effect on the mutation load in sexuals:
the load first decreases slightly (with increasing popula-
tion structure) and then increases with stronger pop-
ulation structure. Previous results have shown that, in
general, population structure involving local competi-
tion does not greatly reduce the mutation load; rather, its
main effect is that strong structure increases the load
(Glémin et al. 2003; Roze and Rousset 2004; Glémin

2005; Theodorouand Couvet 2006). In asexuals, popu-
lation structure does not improve the efficiency of selec-
tion; its only effect is to increase local competition, which
increases the load. Although population structure in-
creases the effective size of the whole metapopulation,
this has little effect in the absence of extinction, for the
parameter values used in Figure 7: Ne is always large, and
the population is at mutation–selection balance over the
whole range of deme sizes. Indeed, a deterministic
solution (for an infinite population size NT) gives a good
approximation of our diffusion results. In the determin-
istic limit, and neglecting back mutation, the equilibrium
frequency of allele a is�u=S1 in the sexual case, where S1

is given by Equation 2, while the frequency of the geno-
type Aa is�2u=Sa1 in the asexual case, where Sa1 is given
by Equation 5. From this, one can obtain simple approxi-
mations for the load, assuming small m and large N,

Lsex � u
ð1 1 2NmÞð1 1 8hNmÞ

2Nmð1 1 4hNmÞ ð17Þ

Lasex � 2u
1 1 2Nm

2Nm
ð18Þ

and thus

Lsex

Lasex
� 1 1 8hNm

2 1 8hNm
: ð19Þ

Approximations (17) and (18) are shown in Figure 7
and exhibit a reasonable match with the diffusion and
simulation results. Equation 19 indicates that, even when
h ¼ 1

2 and when the effective size of the total population
is infinite, sexuals may have a significantly lower load
than asexuals. This contrasts with load in an infinite pan-
mictic population, which, for both sexuals and asexuals,
is very close to 2u when h ¼ 1

2. When h ¼ 1
2, S1 simplifies

to ð1 1 r0 � 2r1Þ=2 (while S2 ¼ 0), and Sa1 simplifies to
1� r1. The probabilities of identity by descent r0 and r1

can be shown to be equivalent to Wright’s F-statistics FIT

and FST in a neutral infinite-island model (Hudson

1998; Rousset 2002). Although our model includes
selection, it is sufficient to use expressions for these
F-statistics in a neutral model; indeed, taking into ac-
count the effect of selection on FIT and FST would gen-
erate terms of order s2 in the expressions of E ½Dp� and
Var½Dp� that would disappear in the diffusion limit.
Using the relation 1� FIT ¼ ð1� FISÞð1� FSTÞ, one ar-
rives at the deterministic expressions (still for h ¼ 1

2):

Lsex ¼
2u

ð1� FSTÞð1 1 FISÞ
; Lasex ¼

2u

1� FST
: ð20Þ

The factor 1� FST comes from the fact that population
structure decreases the efficiency of selection by in-
creasing kin competition, while the factor 1 1 FIS corre-
sponds to the fact that, in sexuals, two deleterious alleles
can be eliminated at the same time when they occur in
the same individual. Note that although we assume
random mating within demes, FIS is positive because it is
measured after migration, which occurs in the diploid
stage (and thus the two homologous genes of an indiv-
idual are more likely to share a common ancestor than
two genes in two different individuals from the same
deme). Here, FIS simply equals 1=ð2N � 1Þ: thus, this
effect occurs mainly when deme size is small. More
importantly, FST is not the same in the sexual and the
asexual cases: in the asexual case, the FST that enters into
Equation 20 corresponds to the FST of a haploid popu-
lation (�1=½1 1 2Nm�), which is higher than the FST of
a diploid population with the same N and m (�1=½1 1

4Nm�). For large N, and small m, we have:

1� FSTðsexÞ
1� FSTðasexÞ � 1 1

1

1 1 4Nm
: ð21Þ

This effect is equivalent to the result that, in a single
population, asexuals have half the variance effective size
of sexuals. Although here there is no drift at the whole-
population level (as we are at the deterministic limit),
local drift due to population structure (which reduces
the efficiency of selection) is stronger in asexuals than
in sexuals, generating a higher load in asexuals.

Figure 7.—Genetic load L as a function of deme size N in
sexual (solid lines) and asexual (dashed lines) metapopula-
tions without turnover (e ¼ 0). Thick lines show diffusion re-
sults for sexuals (solid line) and asexuals (dashed line), while
the open (asexuals) and solid (sexuals) circles show simula-
tion results for N ¼ 2, 5, 10, 20, 40, 100, 1000, and 10,000 (av-
erage load over 108 generations). The thin lines correspond
to approximations (10) and (11), while the dashed-dotted
line shows the sexual load in Agrawal and Chasnov’s
(2001) model, with no local competition. Parameters: n ¼
104=N , s ¼ 0:01, h ¼ 0:1, m ¼ 0:1, u ¼ 10�5, v ¼ 10�6.
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Importantly, including local competition leads to a dif-
ferent effect of population structure than using a model
of global competition as in Agrawal and Chasnov

(2001). The dashed-dotted curve in Figure 7 corre-
sponds to Equation 5 in Agrawal and Chasnov (2001)
(load in sexuals), replacing f by 1=ð1 1 4NmÞ (note that
this is not strictly correct, as it is difficult to imagine both
global regulation and deme size staying constant over
time, but it serves to illustrate their result). Here, the
only effect of population structure is to increase homo-
zygosity in sexuals (because individuals tend to mate
with relatives), which leads to better purging and lowers
the load. Conversely, population structure has no effect
on the asexual load, which remains equal to 2u ½that is,
log10ðLÞ � �4:7 for the parameters in Figure 7�. With
local competition, the overall effect of population struc-
ture is to increase the load of both sexuals and asexuals
(although a moderate degree of structure can slightly
reduce the sexual load, as shown in Figure 7), the asex-
ual load increasing faster than the sexual load.

Although population structure increases the effective
size of metapopulations under the hypothesis of a con-
stant deme size over time, adding local demography may
reverse this relation (e.g., Whitlock and Barton 1997).
In particular, local extinctions may greatly reduce the
effective size of a metapopulation. We investigated the
effect of extinctions on the mutation load in sexual and
asexual metapopulations using Slatkin’s (1977) ex-
tinction–recolonization model (described above). In-
creasing the rate of deme extinctions (e) has similar
effects to decreasing Ne in the case of a single popula-
tion: as e increases, the importance of drift in the whole
metapopulation increases, which may lead to the fixa-
tion (or quasi-fixation) of the deleterious allele. For
intermediate values of e, selection against Aa individuals
becomes ineffective in the case of asexuals, while selec-
tion remains efficient in the case of sexuals. For higher
values of e, drift becomes stronger than selection in both
sexuals and asexuals. This leads to stepwise increases of
the genetic load, as shown in Figure 8, A (for the mig-
rant pool model) and B (propagule pool model). In
particular, Figure 8A shows that the asexual load may be
far greater than the sexual load over a wide range of
extinction rates, due to the lack of segregation (and a
lower effective size) in asexuals.

DISCUSSION

In this article, we investigated the effects of popula-
tion size and spatial structure on the mutation load in
sexuals and asexuals. It is important to note that, in
finite or structured populations, one cannot simply pre-
dict the outcome of competition between sexuals and
asexuals by comparing their mutation loads at equilib-
rium: in a finite population, a mutation causing a transi-
tion to asexuality may reach fixation (if it occurs in a
good genetic background) before mutation–selection
balance is reached. In addition, in subdivided popula-
tions, one would have to account for the fact that asex-
uals compete more often with other asexuals (due to
limited dispersal and local competition) than if the
population was well mixed. Bearing this in mind, our
results show that drift and population structure have
different effects on the equilibrium mean fitness of sex-
uals and asexuals.

Single population: We found that, at intermediate
population sizes, mutation load may be far greater in
asexual populations than in sexual populations. Which
population sizes are ‘‘intermediate’’ depends on the
values of the parameters h and s, but, as a rule of thumb,
we found that a 10-fold increase in mutation load com-
pared to u was reached when N , 4/s in sexuals and
when N , 4/hs in asexuals. In Saccharomyces and
Drosophila, estimates indicate that h . 0.01 (Simmons

and Crow 1977; Lynch and Walsh 1998; Szafraniec

et al. 2003), so the parameter range at which drift
overwhelms selection against heterozygotes in asexuals
but is still effective in sexuals should span less than two
orders of magnitude in N. However, as we discuss below,
our estimate of mutation load in asexuals may be a gross
underestimate when deleterious mutations occur at
many loci, because it neglects the effects of clonal inter-
ference on the effective population size. Hence, it is
possible that selection against heterozygotes in asexuals
is ineffective even in populations ?N ¼ 4/hs.

Calculations of genetic loads are useful to assess the
effects of segregation on the efficiency of selection in
equilibrium situations. In contrast, to study the gradual
evolution of sexual reproduction, the immediate costs
(in terms of mean offspring fitness) of breaking genetic
associations that have been generated by selection need
to be taken into account (see review by Agrawal 2006).

Figure 8.—Genetic load in sexual (solid lines)
and asexual (dashed lines) metapopulations, as a
function of the extinction rate e, for the migrant
pool model of recolonization (A) and the propa-
gule model (B). Solid (sexuals) and open (asex-
uals) circles show simulation results. Parameters:
n ¼ 100, N ¼ 100, s ¼ 0:01, h ¼ 0:1, m ¼ 0:1,
u ¼ 10�5, v ¼ 10�6, k ¼ 10.

1672 C. R. Haag and D. Roze



This can be done, for instance, by studying the evolution
of a modifier locus with different alleles that increase or
decrease the proportion of offspring produced sexually.
Using such a modifier model, Otto (2003) found that,
in infinite populations, conditions under which an ad-
vantage of segregation leads to an increase in frequency
of a modifier promoting sexual reproduction are quite
restricted, unless there is some inbreeding, which causes
an excess of homozygotes. It may be argued that genetic
drift has similar effects to inbreeding because both pro-
cesses may lead to purging in sexuals. However, drift also
leads to random changes in allele frequencies, which
counteract the effectiveness of selection and may there-
fore generate a greater advantage for sex at intermedi-
ate population sizes, when deleterious alleles are fixed
in the heterozygous state in asexuals, but not in sexuals.
It would be interesting to see how this effect translates
into an advantage for sex in a modifier model repre-
senting a finite diploid population.

A potential shortcoming of our model is that it neg-
lects mitotic recombination in asexuals (Barbera and
Petes 2006; Omilian et al. 2006). Mitotic recombina-
tion leads to formation of homozygotes from heterozy-
gous asexuals and is equivalent to increasing mutation
rates from heterozygotes to homozygotes. High rates of
mitotic recombination (of the order of magnitude of
mutation rates or higher) may decrease the effects ob-
served here because fixation in the heterozygous state
becomes less common, if heterozygotes often ‘‘back
mutate’’ to homozygotes. However, the significance of
mitotic recombination in nature is unknown. For in-
stance, if it involves long stretches of DNA containing
many loci (Omilian et al. 2006), most cases of mitotic
recombination may be deleterious because mutant ho-
mozygotes will be created at some loci.

Subdivided population: In largemetapopulations with-
out extinction and recolonization, drift at the global level
can be neglected. In such metapopulations, the effect of
increasing population structure (by decreasing deme size
or migration rate) on the mutation load depends criti-
cally on the assumptions concerning population regula-
tion. Here we found that the realistic assumption of local
population regulation (i.e., competition within local pop-
ulations) has a strong effect on mutation load in both
sexuals and asexuals. Local competition reduces the ef-
ficiency of selection, as individuals who tend to have
similar genotypes compete with each other. Hence, in
our model, the overall effect of population structure is to
increase the load in both sexuals and asexuals (although
a moderate degree of structure can lead to a small reduc-
tion of the load in sexuals). This effect is stronger in
asexuals than in sexuals, because local drift has more
effect in asexuals. Indeed, within a deme, the variance
effective size of asexuals is half the effective size of sex-
uals. In the deterministic limit (very large total popula-
tion size), we found that Lsex=Lasex � ð1 1 8hNmÞ=ð2 1

8hNmÞ. As for the case of a single population, it would be

interesting to model the evolution of a modifier locus
affecting the proportion of sexually produced offspring
in a metapopulation. This could be done using the
method developed in Roze and Rousset (2005).

Local demography can have important effects on the
effective size of metapopulations (Whitlock and Barton

1997). Here we used a very simple demographic model,
where local extinctions occur at a rate e and where deme
size immediately goes back to N after recolonization
(Slatkin 1977). Increasing the extinction rate reduces
the effective size of the total population. Hence we found
that, for a wide range of extinction rates, deleterious
mutations may be fixed in the heterozygous state in
asexuals, while still being efficiently eliminated in sex-
uals. More realistic demographic models of subdivided
populations could be explored, for example, by using
the method of Rousset and Ronce (2004).

Mutation load in small populations: In contrast to
populations of intermediate size, sexuals have a similar
or even a higher genetic load than asexuals in small
populations (single-population model) and also in meta-
populations with very high turnover rates (metapopu-
lation model, large e). This occurs for parameter ranges
at which selection is ineffective against all genotypes in
both sexuals and asexuals and so that populations are
fixed for the mutant genotype aa most of the time
(when u?v).

The result that the improved effectiveness of selec-
tion in sexuals disappears, or is even reversed compared
to that in asexuals at low effective population size, may
be consistent with the well-documented pattern of geo-
graphic parthenogenesis (Vandel 1928): asexuals often
occur in more marginal (as opposed to core) habitats,
such as at high latitudes or altitudes, than their closely re-
lated sexual counterparts (e.g., Bell 1982; Bierzychudek

1985). Because marginal habitats may be environmentally
less predictable and more patchily distributed than core
habitats, populations in these habitats may tend to be
smaller, subject to wider stochastic fluctuations in density,
and hence subject to stronger drift (Haag and Ebert

2004). If drift in marginal populations is indeed so strong
that it overwhelms selection in asexuals and in sexuals,
our model predicts that, in marginal habitats, asexuals
have a slightly lower load than sexuals.

It is, however, unclear whether equilibrium results
(such as those described here) apply to situations in
which genetic drift is so strong that a majority of dele-
terious mutations are effectively neutral. If this were the
case at many loci, deleterious mutations may accumu-
late through fixation and Muller’s ratchet in both sexual
and asexual populations (although the effects differ
between sexuals and asexuals, e.g., Pamilo et al. 1987;
Charlesworth et al. 1993b; Charlesworth and
Charlesworth 1997). This may eventually drive the
populations to extinction (Lynch et al. 1995), and, thus,
equilibrium conditions would not be met. Nonetheless,
if sexual populations fix mutations in a homozygous
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state, whereas asexual ones fix them first as heterozy-
gotes, the fitness decline may be faster in sexuals than in
asexuals.

Multilocus simulation studies suggest that the advan-
tage of recombination may also increase with popu-
lation size (even without leveling off, at least for the
studied parameter range; Iles et al. 2003; Keightley

and Otto 2006; Salathé et al. 2006), due to the fact
that a greater number of selected mutations segregate
in larger populations. Hence these studies, as well as
ours, are consistent with the idea that the fitness of
sexuals relative to asexuals increases with population
size (in our study only up to a certain point). Again, this
may be a possible explanation for geographical parthe-
nogenesis, if marginal populations have a lower effective
size than core populations.

Extrapolation to multilocus situations: The models
presented here are single-locus models with recurrent
deleterious mutations, but in real organisms mutations
occur at many loci throughout the genome. It is difficult
to extrapolate from single-locus models to multilocus
situations. Nonetheless, our model suggests that, if dele-
terious alleles are at least partly recessive, asexuals suffer
an increased load compared to sexuals at intermediate
population sizes. Multiplied across loci, this could sub-
stantially reduce genetic load in sexual populations
even for conservative estimates of U and in the absence
of any effect of recombination. Neglecting potential
effects of recombination (or its absence in asexuals) in a
multilocus setting is, of course, unrealistic, but was done
here to isolate the effects of segregation from those of
recombination. In asexuals, the effectiveness of selec-
tion can be greatly reduced below levels predicted by
single-locus models because of strong selective interfer-
ence among nonrecombining loci (the ‘‘Hill–Robertson
effect’’; Hill and Robertson 1966). Hence single-locus
models underestimate the force of drift, and hence
load, in asexuals. Selective interference also occurs in
sexuals, but is much weaker, due to recombination
(Hill and Robertson 1966; Felsenstein 1974; Char-

lesworth et al. 1993a; Keightley and Otto 2006).
Thus, it seems likely that combining the effects of seg-
regation and recombination would lead to an increased
parameter range in which asexuals have an increased
load compared to sexuals.
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APPENDIX A

We derive here expressions for the expected change in frequency of the deleterious allele (a) over one generation,
in the island model of population structure, with extinctions and recolonizations. Note that to use the diffusion
method, it is sufficient to express this expected change in the limit as the number of demes n tends to infinity (e.g.,
Roze and Rousset 2003). Our life cycle assumes that at each generation, each deme may go extinct with probability e.
In nonextinct demes, individuals produce a large but, depending on their fitness, variable number of gametes, which
fuse immediately and at random within the deme (in the sexual case), or juveniles (in the asexual case). Each juvenile
then has a probability m of entering the migrant pool. Therefore, demes contribute to the migrant pool on proportion
of their mean fecundity. Migrants reach any other deme with the same probability, but following Slatkin’s (1977)
extinction–recolonization model we assume that migrants arriving in an extinct deme do not survive, each extinct
deme being recolonized later by k juveniles. In the absence of extinction, the expected contribution of adult j in deme
i to the next adult generation is given by

ð1� mÞwij

ð1� mÞwi 1 mw
1

mwij

w
; ðA1Þ

where wij is the fecundity of individual ij, wi is the average fecundity in deme i, and w is the average fecundity in the
whole metapopulation; wi is given by

wi ¼ pAA;i 1 ð1� hsÞpAa;i 1 ð1� sÞpaa;i

¼ 1� 2hspa;i � sð1� 2hÞpaa;i ; ðA2Þ

where pAa;i , paa;i , and pa;i are the frequencies of Aa individuals, of aa individuals, and of the a allele in deme i, before
selection. When extinctions occur, the backward migration rate (probability that, after dispersal, a juvenile comes
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from another deme) is different from m and is given in the neutral case by mb ¼ ð1� eÞm=ð1� meÞ. Although selection
affects mb, this effect generates a term of order s2 in the expression of the change in frequency of the deleterious allele,
which disappears in the diffusion limit. In the sexual case, the frequency of a in deme i (given that deme i does not go
extinct) after selection (and before dispersal) is given by

ps
a;i ¼

ð1� hsÞpAa;i=2 1 ð1� sÞpaa;i

wi
¼ ð1� hsÞpa;i 1 ð1� hÞspaa;i

wi
; ðA3Þ

where wi is given by equation (A2) above. The expected frequency of a in deme i, after dispersal and recolonization of
extinct demes is then given by

E ½pa;i9� ¼ eps
a 1 ð1� eÞ

ð1� mbÞwip
s
a;i 1 mbwð1� eÞps

a

ð1� mbÞwi 1 mbwð1� eÞ ; ðA4Þ

where w is again the average fecundity in the whole metapopulation (the average over i of wi), and where ps
a is the

frequency of a in the whole population, after selection, given by

ps
a ¼

wi

w
ps

a;i ; ðA5Þ

where the overbar means the average over all demes i. The first and second terms of Equation A4 represent the case
where deme i went extinct and the case where it did not go extinct (respectively). In this second case, ð1� mbÞwi

juveniles come from deme i, while mbwð1� eÞ juveniles are migrants coming from other nonextinct demes. After
expressing Equation A4 to the first order in s and averaging over all i, one obtains an expression for Dpa (the change in

frequency of a over one generation) as a function of the moments pa;ið Þ2 and pa;ipaa;i (where again the overbar means
the average over all i). When selection is weaker than migration, we can use a separation-of-timescales argument and
replace these moments by their equilibrium expressions under neutrality, for the current allele frequencies (e.g.,
Whitlock 2002; Cherry and Wakeley 2003; Roze and Rousset 2003). This gives

ðpa;iÞ2 ¼ r R
1 pa 1 ð1� r R

1 Þp2
a ðA6Þ

pa;ipaa;i ¼ aRpa 1 bRp2
a 1 gRp3

a ; ðA7Þ

where r R
1 is the probability that the ancestral lineages of two genes sampled with replacement from the same deme stay

in the same deme and coalesce (in the neutral case and for an infinite number of demes), while aR, bR, and gR are the
probabilities that the ancestral lineages of the two homologous genes of an individual, plus a third gene sampled with
replacement from the same deme, all stay in the same deme and coalesce (aR), that only two of them coalesce (bR), or
that no coalescence occurs (gR ¼ 1� aR � bR). These can be expressed in terms of probabilities of coalescence of
genes sampled without replacement,

r R
1 ¼

1 1 r0

2N
1 1� 1

N

� �
r1; ðA8Þ

where r0 and r1 are the probabilities that the two homologous genes of an individual, and two genes sampled from two
different individuals from the same deme (respectively), coalesce within the deme. Similarly, one has

aR ¼ r0

N
1 1� 1

N

� �
a ðA9Þ

gR ¼ 1� 1

N

� �
g; ðA10Þ

where a and g are the probabilities that the two homologous genes of an individual, plus a gene from a different
individual from the same deme, all coalesce (a) or that no coalescence occurs (g). After some simplifications, and
using the fact that g ¼ 1 1 2a� r0 � 2r1, one arrives at Equation 1 in the text.

The coalescence probabilities r0, r1, and a are obtained by solving recurrence equations. For this, one defines u (and
c) as the probability that two (three) individuals colonizing the same extinct deme come from the same deme (before
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dispersal). In the migrant pool model u ¼ c ¼ 0, while in the propagule pool model u ¼ ð1� mbÞ2 and
c ¼ ð1� mbÞ3. Recursions for r0 and r1 are given by

r09 ¼ 1� e 1 e
1

2k
1 1� 1

k

� �
u

� �� �
1 1 r0

2N
1 1� 1

N

� �
r1

� �
1

e

2k
ðA11Þ

r19 ¼ ð1� eÞð1� mbÞ2 1 e
1

2k
1 1� 1

k

� �
u

� �� �
1 1 r0

2N
1 1� 1

N

� �
r1

� �
1

e

2k
: ðA12Þ

Defining d as the probability that the ancestral lineages of three genes sampled from three different individuals from
the same deme stay in the same deme and coalesce, one then has

a9 ¼ ð1� eÞð1� mbÞ2 1 e 1� 1

k

� �
3

2k
u 1 1� 2

k

� �
c

� �� �

3
1 1 3r0

4N 2 1
3

2N
1� 1

N

� �
ðr1 1 aÞ1 1� 1

N

� �
1� 2

N

� �
d

� �

1
3e

2k

1

2k
1 1� 1

k

� �
u

� �
1 1 r0

2N
1 1� 1

N

� �
r1

� �
1

e

4k2: ðA13Þ

Finally, d9 is given by the same equation, replacing ð1� mbÞ2 by ð1� mbÞ3. Solving these equations gives expressions for
r0, r1, and a in terms of N, m, e, and k.

Using the same method for the asexual case yields an expression that depends on r R
1 , the probability that the

ancestral lineages of two genes sampled with replacement from the same deme stay in the same deme and coalesce,
this time in a haploid model. This is given by

r R
1 ¼

1

N
1 1� 1

N

� �
r1; ðA14Þ

where r1 is obtained by solving the recurrence equation

r19 ¼ ð1� eÞð1� mbÞ2 1 e 1� 1

k

� �
u

� �
1

N
1 1� 1

N

� �
r1

� �
1

e

k
: ðA15Þ

This method leads to Equations 1–8 in the text, describing the expectation and variance of the change in allele
frequency in sexual and asexual metapopulations. These expressions take the same form as in a single, nonsubdivided
population, and standard diffusion methods (e.g., Crow and Kimura 1970) yield

fsðpÞ ¼ Ksexp 4NeS1p 1 2NeS2p2
� �

p4Neu�1ð1� pÞ4Nev�1; ðA16Þ

where fsðpÞ is the probability that allele a is present in frequency p in the metapopulation at equilibrium, in the sexual
case, Ks is a constant, S1 and S2 are given by Equations 2 and 3, and Ne ¼ pð1� pÞ=ð2 Var½Dp�Þ, where Var½Dp� is given by
Equation 8 (see also Roze and Rousset 2004). In the first asexual model (describing a population consisting of Aa and
AA individuals), the equilibrium probability distribution of the frequency of Aa individuals is given by

fa1ðpÞ ¼ Ka1exp½2NeSa1�p4Neu�1ð1� pÞ2Nev�1; ðA17Þ

where Sa1 is given by Equation 5, and Ne ¼ pð1� pÞ=ðVar½Dp�Þ. In the second asexual model (describing a population
consisting of aa and Aa individuals), the equilibrium probability distribution of the frequency of aa individuals is given by

fa2ðpÞ ¼ Ka2exp½2NeSa2�p2Neu�1ð1� pÞ4Nev�1; ðA18Þ

where Sa2 is given by Equation 7, and again Ne ¼ pð1� pÞ=ðVar½Dp�Þ. We then used Mathematica to integrate
numerically over these distributions, to obtain �p and p2 in the sexual case and pAa , paa in the asexual case.

APPENDIX B

We calculate here the equilibrium value of the intralocus association Dintra at the mutation–drift equilibrium (no
selection), in the sexual and asexual cases. We have
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Dintra ¼ paa � p2
a

¼ paa � p2
aa 1 paapAa 1

p2
Aa

4

 !
: ðB1Þ

Dintra can thus be expressed by calculating paa , p2
aa , pAapaa , and p2

Aa at equilibrium. In the asexual case, recursions for
paa and pAa are given by (to the first order in u and v)

paa
9 ¼ ð1� 2vÞpaa 1 upAa ðB2Þ

pAa
9 ¼ 2u 1 ð1� 3u � vÞpAa 1 2ðv � uÞpaa ; ðB3Þ

giving at equilibrium paa ¼ u2=ðu 1 vÞ2, pAa ¼ 2uv=ðu 1 vÞ2. A recursion for p2
aa is obtained as follows: p2

aa

9
is the

probability that, at the next generation, two individuals sampled with replacement from the whole population are
both aa. With probability 1/N, the same individual is sampled twice, and this individual is aa with probability paa

9. With

probability 1� 1=N , two different individuals are sampled, in which case they are both aa with probability pu
aa

	 
2
,

where pu
aa is the frequency of aa after mutation, and before random sampling (pu

aa ¼ ð1� 2vÞpaa 1 upAa). This gives

p2
aa

9 ¼ paa
9

N
1 1� 1

N

� �
ð1� 4vÞp2

aa 1 2upAapaa

h i
: ðB4Þ

Similarly, one obtains the following recursions for p2
Aa and pAapaa :

p2
Aa

9 ¼ pAa
9

N
1 1� 1

N

� �
ð1� 6u � 2vÞp2

Aa 1 4upAa 1 4ðv � uÞpAapaa

h i
ðB5Þ

pAapaa
9 ¼ 1� 1

N

� �
2upaa 1 ð1� 3u � 3vÞpAapaa 1 up2

Aa 1 2ðv � uÞp2
aa

h i
: ðB6Þ

Solving these recursions gives, at equilibrium,

Dintra ¼ �
u

2ð1 1 uÞ2½1 1 2ðN � 1Þuð1 1 uÞ�; ðB7Þ

where u ¼ v=u. In the sexual case, one can write recursions for paa and p2
a ,

p2
a

9 ¼ pa
9

2N
1 1� 1

2N

� �
ðpu

a Þ2; ðB8Þ

where pu
a is the frequency of a after mutation, given by pu

a ¼ u 1 ð1� u � vÞpa. Therefore,

p2
a

9 ¼ pa
9

2N
1 1� 1

2N

� �
2upa 1 ð1� 2u � 2vÞp2

a

h i
ðB9Þ

and

paa
9 ¼ ðpu

a Þ2 ¼ 2upa 1 ð1� 2u � 2vÞp2
a : ðB10Þ

Given that pa ¼ u=ðu 1 vÞ, one obtains at equilibrium

Dintra ¼ �
2uu

ð1 1 uÞ½1 1 2ð2N � 1Þuð1 1 uÞ�: ðB11Þ
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